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ADDITIONAL EXPERIMENTAL DETAILS

The dependency of the resonance frequency of the
lumped-element resonator ωr on the external flux bias
δΦext around the optimal point can be approximately
described as

ωr(δΦext) =
ωr(0)√

1 +D cos θ |δΦext|
, (1)

where the constant D = −0.18 and is determined by
tuning the fitting curve of ω01 in Fig. 2c of the main text
when ωr(0) is fixed.

Supplementary Fig. 1 shows the the experimental
setup.

Supplementary Fig. 2 displays the bare and normalized
reflection spectra without the fitting curves of Figs. 2a
and 2b in the main text. The abrupt changes in the
transmission background around 5.6 GHz and 11.9 GHz
can be seen in the bare spectra in Supplementary Figs. 2a
and 2b.

Supplementary Fig. 3 displays the calculated excita-
tion spectra (ω0,n) of the total system (the deep-strongly
coupled qubit–resonator system plus the Xmon). The ob-
served transitions (ω01, ω02 and ω03) in Fig. 2 of the main
text correspond to ω0,1, ω0,3 and ω0,6. The sideband
transitions in Fig. 2a of the main text correspond to (from
inside to outside) ω4,18 ≈ ω04,X − (ω01 + ω01,X), ω5,20 ≈
(ω02 +ω03,X)−ω02,X , ω5,16 ≈ (ω04 +ω01,X)−ω02,X and
ω5,15 ≈ ω05−ω02,X , where ωn,m ≡ ω0,m−ω0,n and ω0n,X

denotes the dressed excitation energy levels of the Xmon.
The observation of these high-order sideband transitions
near the band edge is a surprise, which may demand a
further theoretical study.

THEORY

Theoretical description

We consider a deep-strongly coupled (DSC) system
constituted by a flux qubit coupled inductively to a
lumped-element resonator through a shared Josephson
junction. This system can display a photonic vacuum
symmetry breaking [1]. Here we demonstrate that the
presence of such symmetry breaking can induce the
breaking of parity selection rules of an Xmon artificial
atom interacting dispersively with the ultrastrongly cou-
pled system via the lumped-element resonator. This
selection-rule breaking can then be probed by applying a
driving field on the coupled Xmon.

The total Hamiltonian for our three-component system
can be written as

Htot = Hs +H
(4)
X − g′(a− a†)(b− b†) , (2)

where Hs is the Hamiltonian of the DSC qubit–resonator
system in the main text, and

b =

3∑
n=0

√
n+ 1 |n〉〈n+ 1| (3)

is the annihilation operator for the Xmon modeled here
as a four-level artificial atom (qudit). The bare Xmon as
a qudit is

H
(4)
X =

3∑
n=0

εn|n〉〈n| , (4)

where we choose ε0 = 0 for convenience.
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Supplementary Fig. 1. Schematic of the experimental setup. Figure 1a in the main text is the area denoted by the blue
rectangular box. RT: room temperature. Cryo: cryogenic. LPF: low pass filter.

Owing to the parity symmetry, two-photon transitions
in the bare Xmon artificial atom are forbidden. Thus,
an observation of the two-photon transition represents a
signature of induced breaking of the selection rules in the
Xmon coupled to the qubit–resonator system. Below we
show that the two-photon transition rate can be directly
calculated using second-order perturbation theory.

Let us consider a single-tone external drive exciting the
Xmon,

H1(t) = (Ω/2)(Y −e−iωdt + Y +eiωdt) , (5)

where

Y + = −i
∑
j<k

〈Ej |(b− b†)|Ek〉 |Ej〉〈Ek| , (6)

with |Ej〉 being the eigenstates of the Hamiltonian (2),
which are ordered so that j < k if ωj < ωk.

We choose system’s ground state |E0〉 as the initial
state. The first-excited state of the system corresponds to
the dressed first-excited state of the DSC qubit–resonator
system. The second-excited state of the system corre-
sponds to the dressed first-excited state of the Xmon.
The transition rate from |E0〉 to |E2〉 can be written as

W2(ωd) = 2π |T0,2|2 δ(ω0,2 − 2ωd) , (7)

where ωj,k = ωk − ωj , and

T0,2 = Σk
V0,kVk,2
ω0,k − ωd

. (8)

Here, the matrix elements of the perturbation potential
are

Vj,k =
Ω

2
〈Ej |Y +|Ek〉 . (9)

The losses of the system components can be included
by converting the Dirac delta function in Supplementary

Eq. (7) into a Lorentzian:

δ(ω0,2 − 2ωd)→ 1

2π

Γ0,2

(ω0,2 − 2ωd)2 + Γ2
0,2/4

. (10)

The definition of the loss rates as Γ2,0 can be found in
the next section.

The two-photon Xmon power spectrum can be ob-
tained as

〈Y −Y +〉 = Tr[ρY −Y +] , (11)

where ρ is system’s density operator. It can be written
as

〈Y −Y +〉 =
W2(ωd)

Γ0,2
(|Y0,2|2 + |Y1,2|2) , (12)

where Yj,k = 〈Ej |Y +|Ek〉. In comparision with Y0,2, the
matrix element Y1,2 is almost negligible.

Density matrix approach

Here we derive the two-photon emission rate of the
three-component system described in the previous sec-
tion, by using a perturbative master equation approach.
We start from the master equation for the coupled system
in the basis of its eigenstates (dressed-states approach),
including the external drive (that is the perturbation):

ρ̇ = i[ρ,H0 +H1(t)] + L[ρ] , (13)

where H0 =
∑

n ωn|En〉〈En| is the diagonalized Hamil-
tonian of Supplementary Eq. (2). The external driving
field is described by the time-dependent interaction

H1(t) = Ω cos(ωdt)(Y
− + Y +) , (14)
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Supplementary Fig. 2. a(c) and b(d) are bare (normalized)
reflection spectra without the fitting curves of Figs. 2a and 2b
in the main text. Source data are provided as a Source Data
file.

and L[ρ] is the dissipator expressed in the eigenstates of
the DSC system (see, e.g., Ref. 2). Applying the rotating-
wave approximation, we can write

H1(t) = (Ω/2)(Y −e−iωdt + Y +eiωdt) . (15)

We will also consider an expansion of the density matrix
in terms of powers of the drive amplitude, so that we can
separate each contribution, i.e.

ρ = ρ(0) + ρ(1) + ρ(2) + ... =

∞∑
n=0

ρ(n) . (16)

Moreover, since the drive can be expanded in Fourier
components as

H1(t) =
∑
k

H(1)
ωk

exp(iωkt) , (17)
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Supplementary Fig. 3. Caculated excitation spectra of the
total system (ω0,n). The parameters used in the caculation
are the same as in the main text. The dressed excitation en-
ergy levels of the deep-strongly coupled qubit–resonator sys-
tem ω0n (Xmon ω0n,X) are in blue (magenta). The black
levels correspond to multiple excitation levels ω0n + ω0m,X .
The red dashed double-arrowed lines indicate the observed
sideband transitions in Fig. 2a of the main text.

(actually, we will use here only a single-tone drive) the
same can be done with ρ(n), leading to the expression

ρ =

∞∑
n=0

∑
k

ρ(n)ωk
exp(iωkt) , (18)

where ωk = ±k ωd, with k being an integer number.
Considering the steady state, plugging Supplementary
Eq. (18) into the master equation, we obtain a set of
closed equations separated in driving orders and Fourier
components, that at the lowest order looks like:

ρ̇(0) = 0 = i[ρ(0), H0] + L[ρ(0)] , (19)

which leads to the thermal density operator

ρ(0) =
1

Z
∑
j

exp

(
− ~ωj

kBT

)
|Ej〉〈Ej | , (20)

with the partition function Z =
∑

j exp
(
− ~ωj

kBT

)
. The

next two sets of equations for the first- and second-order
density matrices can be formally derived from the master
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equation, and they have the following forms:

ρ̇(1)(ωk) = iωkρ
(1)
ωk

= i[ρ(0), H(1)
ωk

] + i[ρ(1)ωk
, H0]

+L[ρ(1)ωk
] ,

ρ̇(2)(ωj + ωk) = i(ωj + ωk)ρ
(2)
ωj+ωk

= i[ρ(1)ωj
, H(1)

ωk
] + i[ρ

(2)
ωj+ωk

, H0]

+L[ρ
(2)
ωj+ωk

] . (21)

The solutions of the above expressions can be derived
sequentially, by plugging the already found solution for
the previous order. In this way we find for the first- and
second-order steady-state density matrices:

(ρ(1)ωk
)n,m =

(H
(1)
ωk )n,m

ωk − ωn,m + iΓn,m/2
(ρ(0)m,m − ρ(0)n,n) ,

(ρ
(2)
ωj+ωk

)n,m =
([H

(1)
ωj , ρ

(1)
ωk ])n,m + ([H

(1)
ωk , ρ

(1)
ωj ])n,m

ωj + ωk − ωn,m + iΓn,m/2
. (22)

The decay rates Γn,m are the sum of all the lossy channels
involved in the |Em〉 → |En〉 transition and its expres-
sion is shown below. For a nonzero temperature reser-
voir, one has to take care of the modified decay rates
for the generic transition |Ej〉 → |Ei〉 (with j > i).
For the sake of simplicity, we assume that both the
artificial atoms and the lumped-element resonator are
thermalized at the same temperature. Thus, the rates
can be calculated via the Fermi’s golden-rule. At zero-

temperature, we obtain Γ0
i,j = γ

(q)
i,j + γ

(a)
i,j + γ

(b)
i,j , where

γ
(q)
i,j = γq|〈Ei|σx|Ej〉|2, γ

(a)
i,j = γa|〈Ei|(a+ a†)|Ej〉|2, and

γ
(b)
i,j = γb|〈Ei|(b + b†)|Ej〉|2. At T > 0, the loss rates

become

Γi,j =
∑

s={q,a,b}

(∑
k>i

γ
(s)
i,k (1+2n̄i,k)+

∑
k>j

γ
(s)
j,k (1+2n̄j,k)

)
,

(23)
where n̄i,j is the thermal noise that affects the |Ej〉 →
|Ei〉 transition, i.e., n̄i,j = 1/[exp(~ωi,j/kBT ) − 1]. In
the following theoretical analysis, corroborated by the
standard working temperature of the DSC system (T ∼
30 mK), we can safely ignore the enhancement induced
rates, by choosing the relevant n̄i,j = 0.

In our calculations, we stop the perturbative develop-
ment up to the second order, as the essential physics is
fully caught. In particular, we can obtain the single- and
two-photon absorption by looking at the polarization of
the Xmon as a function of the drive frequency, which
can be defined as 〈P (ωd)〉 = Tr[−i(b− b†)ρ(ωd)]. In this
formula, we can apply further simplifications by (i) con-
sidering the case of a ground state environment (T = 0)
and (ii) dropping the negligible terms of 〈P (ωd)〉, finding
that the leading terms that drive the onset of the sought

effect yield

|〈P (ωd)〉| ' |(Y2,0ρ(2)0,2 + Y0,2ρ
(2)
2,0)| = 2<[Y2,0ρ

(2)
0,2] . (24)

Terms like Y2,0ρ
(1)
0,2 + Y0,2ρ

(1)
2,0 represent a constant back-

ground as they are far-detuned resonances, and thus
they can be ignored. Furthermore, we also find that
|Y2,0| ' 1, as it represents the transition matrix element
of the weakly coupled Xmon, from its ground to the first-
excited level. Following our perturbative approach, we
find that

ρ
(2)
0,2 = −Ω2

2

Y0,1Y1,2
(ωd − ω0,1 + iΓ0,1/2)(2ωd − ω0,2 + iΓ0,2/2)

.

(25)
Finally, as the detected field has frequency ωd ∼ 1

2ω2,0,
the non-resonant part of the denominator can be ex-
panded in series, leading to the final expression:

|〈P (ωd)〉| = Ω2|Y0,1Y1,2|
ω1,2 − ω0,1

Γ0,2|Y2,0|
(2ωd − ω0,2)2 + Γ2

0,2/4
. (26)

Results

Below we show the numerical results achieved with
parameters extrapolated by the experimental data.
Namely, we use ωr/2π = 4.82 GHz, ∆/2π = 15 GHz,
g/2π = 4.55 GHz, g′/2π ≈ gX/2π = 28 MHz, and loss
rates for the flux qubit, lumped-element resonator and
Xmon are chosen to be γ(q)/2π = γ(a)/2π = γ(b)/2π =
2 MHz. Also, we consider a thermalized DSC system at
a temperature of 30 mK. Our model is able to reproduce
the experimental results with a very good agreement. In
the simulations, we use a quite strong external field excit-
ing the Xmon, in order to produce a two-photon absorp-
tion, and its value in terms of linewidth is Ω = 200×γ(b).
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Supplementary Fig. 4. Calculated most relevant terms in the
two-photon absorption rate as a function of the external flux
bias δΦext. The detected signal is approximately proportional
to the product of these quantities. The calculated Y1,2 term
goes to zero for δΦext → 0, when the parity selection rule for
the dressed Xmon is restored. The Y0,2 is not shown in the
figure as it is almost unity in the whole range investigated
here.

Such a value is large enough to ensure the onset of the
second-order processes. While for the direct excitation
of the single-photon absorption, we reduce Ω by a factor
2 × 106, in doing so we can get the same order of the
amplitudes of the single- and two-photon signals, which
is consistent with the experimental observation.

Figure 3 in the main text shows the comparison be-
tween experimental (top) and theoretical (middle) results
calculated for the reported parameters. The left panel
shows the weak-excitation, two-tone spectroscopy of the
dressed Xmon (|E0〉 → |E2〉) transition, while in the right
panel, a strong-excitation spectroscopy shows the two-
photon resonance at half of the Xmon (|E0〉 → |E2〉)
transition. Both the experimental and theoretical sig-
nals are displayed as a function of the drive frequency ωd

and of the external flux bias, δΦext. For zero flux bias
δΦext = 0, the two-photon resonance disappears as the
parity symmetry is completely restored. The theoretical
calculations display the changes in the amplitude of the
Xmon polarization |〈P (ωd)〉|.

Supplementary Fig 4 displays the most relevant term
in the two-photon absorption rate as a function of the flux
bias δΦext. It shows the origin of the dependence on the
flux bias of the two-photon transition rate for the dressed
Xmon. In particular, we observe that the matrix element
Y1,2 goes to zero for δΦext → 0, owing to the restoration
of parity symmetry. This disables two-photon transitions
from the ground state to the dressed first excited state
of the Xmon (|E0〉 → |E2〉).
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Supplementary Fig. 5. Calculated ground-state coherence
〈G|a|G〉 of the qubit–resonator system. Left: ground-state
coherence 〈G|a|G〉 versus both the external flux bias δΦext

and the coupling strength g. The dashed white line repre-
sents the measured value of coupling strength in the experi-
ment. Right: as in the left figure, the ground-state coherence
〈G|a|G〉 is shown only for positive flux bias, and for higher
values of the coupling. The scale of the right figure is loga-
rithmic, with a small cutoff to the zero flux bias in order to
avoid the log-divergence.
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tive value of the plot legend is due to the log-scale. The drive
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Further discussions

Supplementary Fig. 5 displays the calculated ground-
state coherence 〈G|a|G〉 of the qubit–resonator system
versus both the external flux bias δΦext and the cou-
pling strength g. The vacuum expectation value 〈G|a|G〉
becomes non-negligible when the coupling stength g ap-
proaches deep strong and the external flux bias δΦext is
tuned away from the optimal point.

Supplementary Fig. 6 displays the simulated results
of the two-photon spectra of the Xmon versus the effec-
tive coupling strength g/ωr. We can see that when the
effective coupling strength g/ωr is reduced to 0.6, the
two-photon signals of the Xmon disappear. For stronger
coupling (g/ωr = 1.5), further features emerge due to
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the interaction of the two-photon resonance with other
spectral lines.

Symmetry breaking of the quantum vacuum makes the
flux-bias-insensitive Xmon experience a virtual path to
its two-photon resonance. It is not possible if the Xmon
is coupled with a normal product-state vacuum (when
g/ωr � 1), or when the vacuum symmetry is preserved
(δΦext = 0), in contrast to the cases of flux-tunable
qubits, where the two-photon transition becomes allowed
naturally when there is a finite external flux bias.
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