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In this Supplementary Material, we show detailed results on topological phonon transfer and topological
phonon blockade enabled via dark-mode engineering which is induced by synthetic magnetism, in phase-
dependent loop-coupled optomechanical configurations. Specifically, this document consists of five sections on:
(i) Physical system and its dark-mode engineering; (ii) Effective non-Hermitian Hamiltonian and its exceptional
point; (iii) Dark-mode-engineered topological phononics; (iv) Scalable network-based topological phonon
transfer enabled by synthetic magnetism; and (v) Quantum collective motion using dark-mode engineering.
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I. PHYSICAL SYSTEM AND DARK-MODE ENGINEERING

Nonreciprocal topology is engendered by imposing topological operations winding around an exceptional point (EP), and it
extremely fragile in face of all dark modes. As a result, these dark modes enable the deactivation of topological operations
and EPs, which leads to a complete blockade of both mode conversion and phonon transfer between dark and bright modes. In
this work, we show how to overcome this outstanding challenge and to achieve a versatile yet unique nonreciprocal topological
phonon transfer (TPT) and topological phonon blockade (TPB) via dark-mode engineering. This is achieved by employing
synthetic magnetism, which results in a flexible transition between the dark-mode-nonbreaking (DMN) and dark-mode-
breaking (DMB) regimes, in a precise and controlled manner. For example, we find that when the system operates in the
DMN regime, TPB happens; while TPT is observed in theDMB regime, which offers an exciting opportunity of bridging TPB
and TPT at will, having no counterpart in all previous studies. In particular, we apply the dark-mode-engineering mechanism to
quantum networks, making the dark-mode-immune network-based TPT from dark to bright modes feasible. Our study maps a
general path towards generating profoundly different nonreciprocal topological quantum resources with immunity against dark
modes. In a broader view, our study sheds new light on the combination of dark-mode engineering, topological operations, and
quantum networks, and offers an exciting prospect of revealing a unique topology with immunity against dark modes.

In this section, the quantum Langevin equations for both photon and phonon modes are detailedly derived in a loop-coupled
three-mode optomechanical system, where a common photon mode optomechanically coupled to two phonon modes, which are
coupled to each other via a phase-dependent phonon-hopping interaction. Then, the linearized optomechanical Hamiltonian of
our system can be derived by applying the linearization procedure and then, we study in detail the dark mode and the dark-mode
engineering, which is enabled by the synthetic magnetism.

A. Physical model and its Hamiltonian

In this section, we focus on quantum optomechanical networks, which consist of N phonon modes coupled to a common
photon mode through radiation-pressure couplings. The nearest-neighboring phonon modes are coupled to each other via phase-
dependent phonon-hopping interactions. Then, the Hamiltonian of quantum optomechanical networks reads (ℏ = 1)

H = ωca†a +
N∑

j=1

[ω jb
†

jb j + g ja†a(b†j + b j)] +
N−1∑
j=1

ξ j(eiΘ j b†jb j+1 + e−iΘ j b†j+1b j) + i
√
κinϵin(a†e−iωlt − H.c.), (S1)

where the operators a† (a) and b†j (b j) are creation (annihilation) operators of the photon mode and the jth phonon mode, with
resonance frequencies ωc and ω j, respectively. The g j terms denote the optomechanical interactions between the photon mode
and the jth phonon mode, with the parameter g j being the single-photon optomechanical-coupling strength. The laser driving
of the system is described by the ϵin =

√
P/(ℏωL) term, with the laser power P, frequency ωL, linewidth κ, and input-coupling

rate κin. In addition, we introduce the phase-dependent phonon-hopping interactions between the nearest-neighboring phonon
modes, with the coupling strengths ξ j and modulation phases Θ j. A synthetic gauge field, which is employed for engineering all
dark modes, can be induced on demand, using phase-dependent loop-coupled setups, made up of the g j and ξ j terms.

To facilitate a clear understanding of the proposed dark-mode engineering and its underlying physical mechanisms, we first
consider the simplest three-mode optomechanical devices (i.e., N = 2) consisting of two phonon modes coupled to a shared
photon mode. In this case, we study in detail both TPT and TPB between the dark and bright modes, and it is achieved
by employing dark-mode engineering. Specifically, a unique photon mode is supported by an optomechanical cavity with an
external laser driving, leading to the in-parallel optomechanical couplings of the photon mode to the two phonon modes via
radiation-pressure radiation, and the two phonon modes are coupled to each other via a phase-dependent phonon-exchange
interaction. Note that a related three-mode optomechanical system has recently been reported in experiments and proposals,
and especially, it has already been implemented using state-of-the-art technology to achieve topological responses, fully evading
dark modes [S1, S2]. Consequently, the Hamiltonian of the two-phonon-mode optomechanical system reads

H = ωca†a +
∑
j=1,2

[ω jb
†

jb j + g ja†a(b†j + b j)] + ξ(eiΘb†1b2 + e−iΘb†2b1) + i
√
κinϵin(a†e−iωlt − H.c.), (S2)

where a synthetic gauge field, which is employed to flexibly manipulate the dark mode, can be induced on demand by the ξ term,
with a modulation phase Θ and a phonon-exchange coupling strength ξ between the two phonon modes.

For a standard optomechanical system which is composed of a photon mode linearly coupled to a single phonon mode, a
pair of coupled differential equations for both photon and phonon modes are resulted from an input–output approach to these
systems. Subsequently, these equations of motion can be easily treated in the Fourier domain for better understanding the
optical modification of the mechanical susceptibilities. Here, we concentrate on a simple extension of these standard models, by
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considering two phonon modes, each of which is coupled to a common photon mode. Subsequently, this leads to the following
equations of motion for both photon and phonon modes, i.e.,

ȧ = −
(
κ

2
+ iωc

)
a − ig1az1 − ig2az2 +

√
κinϵin, (S3a)

ḃ1 = −

(
γ1

2
+ iω1

)
b1 − ig1a†a − iξeiΘb2 +

√
γ1η1, (S3b)

ḃ2 = −

(
γ2

2
+ iω2

)
b2 − ig2a†a − iξe−iΘb1 +

√
γ2η2, (S3c)

where the parameters κ and κin are the dissipation rate of the linewidth and the input coupling rate of the cavity field, respectively;
z j = b†j + b j is the position operator for the jth phonon mode. In addition, ω j, g j, and γ j are the mechanical resonance frequency
of the jth phonon mode, the single-photon coupling strength of the photon mode and the jth phonon mode, and the mechanical
dissipation rate of the jth phonon mode, respectively. The optical and vibrational modes are driven by the input fields ϵin and η j,
respectively.

Then, a linearization procedure can be applied so that one can simplify the physical model by considering the case in the
strong-driving regime of quantum systems. Specifically, both photon and phonon operators used in Eq. (S3) can be expressed as
sums of their classical averages and quantum fluctuations, i.e.,

a = ā + δa, b j = b̄ j + δb j. (S4)

By separating the classical motion from their quantum fluctuations, the equations of motion for the classical-motion variables
can be obtained and then, we have the classical average of the optical dynamical variable:

ā =
√
κinϵin

κ/2 − i∆
, (S5)

where the parameter ∆ ≈ ωL −ωc is the driving detuning. Subsequently, we can easily obtain the linearized equations of motion
for quantum fluctuations, defined as:

δȧ = −
(
κ

2
− i∆

)
δa − iG1δz1 − iG2δz2, (S6a)

δḃ1 = −

(
γ1

2
+ iω1

)
δb1 − i

(
G∗1δa +G1δa†

)
− iξeiΘδb2 +

√
γ1η1, (S6b)

δḃ2 = −

(
γ2

2
+ iω2

)
δb2 − i

(
G∗2δa +G2δa†

)
− iξe−iΘδb1 +

√
γ2η2, (S6c)

where the parameter G j=1,2 = g jā is the linearized optomechanical-coupling strength between the photon mode and the jth
phonon mode.

Below, the dark and bright modes are studied in detail in the three-mode optomechanical systems, which consists of two
phonon modes coupled to a common photon mode. In addition, the dark mode and its breaking in this system is analyzed in
detail. We see in Eq. (S6) that these photon and phonon modes are coupled to each other via the bilinear-form interactions.
Mathematically, an effective Hamiltonian can be easily inferred to govern these bilinear interactions, including both beam-
splitting-type (excitation-exchanging) terms and the two-mode-squeezing (excitation-creating) terms.

In our studied optomechanical TPT, the linearized couplings in this system are dominated by the beam-splitting-type
interactions of these bosonic modes and therefore, the system Hamiltonian can be easily simplified by assuming the rotating-
wave approximation (RWA). As a result, the linearized Hamiltonian takes the following form discarding the noise terms:

Hlin = −∆δa†δa +
2∑

j=1

[ω jδb
†

jδb j +G j(δaδb
†

j + δb jδa†)] + ξ(eiΘδb†1δb2 + e−iΘδb†2δb1), (S7)

where the parameter ∆ ≈ ωL − ωc is the driving detuning. Below, we analyze in detail both the dark and bright modes based on
the HamiltonianHlin in Eq. (S7).

B. Dark and bright modes

As is well known, topological phenomena in topological physics are generally destroyed by dark modes naturally decoupled
from the system, which results in a complete deactivation of both EPs and topological operations. For example, TPT and
mode switching can always happen when executing adiabatic closed paths enclosing an EP. Surprisingly, once dark modes are
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FIG. S1: (a) Coupling strength |G−|/ω1 versus the frequency ratio ω2/ω1 and the optomechanical-coupling-strength ratio G2/G1 of the two
phonon modes. (b) Coupling strengths |G+|/ω1 (dashed lines) and |G−|/ω1 (solid lines) versus the frequency ratio ω2/ω1 when G2/G1=0.5
(black lines), 1 (blue lines), and 1.5 (red lines). Here we set G1/ω1 = 0.2. (c) Redefined coupling strengths G̃+/ωm and G̃−/ωm versus the
modulation phase Θ. Here we set the resonance frequency ωm as the frequency scale, and assume G j/ωm = ξ/ωm = 0.1 and ω j/ωm = 1.

possessed by the system, both the mode conversion and TPT between dark and bright modes are unfeasible regardless of the
adjustment of adiabatic trajectories and system parameters, due to the dark-mode-induced destruction of topological operations
and EPs.

In this section, we study in detail both the dark and bright modes in our three-mode optomechanical system, by demonstrating
the cases where the synthetic magnetism is absent (i.e., ξ = 0) and present (i.e., ξ , 0 and Θ , nπ), respectively.

Specifically, in the absence (i.e., ξ = 0) of the synthetic magnetism induced by the phase-dependent loop-coupled
configurations, the system Hamiltonian (S7) becomes

Hlin = −∆δa†δa +
2∑

j=1

[ω jδb
†

jδb j +G j(δaδb
†

j + δb jδa†)]. (S8)

In this system, the two phonon modes δb1 and δb2, which are coupled to a common photon mode δa, form the following two
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motional normal modes:

B+ =
G1δb1 +G2δb2√

G2
1 +G2

2

, bright mode, (S9)

B− =
G2δb1 −G1δb2√

G2
1 +G2

2

, dark mode. (S10)

Note that the bosonic commutative relations (i.e., [B±,B
†
±] = 1) are satisfied by the above vibrational normal modes B±. The

system Hamiltonian in Eq. (S8) can be rewritten with these two vibrational normal modes B± as

Hlin = −∆δa†δa + ω+B
†
+B+ + ω−B

†
−B− +G+(δaB†+ + B+δa

†) +G−(B†+B− + B
†
−B+), (S11)

where ω± and G± are the resonance frequencies and the coupling strengths, respectively, defined as:

ω+ =
G2

1ω1 +G2
2ω2

G2
1 +G2

2

, ω− =
G2

2ω1 +G2
1ω2

G2
1 +G2

2

, (S12a)

G+ =
√

G2
1 +G2

2, G− =
G1G2(ω1 − ω2)

G2
1 +G2

2

. (S12b)

In the absence of the synthetic magnetism (i.e., ξ = 0), it is seen from in Eqs. (S11) and (S12b) that when ω1 = ω2, the
normal mode B− is completely decoupled (i.e., G− = 0) from the system, indicating the emergence of a dark mode (i.e., B−). In
stark contrast to this, the normal mode B+ is a bright mode because of an effective coupling (i.e., G+ > 0) of B+ to the system.
The dark mode is decoupled from the system, resulting in a complete blockade of both mode conversion and phonon transfer
between the dark and bright modes.

To further elucidate this point, we display in Fig. S1(a) the redefined light-motion coupling strength |G−|/ω1 versus the
coupling-strength ratio (i.e., G2/G1) and the resonance frequency ratio (i.e., ω2/ω1) of the two phonon modes. Clearly, it reveals
that without the synthetic magnetism (i.e., ξ = 0) and ω2 = ω1, we counterintuitively obtain G− = 0, resulting in the existence
of the dark mode B−. Due to the appearance of the dark mode, all EPs and topological behavior are completely destroyed in
practical quantum devices.

The underlying physics behind these counterintuitive phenomena is that the two phonon modes coupled to a common photon
mode are hybridized into the dark and bright modes. This dark mode is fully decoupled from the system and, as a result, the
thermal phonons concealed in the dark mode cannot be extracted to the bright mode, leading to the destruction of all the EPs
and topological responses. Therefore, it is naturally to arise the question whether a general topological mechanism, which is
completely immune to the dark mode, can be generated in quantum systems.

C. Dark-mode engineering

Previously established topological achievements are focused exclusively on the conventional scenarios where dark modes
are entirely circumvented, owing to the fragility of topological responses due to these dark modes [S1, S2]. Nevertheless, the
practical applicability of modern topological technologies has challenged such progresses by demonstrating that a universal
approach must be explored for confronting this outstanding challenge posed by the dark modes, rather than evading it [S3–S12].
In view of its significance and urgency, utilizing a fundamentally distinct nonreciprocal topology immune to dark modes, as
well as shielding both EPs and topological operations from dark-mode disturbances in practical devices, is highly desirable.
Here we show how to address this long-standing challenge and reveal its counterintuitive immunity against dark modes. This
occurs because of the synergy of topological operations [S1, S2] and synthetic magnetism [S13–S21], resulting in an exceptional
transition between the DMN and DMB regimes in a well-controlled manner. Note that reconfigurable synthetic gauge fields
have recently been reported based on the phase-dependent loop-coupled optomechanical platforms [S13–S21].

Now, we show in detail how the dark mode is flexibly engineered on demand by simply employing the synthetic magnetism
(i.e., ξ , 0 and Θ , nπ). To demonstrate this, two superposition-phonon modes, associated with the synthetic magnetism, are
introduced as B̃+ and B̃−, which are defined by

B̃+ = F δb1 − eiΘKδb2, (S13a)

B̃− = e−iΘKδb1 + F δb2. (S13b)
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Then the system Hamiltonian in Eq. (S7) becomes

Hlin = −∆δa†δa + ω̃+B̃
†
+B̃+ + ω̃−B̃

†
−B̃− + (G̃∗+δaB̃

†
+ + G̃+B̃+δa†) + (G̃∗−δaB̃

†
− + G̃−B̃−δa†), (S14)

where the resonance frequencies ω̃± and the coupling strengths G̃± are, respectively, defined as

ω̃± =
1
2

(
ω1 + ω2 ±

√
(ω1 − ω2)2 + 4ξ2

)
, (S15)

and

G̃+ = FG1 − e−iΘKG2, (S16a)

G̃− = eiΘKG1 + FG2, (S16b)

with

F = |ω̃− − ω1|/

√
(ω̃− − ω1)2 + ξ2, (S17a)

K = ξF /(ω̃− − ω1). (S17b)

To illustrate the dark-mode engineering mechanism, we plot the redefined coupling G̃± as a function of the modulation phase
Θ when ω1 = ω2 and G1 = G2, as shown in Fig. S1(c). We find that when Θ = nπ, a dark mode decoupled from the system
emerges (i.e., G̃± = 0), corresponding to the DMN regime. Counterintuitively, an effective coupling of the dark mode to the
system can be flexibly achieved just by tuning Θ , nπ, resulting in the DMB regime. The fundamental physics driving these
counterintuitive phenomena lies in the fact that a reconfigurable synthetic gauge field is built on demand by simply tuning the
modulation phase Θ in the loop-coupled system, enabling an exceptional transition between theDMN andDMB regimes.

Beyond the above numerical simulations used to investigate the dark-mode engineering mechanism, we below further derive
analytical expressions to explicitly reveal the dark-mode breaking process, providing deeper physical insight. Specifically, when
the two mechanical modes are degeneracy in their resonance frequencies (i.e., ω1 = ω2), the effective optomechanical coupling
strengths shown in Eq. (S16) can be simplified as

G̃+ =(G1 + e−iΘG2)/
√

2, (S18a)

G̃− =(G2 − eiΘG1)/
√

2. (S18b)

We perform a systematic analysis of dark-mode engineering, examining its dependence on both the modulation phase (Θ) and
the optomechanical coupling strengths (G1 and G2), with particular focus on three representative cases.

(i) When the system operates in the symmetric-coupling case, i.e., G1 = G2 = G, the following relationship holds:

G̃+ =G(1 + e−iΘ)/
√

2, (S19a)

G̃− =G(1 − eiΘ)/
√

2. (S19b)

We clearly see from Eq. (S19) that, when Θ = nπ (where n is an integer), one of the two hybrid phonon modes is completely
decoupled from the cavity mode, indicating the emergence of the dark mode. In this case, thermal excitations stored in the dark
mode cannot be extracted through the optomechanical-cooling channel or topological operations. In general cases of Θ , nπ,
this dark mode can be completely broken and then, both quantum collective ground-state preparation and TPT become accessible
under proper parameter conditions.

(ii) For an even-integer phase condition (i.e., Θ = nπ where n is even), Eq. (S18) simplifies to

G̃+ =(G1 +G2)/
√

2, (S20a)

G̃− =(G2 −G1)/
√

2. (S20b)

As evident from Eq. (S20), the mode B̃− enters a dark state when G1 = G2, while imbalanced coupling strengths (G1 , G2)
completely break this dark mode. These findings establish that simultaneous ground-state cooling and TPT require a broken
coupling symmetry (G2/G1 , 1).

(iii) For an odd-integer phase matching (i.e., Θ = nπ where n is an odd), Eq. (S18) transforms to

G̃+ =(G1 −G2)/
√

2, (S21a)

G̃− =(G2 +G1)/
√

2. (S21b)

Equation (S21) establishes that the B̃+ mode becomes a dark mode under symmetric coupling (i.e., G1 = G2), with a complete
breaking of this dark mode occurring for asymmetric coupling (i.e., G1 , G2). This analysis demonstrates that the broken
symmetry in optomechanical coupling (i.e., G2/G1 , 1) enables the concurrent quantum collective ground-state preparation and
TPT.
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II. EFFECTIVE NON-HERMITIAN HAMILTONIAN AND ITS EXCEPTIONAL POINT

In this section, we show in detail (i) an effective non-Hermitian Hamiltonian; (ii) an exceptional point (EP); (iii) malfunction
and function of the EP; (iv) inactivation and activation of topological operations; (v) eigenvalue distributions and transient
behaviors around the EP.

A. Effective non-Hermitian Hamiltonian

The solution of Eq. (S6) can be used to solve both TPB and TPT, which is achieved by transforming all the system variables
into the frequency domain by the Fourier transformation. Physically, this method can be utilized for a better understanding of
the optical modifications of vibrational susceptibilities.

We apply the Fourier transformation for operators o and their conjugates o†, i.e.,

o (t) =
1
√

2π

∫ ∞

−∞

eiωto (ω) dω, and o† (t) =
1
√

2π

∫ ∞

−∞

e−iωto† (ω) dω, (S22)

for o = a, b1, and b2. By executing the Fourier transformation using Eq. (S22), the equations of motion in Eq. (S6) can be
expressed in the frequency domain as:

−iωδa (ω) = −
(
κ

2
− i∆

)
δa (ω) − iG1δz1 (ω) − iG2δz2 (ω) , (S23a)

−iωδa† (ω) = −
(
κ

2
+ i∆

)
δa† (ω) + iG∗1δz

†

1 (ω) + iG∗2δz
†

2 (ω) , (S23b)

−iωδb1 (ω) = −
(
γ1

2
+ iω1

)
δb1 (ω) − i

[
G∗1δa (ω) +G1δa† (ω)

]
− iξeiΘδb2 (ω) +

√
γ1η1, (S23c)

−iωδb2 (ω) = −
(
γ2

2
+ iω2

)
δb2 (ω) − i

[
G∗2δa (ω) +G2δa† (ω)

]
− iξe−iΘδb1 (ω) +

√
γ2η2. (S23d)

Using Eq. (S23), we subsequently have the following equations:[
κ

2
− i (ω + ∆)

]
δa (ω) = − iG1δz1 (ω) − iG2δz2 (ω) , (S24a)[

κ

2
+ i (∆ − ω)

]
δa† (ω) = iG∗1δz

†

1 (ω) + iG∗2δz
†

2 (ω) , (S24b)[
γ1

2
− i (ω − ω1)

]
δb1 (ω) = − i

[
G∗1δa (ω) +G1δa† (ω)

]
− iξeiΘδb2 (ω) +

√
γ1η1, (S24c)[

γ2

2
− i (ω − ω2)

]
δb2 (ω) = − i

[
G∗2δa (ω) +G2δa† (ω)

]
− iξe−iΘδb1 (ω) +

√
γ2η2, (S24d)

where we define an optical susceptibility χ(ω) as

χ(ω) =
[
κ

2
− i (ω + ∆)

]−1
. (S25)

Therefore, one can easily find

δa (ω) = −iG1χ (ω)
(
δb†1 + δb1

)
− iG2χ (ω)

(
δb†2 + δb2

)
, (S26)

where the position operators z j are defined as

z j = b†j + b j. (S27)

Subsequently, we substitute Eq. (S27) into Eq. (S26), and obtain[
κ

2
+ i (∆ − ω)

]
δa† (ω) = iG∗1δz

†

1 + iG∗2δz
†

2 = iG∗1δz1 + iG∗2δz2. (S28)

Consequently, we can easily find

δa† (ω) = iG∗1χ
∗ (−ω) δz1 + iG∗2χ

∗ (−ω) δz2, (S29)
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where the optical susceptibilities are defined as

χ (ω) =
[
κ

2
− i (ω + ∆)

]−1
, (S30a)

χ∗ (ω) =
[
κ

2
+ i (ω + ∆)

]−1
, (S30b)

χ (−ω) =
[
κ

2
− i (−ω + ∆)

]−1
, (S30c)

χ∗ (−ω) =
[
κ

2
+ i (∆ − ω)

]−1
. (S30d)

Therefore, we have:

δa (ω) = − iα1χ (ω)
(
δb†1 + δb1

)
− iα2χ (ω)

(
δb†2 + δb2

)
, (S31a)

δa† (ω) = iα∗1χ
∗ (−ω)

(
δb†1 + δb1

)
+ iα∗2χ

∗ (−ω)
(
δb†2 + δb2

)
. (S31b)

Next, the expressions of δa and δa†, which are shown in Eqs. (S31), are substituted into Eqs. (S24c) and (S24d), and, then, we
obtain: [

γ1

2
− i (ω − ω1)

]
δb1 (ω) = − iG∗1

[
−iG1χ (ω)

(
δb†1 + δb1

)
− iG2χ (ω)

(
δb†2 + δb2

)]
− iG1

[
iG∗1χ

∗ (−ω)
(
δb†1 + δb1

)
+ iG∗2χ

∗ (−ω)
(
δb†2 + δb2

)]
− iξeiΘδb2 +

√
γ1η1, (S32a)[

γ2

2
− i (ω − ω2)

]
δb2 (ω) = − iG∗2

[
−iG1χ (ω)

(
δb†1 + δb1

)
− iG2χ (ω)

(
δb†2 + δb2

)]
− iG2

[
iG∗1χ

∗ (−ω)
(
δb†1 + δb1

)
+ iG∗2χ

∗ (−ω)
(
δb†2 + δb2

)]
− iξe−iΘδb1 +

√
γ2η2, (S32b)[

γ1

2
− i (ω − ω1)

]
δb1 (ω) =G1G∗1

[
−χ (ω) + χ∗ (−ω)

] (
δb†1 + δb1

)
+

[
−G∗1G2χ (ω) +G1G∗2χ

∗ (−ω)
] (
δb†2 + δb2

)
− iξeiΘδb2 +

√
γ1η1, (S32c)[

γ2

2
− i (ω − ω2)

]
δb2 (ω) =

[
−G∗2G1χ (ω) +G2G∗1χ

∗ (−ω)
] (
δb†1 + δb1

)
+

[
−G∗2G2χ (ω) +G2G∗2χ

∗ (−ω)
] (
δb†2 + δb2

)
− iξe−iΘδb1 +

√
γ2η2. (S32d)

We here safely drop the counter-rotating terms δb†j and the mechanical drive terms η j. These terms are not necessary for the
physical model that operates far from the ultrastrong coupling regime. This is because we drive the system into a particular initial
state, turn off the drive, and then, focus on the evolution of the system without any mechanical drive. Consequently, Eqs. (S32)
become:[
γ1

2
− i (ω − ω1)

]
δb1 (ω) =G1G∗1

[
−χ (ω) + χ∗ (−ω)

]
δb1 (ω) +

[
−G∗1G2χ (ω) +G1G∗2χ

∗ (−ω)
]
δb2 (ω) − iξeiΘδb2, (S33a)[

γ2

2
− i (ω − ω2)

]
δb2 (ω) =

[
−G1G∗2χ (ω) +G∗1G2χ

∗ (−ω)
]
δb1 (ω) +G∗2G2

[
−χ (ω) + χ∗ (−ω)

]
δb2 (ω) − iξe−iΘδb1. (S33b)

Subsequently, using Eqs. (S33), one can easily obtain:[
γ1

2
− i(ω − ω1)

]
δb1(ω) = |G1|

2 [
χ∗ (−ω) − χ (ω)

]
δb1 (ω) +G∗1G2

[
χ∗ (−ω) − χ (ω)

]
δb2(ω) − iξeiΘδb2, (S34a)[

γ2

2
− i (ω − ω2)

]
δb2(ω) =G∗1G2

[
χ∗ (−ω) − χ (ω)

]
δb1 (ω) + |G2|

2 [
χ∗(−ω) − χ(ω)

]
δb2(ω) − iξe−iΘδb1. (S34b)

Equation (S34) can be rewritten in a standard form:

−iωδb1 (ω) = −
(
γ1

2
+ iω1

)
δb1 (ω) − iξeiΘδb2 (ω) + |G1|

2 [
χ∗ (−ω) − χ (ω)

]
δb1 (ω) +G∗1G2

[
χ∗c (−ω) − χc (ω)

]
δb2 (ω) , (S35a)

−iωδb2 (ω) = −
(
γ2

2
+ iω2

)
δb2 (ω) − iξe−iΘδb1 (ω) +G∗1G2

[
χ∗ (−ω) − χ (ω)

]
δb1 (ω) + |G2|

2 [
χ∗ (−ω) − χ (ω)

]
δb2 (ω) . (S35b)

Thus, based on Eq. (S35), the matrix form can be given as

−iω
(
δb1 (ω)
δb2 (ω)

)
=

 −
(
γ1
2 + iω1

)
−iξeiΘ

−iξe−iΘ −
(
γ2
2 + iω2

)  ( δb1 (ω)
δb2 (ω)

)
+

(
|G1|

2 G∗1G2

G∗1G2 |G2|
2

) [
χ∗ (−ω) − χ (ω)

] ( δb1 (ω)
δb2 (ω)

)
. (S36)
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A single-mode optomechanical intrinsic self-energy, in the traditional standard optomechanical systems, can be give as∑
(ω) = i

∣∣∣G j

∣∣∣2 [
χ∗ (−ω) − χ (ω)

]
. (S37)

Note that
∑

(ω) is often called the optomechanical intrinsic “self-energy”, and represents the optical modification of the
mechanical resonance. This arises from the self-interaction occurring via the dynamical system formed by the optics/mechanics.
From the definition of

∑
(ω), we see that it is a complex quantity depending on the laser power and detuning [through its

dependence on incavity photon numbers ā and and optical susceptibly χ(ω)]. We also note here that the dependence on ω comes
only through the cavity susceptibility, which varies with ω on a scale of κ. Since we are considering only a weak interaction,
we can assume that the width of the mechanical resonance will be significantly less than κ. Thus, we can assume that χ(ω) and
hence

∑
(ω) are constant with respect to ω over the relevant mechanical bandwidth. Therefore, we can eliminate the frequency

dependence and simply evaluate the self-energy at the mechanical frequency:
∑

(ω) ≈
∑

(ω0) =
∑

.
By inspecting the appearance of

∑
in the effective susceptibility, we see that the real part of

∑
corresponds to a shift in

the mechanical frequency (“optical spring”), while the imaginary part results in a change in the effective damping rate of the
oscillator (“optical damping”). This dynamical backaction is the mechanism by which one is able to control the motion in an
optomechanical system, by exploiting and controlling the radiation pressure force. We now explore this control in a more detail,
to better understand its limitations and tunability.

Specifically, Eq. (S37) can be rewritten as∑
(ω) =

(
i |G1|

2 i
∣∣∣G∗1G2

∣∣∣
i
∣∣∣G∗1G2

∣∣∣ i |G2|
2

) [
χ∗ (−ω) − χ (ω)

]
=

(
−ig2

1σ −ig1g2σ
−ig1g2σ −ig2

2σ

)
, (S38)

where the complex mechanical susceptibilities, i.e., σ introduced by the laser driving of the system, can be defined as

σ =
Pκin

ℏω
[(
κ
2

)2
+ ∆2

] [
1

κ
2 − i (ω0 + ∆)

−
1

κ
2 + i (−ω0 + ∆)

]
. (S39)

Now, we obtain

−iω
(
δb1 (ω)
δb2 (ω)

)
=

 −
(
γ1
2 + iω1

)
−iξeiΘ

−iξe−iΘ −
(
γ2
2 + iω2

)  ( δb1 (ω)
δb2 (ω)

)
− i

∑
(ω)

(
δb1 (ω)
δb2 (ω)

)
. (S40)

Subsequently, Eq. (S40) is safely rewritten in a matrix form defined:

−iωB (ω) = −


(
γ1
2 + iω1

)
iξeiΘ

iξe−iΘ
(
γ2
2 + iω2

)  B (ω) − i
∑

(ω) B (ω) , (S41)

where the matrix B (ω) is obtained as

B (ω) =
(
δb1 (ω)
δb2 (ω)

)
. (S42)

Before moving back to the time domain, we note that
∑

(ω) varies on the scale of κ, whereas the mechanical modes are
susceptible to the drives only within their linewidths, which is substantially smaller than κ, by our assumption.

Therefore, it is both safe and sufficient to consider the following assumptions:∑
(ω) ≈

∑
(ω1) ≈

∑
(ω2) ≡

∑
, (S43)

where ∑
=

∑
(ω0) =

∑(
ω1 + ω2

2

)
, (S44)

for

ω0 = (ω1 + ω2)/2. (S45)

We note that the vibrational modes are also assumed to be nearly degenerate. Therefore, owing to the fact that
∑

is not a function
of ω, we can easily move back to the time domain, to find the following equation:

Ḃ (t) = −


(
γ1
2 + iω1

)
iξeiΘ

iξe−iΘ
(
γ2
2 + iω2

)  B (t) − i
∑

B (t) . (S46)
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Mathematically, we adiabatically eliminate the optical mode and then, an effective Hamiltonian only for two phonon modes (i.e.,
b1 and b2) can be obtained as

iḂ(t) = HeffB (t) , (S47)

with

Heff =

(
ω1 −

iγ1
2 − ig2

1σ ξeiΘ − ig1g2σ

ξe−iΘ − ig1g2σ ω2 −
iγ2
2 − ig2

2σ

)
, (S48)

The simplified complex vibrational susceptibility σ, which is introduced by the laser driving and based on Eq. (S39), can be
defined as

σ =
Pκin

[
χR,L(ω0) − χ∗(−ω0)

]
ℏω

[
(κ/2)2 + ∆2] , (S49)

where the optical susceptibility χ(ω0) is defined as

χ(ω0) =
[
κ

2
− i (ω0 + ∆)

]−1
. (S50)

Below, an exceptional point (EP) of the physical system will be derived in detail, and the TPT performance using the Hamiltonian
Heff in Eq. (S48) will be analyzed in detail.

B. Exceptional point

In this section, we focus on a three-mode optomechanical device consisting of two phonon modes, each of which is
linearly coupled to a common photon mode through radiation-pressure interactions. In addition, the two phonon modes are
coupled to each other via a phase-dependent phonon-hopping interaction, and this interaction together with the optomechanical
couplings form a phase-dependent loop-coupled configuration, which can induce synthetic magnetism for achieving dark-mode
engineering.

Adiabatically eliminating the photon mode leads to a tunable effective interaction between the two phonon modes, and this
effective interaction, which induces an EP, is generated by the driving field of the system. In the following detailed analysis, we
can safely eliminate the common evolution, with a mean frequency ω0 [see Eq. (S45)] of the two phonon modes and an average
damping rate Γ of the two phonon modes defined as

Γ = (γ1 + γ2)/2. (S51)

Note that the parameters ω j and γ j are replaced with the redefined parameters ω0, Ω, Γ, and γ. Therefore, the effective non-
Hermitian HamiltonianHeff, which is given in Eq. (S48), becomes

Heff =

(
ω0 − i Γ2 −Ω − i γ2 − ig2

1σ ξeiΘ − ig1g2σ
ξe−iΘ − ig1g2σ ω0 − i Γ2 + Ω + i γ2 − ig2

2σ

)
, (S52)

where Ω and γ are defined as:

Ω = (ω2 − ω1)/2, (S53)

and

γ = (γ1 − γ2)/2. (S54)

Subsequently, we easily obtain the following equations:

i
d
dt

(
b1 (t)
b2 (t)

)
=

(
ω0 − i Γ2 −Ω − i γ2 − ig2

1σ ξeiΘ − ig1g2σ
ξe−iΘ − ig1g2σ ω0 − i Γ2 + Ω + i γ2 − ig2

2σ

) (
b1 (t)
b2 (t)

)
,

=

(
ω0 − i Γ2 0

0 ω0 − i Γ2

) (
b1 (t)
b2 (t)

)
+

(
−Ω − i γ2 − ig2

1σ ξe
iΘ − ig1g2σ

ξe−iΘ − ig1g2σ Ω + i γ2 − ig2
2σ

) (
b1 (t)
b2 (t)

)
,

=

(
ω0 − i Γ2 0

0 ω0 − i Γ2

) (
b1 (t)
b2 (t)

)
+ i

d
dt

(
b+ (t)
b− (t)

)
, (S55)
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FIG. S2: (a,b) For the symmetrical optomechanical-coupling case (g2 = g1), mechanical linewidths and resonance frequencies of both the dark
and bright modes versus the driving power P and the driving detuning ∆ ∈ [−1800 kHz, 0], when the system operates in (a) theDMN (ξ = 0)
and (b)DMB (ξ/ω1 = 5×10−4 and Θ/π = 1/2) regimes. (c,d) For the asymmetrical optomechanical-coupling case (g2 = 2.76g1), mechanical
linewidths and resonance frequencies of both the dark and bright modes versus the driving power P and detuning ∆ ∈ [−1800 kHz, 0], when
the system operates in (c) theDMN (ξ = 0) and (d)DMB (ξ/ω1 = 5 × 10−4 and Θ/π = 1/9) regimes.

where

i
d
dt

(
b+ (t)
b− (t)

)
=

(
−Ω − i γ2 − ig2

1σ ξe
iΘ − ig1g2σ

ξe−iΘ − ig1g2σ Ω + i γ2 − ig2
2σ

) (
b1 (t)
b2 (t)

)
. (S56)

We then obtain the eigenvalues of the effective non-Hermitian Hamiltonian, shown in Eq. (S52), as

λ∓ = −
i
2

(
g2

1 + g2
2

)
σ ∓ λ, (S57)

where the parameter λ is defined as

λ = i

√{
g2

1g2
2σ

2 +
1
4

[
γ +

(
g2

1 − g2
2

)
σ
]2
−Ω2 − ξ2

}
− i

{
Ω

[
γ +

(
g2

1 − g2
2

)
σ
]
− 2g1g2ξσ cosΘ

}
. (S58)

Therefore, we obtain:

λ̃∓ = ω0 −
iΓ
2
−

i
2

(
g2

1 + g2
2

)
σ ∓ λ. (S59)
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Just by simply tuning the complex vibrational susceptibilities σ, the system possesses an EP. Thus, one needs to control over
both Re(σ) and Im(σ). The imaginary and real parts of the complex eigenvalues of the two phononic normal modes B+ and B−
are the mechanical linewidths γ±(∆, P) = −2Im(λ±) and the mechanical resonance frequencies ω±(∆, P) = Re(λ±), respectively.
Note that in our model, the control of the optomechanical system is achieved by a separate laser, and its driving power P and
driving detuning ∆ are set by an acousto-optic modulator. We can measure the vibration spectra of the phonon modes as functions
of the driving detuning ∆ and the driving power P, so that the presence of the EP in our system can be accurately established.
In addition, these mechanical spectra are acquired by driving the motions and monitoring its response via a heterodyne signal.
We fit each spectrum to determine the two motional damping rates, γ±(∆, P), and the two vibrational resonance frequencies,
ω±(∆, P). Note that the subscripts “±” refer to the phononic normal modes, as introducing the optical field into the physical
system.

Now, in both theDMN andDMB regimes, we show measurements of both the real and imaginary parts of the corresponding
complex eigenvalues for the two vibrational normal modes over a narrow range of the driving detuning ∆ and the driving power
P, which are centred at ∆EP and PEP. The parameters ∆EP and PEP denote the parameter position of the EP. These measurements
show the characteristic features of an EP. In the vicinity of this point, they exhibit the same structure as the Riemann sheets of
a complex square-root function. The surfaces are such that if the driving-laser detuning ∆ and the driving-laser power P were
varied to execute a single closed loop, the resulting smooth evolution on the eigenvalue manifold would return to its starting
point only if the loop does not enclose the EP. By contrast, a loop enclosing the EP would result in a trajectory starting on one
sheet, but ending on the other.

In addition, the complex eigenvalues of the two phononic normal modes are shown in Fig. S2, by considering the symmetrical
and asymmetrical optomechanical coupling cases. Specifically, we plot the motional decay rates [γ±(∆, P), see the vertical axis]
and the vibrational resonance frequencies [ω±(∆, P), see the horizontal axis] of the two phononic normal modes as functions of
the driving detuning ∆ and the driving laser power P, when the system operates in both the DMN and DMB regimes. Note
that the values of the driving laser power P are described by different colors, and the eigenvalues of the system are varied with
the driving detuning ∆ ∈ [−1800 kHz, 0] at a fixed P.

When considering the cases of symmetrical and asymmetrical photon-phonon couplings, for theDMN regime, we show that
despite the continuous evolution of the mechanical spectra with system parameters, the EP vanishes at both low and high laser
powers, owing to the emergence of the dark mode, as shown in Figs. S2(a) and S2(c). Counterintuitively, when transitioning
to the DMB regime, we find from Figs. S2(b) and S2(d) that for a lower value of the driving-laser power P, each eigenvalue
follows an enclosed path, which begins and ends at the same point, and that for a higher value of the driving power P, both
eigenvalues follow open paths, each starting at the ending point of the other, indicating the emergence of the EP because of
breaking the dark mode.

In particular, we reveal that the EP (see the yellow star in Fig. S2), where the eigenstates coalesce, occurs by just tuning the
laser power P and the driving detuning ∆. More specifically, we see from Eqs. (S48) and (S61) that in the resolved-sideband
regime (i.e., κ < ω0), both reaching and encircling the EP require just to tune the driving power P and the driving detuning ∆,
without the need of any complicated arrangements [S22]. This is due to the fact that the parameters P and ∆ in our system can
be easily steered in situ with timing accuracy, a high-precision degree, and dynamic range.

C. Malfunction and function of the exceptional point

Nontrivial topology is mainly governed by non-Hermitian degeneracies [S22–S39] and has led to a various of
counterintuitive and fascinating topological properties by adiabatically encircling an EP in parameter spaces, e.g., chiral phase
accumulation [S40, S41], non-adiabatic jumps [S42, S43], and nonreciprocal TPT or mode conversion [S1, S2, S44–S52]. These
topological phenomena, however, are generally destroyed by dark modes naturally decoupled from the system, which results in
a complete deactivation of both EPs and topological operations. Specifically, the TPT and mode switching can always happen
when executing adiabatic closed paths enclosing an EP [S1, S2]. Surprisingly, once dark modes are possessed by the system,
both the mode conversion and TPT between dark and bright modes are unfeasible regardless of the adjustment of adiabatic
trajectories and system parameters, due to the dark-mode-induced destruction on topological operations and EPs.

In this section, we show how to address this long-standing challenge and achieve a profoundly different EP with a
counterintuitive immunity against dark modes. This occurs because of the synergy of topological operations [S1, S2] and
synthetic magnetism [S13–S21], resulting in an exceptional transition between the DMN and DMB regimes in a well-
controlled manner. Note that a reconfigurable synthetic gauge field has recently been demonstrated in phase-dependent loop-
coupled optomechanical configurations [S13–S21]. Specifically, we adiabatically eliminate the photon mode, and obtain an
effective Hamiltonian for the two phonon modes, i.e.,

Heff =

(
ω1 −

iγ1
2 − ig2

1σ ξeiΘ − ig1g2σ

ξe−iΘ − ig1g2σ ω2 −
iγ2
2 − ig2

2σ

)
, (S60)
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FIG. S3: (a-d) For the symmetrical optomechanical-coupling case (g2 = g1), (a,b) the resonance frequencies and (c,d) the decay rates of both
the dark and bright modes versus the laser power P in (a,c) DMN (ξ = 0) and (b,d) DMB (ξ/ω1 = 5 × 10−4 and Θ/π = 1/2) regimes,
when ∆/2π = −783 kHz. (e-h) For the asymmetrical optomechanical-coupling case (g2 = 2.76g1), (e,f) the resonance frequencies and (g,h)
the mechanical linewidths of both the dark and bright modes versus the driving laser power P in (e,g) the DMN (ξ = 0) and (f,h) DMB
(ξ/ω1 = 5 × 10−4 and Θ/π = 1/9) regimes, when ∆/2π = −847.74 kHz.

where the laser driving induces a complex motional susceptibility σ, which is defined as

σ =
Pκin[χ(ω0) − χ∗(−ω0)]
ℏωL[(κ/2)2 + ∆2]

, (S61)

with the driving detuning ∆ = ωL − ωc and an optical susceptibility χ(ω0) = [κ/2 − i(ω0 + ∆)]−1 for ω0 = (ω1 + ω2)/2. By
tuning σ, the EP is easily reached, needing to control over both Im(σ) and Re(σ). Physically, the imaginary and real parts of the
corresponding complex eigenvalues are the mechanical spectral linewidths and resonance frequencies, respectively. It is enough
to tune P and ∆ for reaching and encircling this EP, because these parameters are easily manipulated in situ with a high-precision
degree, timing accuracy, and dynamic range [S1].

For elucidating the effect of the dark mode on the EP, the mechanical spectra are plotted as functions of ∆ and P in both the
DMN and DMB regimes, when the system operates in the symmetrical or asymmetrical optomechanical-coupling case, as
shown in Fig. S2. We reveal in the DMN regime that for either lower or higher power of the laser, the mechanical spectrum
on the dark mode remains invariant under the parameter evolution. However, the eigenvalue of the bright mode always follows
an enclosed trajectory, which begins and ends at the same point, indicating the vanishing of the EP due to the dark mode [see
Figs. S2(a,c)]. Counterintuitively, in the DMB regime, for a lower laser power, each eigenvalue follows an enclosed path,
beginning and ending at the same point; while for a higher laser power, both eigenvalues follow open trajectories, each of which
ends at the starting point of the other, meaning the emergence of the EP owing to breaking the dark mode [see Figs. S2(b,d)].
By adjusting ∆ and P, an EP (marked by the yellow star), where the eigenstates coalesce, appears when the system operates in
theDMB regime, while not in theDMN regime.

D. Inactivation and activation of topological operations

In this section, we show in detail inactivation and activation of topological operations via dark-mode engineering. Specifically,
when the system operates in either the symmetrical or asymmetrical optomechanical-coupling case, we display both vibrational
resonance frequencies and decay rates versus a narrow range of the laser power P in both the DMN and DMB regimes,
as shown in Fig. S3. In the DMN regime, only the bright mode evolves with P, while the dark mode remains invariant
irrespective of the adjustment of system parameters, resulting in a completely deactivation of both the EP and topological
operations [Fig. S3(a)]. It enables a complete blockade of the mode conversion and phonon transfer between the dark and
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bright modes. However, in theDMB regime, both the bright and dark modes evolve simultaneously with P, which leads to the
emergence of the characteristic features of the EP, enabling the activation of the EP and topological operations [Fig. S3(b)]. This
offers, in general, an exciting opportunity of the revival of the mode conversion and phonon transfer between dark and bright
modes.

Specifically, the eigenstates coalesce at a specific value of the control parameters, and in the vicinity of this point, they display
a structure analogous to the Riemann surfaces of the complex square-root function. When executing a closed-loop path by
adiabatically varying P and ∆, the generating smooth evolution on the eigenvalue manifold returns to its starting point only if the
EP is not enclosed by the loop. In contrast, encircling the EP in a closed-loop trajectory induces a counterintuitive path starting on
one sheet but ending on the other, giving rise to TPT. Our study sheds new light on the synergy of the dark-mode engineering and
topological operations, offers an unconventional tool for tasks that cannot be executed by conventional topological mechanisms,
and benefits for implementing dark-mode-free topological physics.

E. Eigenvalue distributions around an exceptional point

In this section, the eigenvalue distributions around an EP for different laser powers are shown in detail. In addition, we present
in detail the transient behaviors of the studied systems in parameter spaces.

First, a detailed depiction of eigenvalue distributions around the EP is exhibited with the increasing of the laser powers.
Physically, the imaginary and real parts of the complex eigenvalues of the two phonon modes are the mechanical linewidths
γ±(∆, P) = −2Im(λ±) and the mechanical resonance frequencies ω±(∆, P) = Re(λ±), respectively. We highlight that the
manipulation of the optomechanical devices can be realized by a separate laser, which the driving detuning ∆ and driving power
P are set by an acousto-optic modulator. One can measure the mechanical spectra that is plotted as functions of the driving
detuning ∆ and the driving power P. As a result, we can accurately find the EP in the physical system. In particular, by driving
the vibrations and monitoring their response via a heterodyne signal, these mechanical spectra can be easily acquired. One can
fit each spectrum to tune the two mechanical resonance frequencies, ω±(∆, P) and the two mechanical decay rates γ±(∆, P). Here
we emphasize that the subscripts “±” refer to the phonon normal modes, when applying the driving field into the investigated
physical system.

(i) In the symmetrical optomechanical coupling case (i.e., g2 = g1), we show in theDMB regime that when P < PEP ≈ 344.5
uW, the eigenfrequencies exhibit an identical imaginary part and two different real parts, which, respectively, indicate that the
system possesses an identical mechanical linewidth and two different mechanical resonance frequencies [see the left-hand sides
of Figs. S3(d) and S3(b)]. This refers to the PT -symmetric regime. When P > PEP ≈ 344.5 uW, the eigenfrequencies have
two different imaginary parts and an identical real part, which means the appearance of two different mechanical linewidths
and an identical mechanical resonance frequency, respectively, as shown on the right-hand sides of Figs. S3(d) and S3(b). This
corresponds to the broken-PT -symmetric regime. Clearly, the phase transition of the system is presented around the border
point P = PEP ≈ 344.5 uW, indicating the emergence of an EP [see the yellow stars in Figs. S3(d) and S3(b)].

(ii) In the asymmetrical optomechanical coupling case (i.e., g2 = 2.76g1), we find in the DMB regime that when P < PEP ≈

108 uW or P > PEP ≈ 108 uW, the eigenfrequencies always exhibit two different real parts and two different imaginary parts,
corresponding to two different mechanical resonance frequencies and two different mechanical linewidths, respectively [see
Figs. S3(f) and S3(h)]. In particular, the phase transition of the system is presented around the border point P = PEP ≈ 108 uW,
corresponding to an EP [see the yellow discs in Figs. S3(f) and S3(h)].

III. DARK-MODE-ENGINEERED TOPOLOGICAL PHONONICS

In this section, we define a topological-phonon-transfer efficiency to quantify the energy transfer between the two motional
normal modes, and show in detail topological phonon blockade and its transfer via dark-mode engineering, and dark-mode-
controlled nonreciprocal topological dynamics.

A. Efficiency of topological phonon transfer

The projection onto the instantaneous eigenbasis is necessary to see the state evolution during the applied perturbations. Allow

ν⃗±(t) to serve as the instantaneous eigenvectors ofHeff. Whenever necessary, the solution b⃗(t) =
(
b1(t), b2(t)

)T
can be written as

a projection based on this basis,

b⃗(t) = B−(t)⃗ν−(t) + B+(t)⃗ν+(t). (S62)
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If the perturbation is slow compared to the energy gap (λ+−λ−), one naive and unjustified approach to thinking about this system
would be to assume that adiabaticity (in the sense of smooth evolution along the eigenvalue surface) would occur as long as the
perturbation is slow. That is, if we were to prepare B−(0) = 1 and B+(0) = 0, then for all times t, B−(t) = 1 remains the dominant
projection. We can use standard computational techniques to numerically integrate the linear differential equations to see if this
happens. The calculation provides a complete solution for the system’s time-dependent nature, b⃗(t). It is worth pointing out that
this result is based on the differential equation, not the eigenbasis. (i.e. b1,2(t) not B±(t)). A change of the basis defined by a
matrix of instantaneous eigenvectors is necessary to find the projection into the instantaneous eigenbasis,(

B+ (t)
B− (t)

)
= N(t)

(
b1 (t)
b2 (t)

)
. (S63)

where

N(t) =
[(⃗
ν+(t) ν⃗−(t)

)T ]−1

. (S64)

We have already mentioned that this energy transfer is a result of an adiabatic-like process, and should be influenced by the
geometry of the loop, in relation to the topology of the eigenvalue manifolds. A metric for quantifying energy transfer would
be beneficial, in order to systematically characterize this behavior. Essentially, if we initialize the system into a particular mode,
i.e., B±(t = 0) = 1, we would like to know the amplitude of the other mode at the end of the loop, i.e., B∓(t) = 1. Normalizing
the total energy at the end of the loop is necessary, owing to the growth/decay of the overall system energy. To quantify the
energy transfer from one motional normal mode (B−) to the other (B+), we define an efficiency of topological phonon transfer:

F+ =
|B+(τ)|2

|B+(τ)|2 + |B−(τ)|2
, (S65)

denoting the fraction of the remaining energy in the B+ mode after executing the control loops. Analogously, we can define
F− = 1 − F+. Note that before performing all the control loops, the definition of F+ needs to satisfy the condition that all energy
remains in B−. Specifically, we see from Eq. (S65) that

F+ → 0 (S66)

indicates that no energy transfer occurs from the vibrational mode B− to B+; while a perfect energy transfer happens from B− to
B+ when

F+ → 1. (S67)

That is before the adiabatic control loop, 100% of the energy is concealed in the B− mode, whereas after the adiabatic loop,
100% of the remaining energy is in the B+ mode. We here should emphasize that our analysis and numerical simulations were
all made assuming injecting the initial drive to the motional normal mode B−, and subsequently, performing a control loop only
in the counter-clockwise direction. In this case, the adiabatic paths enclosing the EP correspond to the less-damped eigenmode
for the majority of the control loop. On the contrary, executing clockwise the same control loop leads to an adiabatic path, which
corresponds primarily to the more-damped eigenmode. Next, we study in detail the topological phonon blockade and its transfer
via dark-mode control.

B. Topological phonon blockade and its transfer by engineering dark modes

The dark mode naturally decoupled from the system results in a complete blockade of both the mode conversion and phonon
transfer between the dark and bright modes. Surprisingly, this dark mode can be controlled at will by simply employing synthetic
magnetism (i.e., ξ , 0 and Θ , nπ). Note that this synthetic magnetism can be achieved at will using a phase-dependent loop-
coupled configuration, which results in an effective synthetic gauge field [S13–S21], inducing a path interference between two
phonon-transfer channels. Physically, the dark mode can be flexibly engineered just by tuning the synthetic magnetism in our
phase-dependent loop-coupled optomechanical system.

We reveal that executing a topological operation in theDMN regime yields the TPB between the dark and bright modes (see
blue dashed lines in Fig. S4); whereas performing it in the DMB regime gives rise to the TPT (see red curves in Fig. S4). This
enables a versatile yet unique topological physics and provides an exciting possibility of bridging the TPB and TPT at will, as
shown in Fig. S4, which is otherwise unattainable in previously established demonstrations [S1, S2, S40–S52]. Unlike previous
schemes, where both EPs and topological operators are entirely malfunctioning in the presence of dark modes [S1, S2, S40–
S52], our approach is entirely immune to this detrimental inactivation effect. In a broader view, our study sheds new light on
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FIG. S4: (a,b) Efficiency F+ of TPT from the dark to bright modes versus the maximum driving: (a) detuning ∆Max and (b) power PMax, by
executing a closed control loop. Two insets show how the loops vary along the horizontal axis of each panel, and the black crosses indicate the
location of the EP. (c,d) Imposing topological operations in (c) theDMN (g2 = g1, ξ/ω1 = 5 × 10−4, and Θ = 0) and (d)DMB (g2 = 2.76g1,
ξ/ω1 = 5 × 10−4, and Θ/π = 1/9) regimes yields TPB and TPT, respectively.

the combination of the dark-mode engineering, topological operations, and quantum networks, and offers an exciting prospect
of revealing a unique topology with immunity against dark modes.

Specifically, the TPT efficiency F+ is plotted versus ∆Max and PMax in both the DMN and DMB regimes, as shown in
Figs. S4(a,b). We reveal that in the DMN regime, TPB occurs (F+ = 0, blue dashed lines); while in the DMB regime,
an excellent TPT emerges (F+ = 1, red solid curves). Specifically, in the DMN regime, thermal phonons concealed in the
dark mode cannot be transferred to the bright mode regardless of the tuning of the system parameters, giving rise to TPB [see
Fig. S4(c)]. In stark contrast to this, in theDMB regime, an efficient extraction of thermal phonons stored in the dark mode to the
bright mode is achieved, enabling the TPT [Fig. S4(d)]. These findings demonstrate that simply utilizing the dark-mode control
enabled by synthetic magnetism establishes not only an extremely flexible switch between TPB and TPT, but also provides a
possibility of immunizing all topological quantum resources against various dark-mode disturbances in practical devices.

Physically, in conventional schemes (i.e., without the synthetic magnetism), all topological behaviors are inherently fragile
to dark modes decoupled from the system, leading to a complete malfunction of both EPs and topological operations [S1, S2].
However, by employing the synthetic magnetism, all topological responses are immune to these dark modes, resulting in the
function of topological operations. Our approach offers a new way enabling practical dark-mode-sensitive setups to be ideal,
beneficial for achieving dark-mode-immune topological resources.

{ Tuning Θ⇒ Switching between theDMN andDMB regimes;
DMN ⇒ Inactivation of topological operations⇒ TPB;
DMB ⇒ Activation of topological operations⇒ TPT.

(S68)

C. Dark-mode-engineered nonreciprocal topological dynamics

To study the dependence of one-way topological dynamics on the dark-mode engineering, we display the TPT efficiency
versus the duration τ of the closed control loops, when the system operates in the DMN and DMB regimes, as shown in
Fig. S5. In the DMN regime, TPB always happens (F+ = 0) no matter how to execute the EP-enclosing control loops in
parameter spaces (see lower solid horizontal lines). In the DMB regime, by rapidly winding around the EP (i.e., τ → 0), TPB
(i.e., F+ → 0) is observed; while with adiabatically encircling this EP (i.e., τ ≫ 1 ms [S1]), an excellent TPT appears (i.e.,
F+ → 1). These findings demonstrate that a vanishing TPT, corresponding to the emergence of TPB, is resulting from either the
dark mode for theDMN regime or a rapid encirclement of the EP for theDMB regime.

By adiabatically winding around the EP, the TPT limiting behavior is contingent upon both the direction of the loop and the
mode initially excited. For example, by executing a clockwise (counterclockwise) loop, the blue (red) data represent conventional
adiabaticity (F+ → 1 when increasing τ), while the red (blue) data show an opposite behavior (F+ → 0 as increasing τ). These
results clearly elucidate the nonreciprocity of each topological operation for an anticlockwise or clockwise control loop enclosing
an EP.

IV. SCALABLE NETWORK-BASED TOPOLOGICAL PHONON TRANSFER VIA SYNTHETIC MAGNETISM

In this section, the established dark-mode-engineering mechanism, induced by synthetic magnetism, is generalized to generate
the TPT networks in optomechanical networks, consisting of a single photon mode optomechanically coupled to N phonon
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FIG. S5: Efficiency of TPT versus the duration τ of a closed control loop, in the DMN (g2 = g1, ξ/ω1 = 5 × 10−4, and Θ = 0) and DMB
(g2 = 2.76g1, ξ/ω1 = 5 × 10−4, and Θ/π = 1/9) regimes. The control-loop shape enclosing an EP is the same for all data series, and this EP is
encircled in (a) the clockwise and (b) counterclockwise directions. Blue or red curves correspond to the data where the bright or dark mode is
initially excited, respectively.

modes.

A. Dark-mode engineering in quantum optomechanical networks

In this section, we elucidate the dark modes in an optomechanical network consisting of N (N ≥ 3) phonon modes
optomechanically coupled to a common photon mode, and the nearest-neighboring phonon modes coupled to each other through
the phase-dependent phonon-hopping interactions. For convenience, we focus on the case of no interaction between the last and
the first phonon modes. Then, the optomechanical-network Hamiltonian reads

H = ωca†a +
N∑

j=1

[ω jb
†

jb j + g ja†a(b†j + b j)] +
N−1∑
j=1

ξ j(eiΘ j b†jb j+1 + e−iΘ j b†j+1b j) + i
√
κinϵin(a†e−iωlt − H.c.). (S69)

The phase-dependent phonon-hopping interactions between the nearest-neighboring phonon modes are employed with coupling
strengths ξ j and modulation phases Θ j. As a result, the synthetic gauge fields, which is used to manipulate the dark mode, can
be induced by using a phase-dependent loop-coupled setup that is made up of the g j and ξ j terms.

Now, the research procedure, which is similar to that used in the two-phonon-mode case (see Sec. I A), is applied to infer
a linearized optomechanical Hamiltonian, which governs the evolution of quantum fluctuations. Specifically, this is achieved
by applying a linearization procedure and expanding all operators o ∈{a, b j, a†, b†j } as sums of their classical averages and
quantum fluctuations, i.e., o = ō+ δo. Subsequently, the linearized optomechanical Hamiltonian for quantum fluctuations, in the
N-phonon-mode case, takes the following form:

HI = −∆δa†δa + ω j
∑N

j=1 δb
†

jδb j +
∑N

j=1 G j(δa†δb j + δb
†

jδa) +Hphi, (S70)

where ∆ ≈ ωL − ωc is the driving detuning after the linearization procedure, and G j = g jā is the linearized optomechanical-
coupling strength between the jth phonon mode and the photon mode. The last term in Eq. (S70) is given by

Hphi =
∑N−1

j=1 H j, (S71)

where the subscript “phi” stands for the phonon-hopping interaction of the Hamiltonian, and

H j = ξ j(e−iΘ jδb jδb
†

j+1 + eiΘ jδb j+1δb
†

j ), (S72)

describes the phonon-hopping interaction between the jth and ( j + 1)th phonon modes.
To study the dark modes in the N-phonon-mode optomechanical system, we first consider the case where the phase-dependent

phonon-hopping interaction is absent, i.e., Hphi = 0. For convenience, we assume that all the phonon modes have the same
resonance frequency (i.e., ω j = ωm) and optomechanical-coupling strength (i.e., G j = G).
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In this case, there exists a single bright mode

B =
1
√

N

N∑
j=1

δb j, bright mode, (S73)

and N − 1 dark modes which are completely decoupled from both the bright mode and the photon mode.
To control all the dark modes in the N-phonon-mode optomechanical system, we employ phase-dependent phonon-hopping

interactionsHphi, which in combination with optomechanical couplings are utilized for forming a phase-dependent loop-coupled
configuration, resulting in the synthetic magnetism. Without loss of generality, we assume that all the coupling strengths of the
phonon-hopping couplings are the same, i.e., ξ j = ξ. Thus, we diagonalize the Hamiltonian of these coupled phonon modes to
obtain the phonon-hopping terms, i.e.,

Hpht = ωm

N∑
j=1

δb†jδb j + ξ

N−1∑
j=1

(e−iΘ jδb jδb
†

j+1 + eiΘ jδb j+1δb
†

j ) =
N∑

k=1

ΩkB†k Bk, (S74)

where the subscript “pht” depicts the phonon-hopping terms of the Hamiltonian, and Bk is the kth phonon normal mode with its
resonance frequency defined as

Ωk = ωm + 2ξ cos
(

kπ
N + 1

)
, k = 1, 2, 3, · · · ,N. (S75)

Subsequently, the phonon modes δb j and the normal modes Bk can be related by

δb j =

{ 1
A
∑N

k=1 sin
(

kπ
N+1

)
Bk, j = 1,

1
A e−i

∑ j−1
ν=1 Θν

∑N
k=1 sin

(
jkπ

N+1

)
Bk, j ≥ 2,

(S76)

where A =
√

(N + 1)/2. Then, with these phonon normal modes, we can rewrite the Hamiltonian in Eq. (S70) as

HI = ∆δa†δa +
∑N

k=1ΩkB†k Bk +Hom, (S77)

with Hom being the optomechanical-coupling Hamiltonian, which reads

Hom =

N∑
k=1

G
A

sin
(

kπ
N + 1

)
+

N∑
j=2

ei
∑ j−1
ν=1 Θν sin

(
jkπ

N + 1

) aB†k + H.c.

 . (S78)

When N ≥ 3, the coupling Hamiltonian Hck between the cavity-field mode a and the kth normal mode Bk can be expressed
based on Eq. (S78) as

Hck = G(k)
eff (N)aB†k + H.c., (S79)

where the effective coupling strength G(k)
eff (N) shown in Eq. (S79), between the photon mode a and the kth normal mode Bk, is

defined as

G(k)
eff (N) =

G
A

sin
(

kπ
N + 1

)
+

N∑
j=2

ei
∑ j−1
ν=1 Θν sin

(
jkπ

N + 1

) . (S80)

Obviously, we see from Eq. (S80) that the total effect of these modulation phases in the optomechanical interactions is simply
governed by the sum

∑ j−1
ν=1 Θν. Consequently, a single modulation phase can be applied to achieve dark-mode engineering. For

convenience, the case of Θ j = 0 for j = 2, · · · ,N − 1 has been considered in the following discussions, and subsequently,
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Eq. (S80) can be easily divided into the following four forms:

G(k=odd)
eff (N = odd) =

G
A

[
(1 + eiΘ1 ) sin

(
kπ

N + 1

)
+ 2eiΘ1 sin

(
2kπ

N + 1

)
+ 2eiΘ1 sin

(
3kπ

N + 1

)
+ · · · + 2eiΘ1 sin

(
(N − 1)kπ
2(N + 1)

)
+ eiΘ1 sin

(
kπ
2

) ]
, (S81)

G(k=odd)
eff (N = even) =

G
A

[
(1 + eiΘ1 ) sin

(
kπ

N + 1

)
+ 2eiΘ1 sin

(
2kπ

N + 1

)
+ 2eiΘ1 sin

(
3kπ

N + 1

)
+ · · · + 2eiΘ1 sin

(
Nkπ

2(N + 1)

) ]
, (S82)

G(k=even)
eff (N = odd) =

G
A

(
1 − eiΘ1

)
sin

(
kπ

N + 1

)
, (S83)

G(k=even)
eff (N = even) = G(k=even)

eff (N = odd). (S84)

According to Eqs. (S81)- (S84), it shows that for an odd number k, the effective coupling strength between the photon mode a
and the kth normal mode Bk is nonzero, i.e.,

G(k=odd)
eff (N) , 0. (S85)

However, we see that for an even number k, the effective coupling strength is expressed as

G(k=even)
eff (N) =

G
A

(
1 − eiΘ1

)
sin

(
kπ

N + 1

)
. (S86)

Clearly, Eqs. (S79) and (S86) imply that when

Θ1 = 2nπ, (S87)

the strength of the effective coupling, between an even normal mode Bk=even and the photon mode a, is equal to zero, i.e.,

G(k=even)
eff (N) = 0. (S88)

In this case, all the even normal modes are decoupled from the photon mode and the system. Therefore, the TPT cannot happen
because of the emergence of the dark modes. As a result, the breaking of all N − 1 dark modes in optomechanical networks can
be flexibly realized by simply tuning the modulation phase

Θ1 , 2nπ. (S89)

Our findings establish a versatile platform for an on-demand switching of quantum optomechanical networks between theDMN
andDMB regimes, unlocking new possibilities for dynamic control in quantum networks.

Here, we highlight the fundamental significance and broad implications of our dark-mode engineering approach, which
resolves a persistent and critical challenge in topological phononics. Notably, two seminal back-to-back studies [S1, S2]
implicitly revealed a fundamental constraint in the field of topological phononics: dark modes inherently suppress topological
dynamics, thereby impeding both mode conversion and phonon transport. Our work directly addresses this limitation, offering a
transformative solution to unlock previously inaccessible topological phenomena.

While previous studies have primarily sought to circumvent dark modes [S1, S2], our work directly confronts and addresses
the fundamental challenge posed by dark-mode contaminations. By engineering phase-dependent phonon-hopping interactions,
we selectively activate dark modes to enable topological phonon transport and topological mode switching. Crucially, unlike
existing approaches [S1], which rely on non-degenerate mechanical resonators to achieve topological encircling around an EP,
we demonstrate that even degenerate mechanical resonators can exhibit analogous topological behavior. This finding is both
counterintuitive and unprecedented, representing a significant conceptual advance in topological phonics.

In particular, the proposed dark-mode engineering mechanism demonstrates substantial conceptual originality, bridging
quantum optomechanics and topological physics. A recent experiment [S53] had emphasized that dark modes decoupled from
the system defy quantum ground-state preparation, restricting cooling to the bright mode alone. Leveraging this framework,
we pioneer the exploitation of dark-bright mode engineering to uncover topological phenomena, enabling both TPT and TPB
between dark and bright modes. This breakthrough establishes a previously unexplored paradigm for topological control in
quantum optomechanical systems.
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B. Scalable network-based topological phonon transfer

In this section, we further generalize our dark-mode-engineering method to generate the scalable network-based TPT and TPB
in quantum optomechanical network, where an photon mode couples to N phonon modes via radiation-pressure interactions, and
the nearest-neighbor phonon modes are coupled to each other through the phase-dependent phonon-exchange couplings.

Note that in Sec. IV A, we have demonstrated in detail that, when synthetic magnetism is absent, there only a single bright
mode coupled to the system is induced and N − 1 dark modes are decoupled from the optical mode, and that owing to synthetic
magnetism, all the dark modes can be engineered by tuning the modulation phase. Specifically, we reveal that in the absence of
synthetic magnetism, there is only a single bright mode and N − 1 dark modes. Surprisingly, synthetic gauge fields, induced by
the phase-dependent loop-coupled quantum networks, can lead to a simultaneous breaking of all N − 1 dark modes, offering an
exciting opportunity of switching a quantum network between theDMN andDMB regimes. Therefore, thermal phonons from
the dark to bright modes are blockaded in the DMN regime, while transferred in the DMB regime, making the TPT between
the dark and bright modes feasible. These findings mean that the scalable network-based TPT, which is immune to dark modes,
can be achieved just by applying the dark-mode engineering to quantum optomechanical networks.

In this work, we have demonstrated a versatile switch between TPB and TPT arising from a general dark-mode engineering,
without which it vanishes. Note that our study differs from what is known in previously established demonstrations, mainly
because we are focused on overcoming the challenging from dark-mode contamination in the topological response, but not
on deliberately circumventing it. Our work provides a general approach to engineer and protect topological resources from
dark modes, and maps a new perspective on constructing an unconventionally nonreciprocal topology and topological quantum
networks with immunity against dark modes.

V. QUANTUM COLLECTIVE MOTION USING DARK-MODE ENGINEERING

The proposed dark-mode engineering mechanism has a broad applicability and relevance, because it could introduce a versatile
strategy with wide-ranging implications. Specifically, the framework developed here can be broadly applied to control collective
quantum motion in macroscopic mechanical systems. As highlighted in Ref. [S53], the quantum control of collective phonon
modes in large-scale mechanical resonators represents an emerging research frontier. Our method for engineering nonreciprocal
and topological phonon transfer via dark-mode manipulation contributes a powerful and widely applicable tool for this growing
field.

Specifically, this breakthrough experiment [S53] highlights a key limitation in observing quantum collective motion in
macroscopic mechanical resonators: Only a single bright mode, coupled to the system, can be cooled to its quantum ground
state, while all N − 1 dark modes remain entirely decoupled from the system. This inherent decoupling renders the dark modes
inaccessible to conventional quantum control and ground-state preparation. Building on this pioneering work [S53], our study
fundamentally overcomes this constraint by introducing a mechanism that enables simultaneous ground-state preparation of both
bright and dark modes. By simply activating synthetic magnetism, our scheme unlocks the full quantum potential of collective
phononic dynamics. In doing so, it establishes a new paradigm in quantum optomechanics, which is no longer bound by the
limitations imposed by dark modes.

We show that in the DMN regime, all dark modes remain uncooled; whereas in the DMB regime, they are simultaneously
cooled to their quantum ground states. These counterintuitive phenomena arise from the underlying physical mechanism: dark
modes are naturally decoupled from the system and then, thermal noise trapped in dark modes cannot be extracted through
sideband cooling [S54–S57], making the quantum ground-state preparation of these dark modes unattainable [S53]. In contrast,
upon transitioning into the DMB regime, simultaneous quantum ground-state preparation of both dark and bright modes
becomes achievable near the red-sideband resonance. These findings demonstrate that the proposed dark-mode engineering
offers flexible control and effective protection of fragile collective quantum ground states.

In the following, we will elucidate in detail how dark-mode manipulation overcomes this outstanding challenge imposed by
dark modes, enabling simultaneous quantum ground-state preparation of both dark and bright modes.

A. Dark–bright mode engineering

In Sec. IV A, we have detailedly demonstrated how to control both the dark and bright modes in quantum optomechanical
networks, consisting of N mechanical modes coupled to a shared cavity-field mode. Evidently, we see from Eq. (S86) that when
Θ1 = 2nπ, the emergence of dark modes that completely decouple from the system gives rise to theDMN regime. Surprisingly,
however, by simply tuning Θ1 , 2nπ, all dark modes can acquire finite effective couplings to the system, thereby transitioning
into theDMB regime. Consequently, while achieving the quantum ground state for all dark modes is inherently unattainable in
theDMN regime, it is, counterintuitively, rendered feasible in theDMB regime.
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In the groundbreaking experimental work [S53], it shows that the coupling of N phonon modes to a shared photon mode
results in a single bright mode coupled to the system and N − 1 dark modes are decoupled from this system. Consequently,
although the quantum ground state can be prepared only for the bright mode, it remains intrinsically unattainable for all dark
modes [S53]. Building upon this pioneering work [S53], the proposed dark-mode engineering method can directly address this
outstanding challenge posed by dark modes, introducing a novel paradigm for the quantum ground-state cooling of both the dark
and bright modes.

Below, we establish a quantitative framework for quantum collective ground-state cooling by deriving exact expressions for
the final phonon occupancies in both dark and bright modes.

B. Occupations of dark and bright modes

By utilizing the covariance matrix representation in the basis of mechanical modes, we can systematically quantify the phonon
occupation in all dark and bright modes. Given that the initial state is Gaussian, the Gaussian nature of the state is preserved
throughout its evolution. As a result, the covariance matrix provides a complete description of the system and, in the vibrational-
mode basis, takes the form [S53]

Cov =



〈
δb†1δb1

〉 〈
δb†1δb2

〉
· · ·

〈
δb†1δbN

〉〈
δb†2δb1

〉 〈
δb†2δb2

〉
· · ·

〈
δb†2δbN

〉
...

...
. . .

...〈
δb†Nδb1

〉 〈
δb†Nδb2

〉
· · ·

〈
δb†NδbN

〉
 , (S90)

where 〈
δb†i δb j

〉
=

1
2π

∫ +∞

−∞

S b†i b j
(ω) dω. (S91)

The occupations of the dark and bright modes can be directly determined by diagonalizing the covariance matrix Eq. (S90). The
eigenvalues of Eq. (S90) encapsulate the occupations of these collective modes: the lowest eigenvalue corresponds to the phonon
numbers in a single bright mode (i.e., nB), while the remaining N − 1 eigenvalues represent the occupations of N − 1 dark modes
(i.e., nDl ), respectively.

Given the presence of N − 1 dark modes, we define the mean phonon number of these dark modes as

nD =
1

N − 1

N−1∑
l=1

nDl , (S92)

which explicitly reveals that the condition nD < 1 signifies simultaneous preparation of all dark modes in their quantum ground
states.

C. Quantum collective ground-state preparation of both dark and bright modes

The strategic engineering of dark modes provides a viable pathway for realizing and protecting fragile quantum collective
motion from various disturbances associated with dark modes in practical devices. Furthermore, it facilitates the implementation
of noise-free quantum optomechanical networks.

We demonstrate that in the DMN regime, all dark modes persist in an uncooled state (nD = 103), whereas in the DMB
regime, they are efficiently cooled to their quantum motional ground states (nD < 1). The underlying mechanism arises from the
intrinsic decoupling of dark modes in theDMN regime, which suppresses thermal phonon extraction via sideband cooling [S54–
S57], thereby precluding their quantum ground-state cooling.

In stark contrast to this, when the system operates in theDMB regime, all dark and bright modes can be simultaneously driven
into their quantum ground states near the red-sideband resonance, i.e., ∆ ≈ −ωm. These findings highlight that the preparation
of fragile quantum collective ground states can be not only flexibly engineered but also robustly protected through synthetic
magnetism.
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