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Enhanced motility in a binary mixture of active
nano/microswimmers†
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It is often desirable to enhance the motility of active nano- or microscale swimmers such as, e.g., self-

propelled Janus particles as agents of chemical reactions or weak sperm cells for better chances of suc-

cessful fertilization. Here we tackle this problem based on the idea that motility can be transferred from a

more active guest species to a less active host species. We performed numerical simulations of motility

transfer in two typical cases, namely for interacting particles with a weak inertia effect, by analyzing their

velocity distributions, and for interacting overdamped particles, by studying their effusion rate. In both

cases, we detected motility transfer with a motility enhancement of the host species of up to a factor of

four. This technique of motility enhancement can find applications in chemistry, biology and medicine.

1. Introduction

Self-propelling Janus particles (JPs), the most common class of
artificial microswimmers, have been the focus of widespread
attention over the last two decades due to their emerging
applications in nano-technology and medical science.1–7 Such
particles are made by coating one hemisphere with catalytic or
photo-sensitive or magnetic materials.1,2,4 Under appropriate
conditions, one hemisphere undergoes physical or chemical
changes with respect to the other, thus producing some local
gradient in the suspension fluid (self-phoresis). This strategy
allows artificial swimmers to propel themselves by harvesting
energy from their environment.

Thanks to their self-propulsion mechanism and in contrast
to their passive peer, artificial swimmers can diffuse orders of
magnitude faster,8 are capable of performing autonomous
motion in periodic structures with broken spatial symmetry9–12

and exhibit other peculiar transport properties.13–17 Inspired
by these unique transport features, researchers aim to design

customized JPs to be used, for instance, as “nano-robots”
capable of performing accurate mechanical operations.18–23

Additional promising technological applications have also
been proposed.1,9,24,32,33 Among the most appealing ideas
being pursued, we mention here the recent attempt to power
passive particles through the self-propulsion mechanism of
intermediary active particles,9,31–35 to be used as controllable
stirrers. In this paper, we numerically study the velocity distri-
bution and effusion of active particles in a binary mixture, to
understand how to enhance motility of less active particles by
adding more active particles. Mixtures of interacting active par-
ticles (either of the same or different kinds) behave quite
differently in many ways. For dilute solutions, particles interact
via long-range hydrodynamic flows generated by active par-
ticles and the short-range interactions can be safely ignored.6

However, transport properties of dense mixtures are mostly
dominated by the short-range interactions, which are respon-
sible for a variety of cluster and pattern formation processes
reported in the recent literature.25–28

Our simulation of binary active mixtures shows that adding
a fraction of active microswimmers, such as self-propelled JPs,
to a suspension of passive colloidal particles, results in a moti-
lity increase of the latter species. However, adding a small frac-
tion of more active particles to a suspension of less active
microswimmers results in a non-trivial behavior, whereby the
added species appears to enhance the motility of the host
species. Such a mechanism can be controlled by tuning the
parameters of the guest species, e.g., the intensity of light in
the case of light-induced JPs using laser beams,36 near-infra-
red light37 or visible light.38,39

Our findings can be potentially useful for various chemical,
biological and medical applications. For example, this tech-
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nique could be used to increase the rate of in vitro fertilization
by enhancing the motility of weak sperm cells. The same strat-
egy can be implemented in a chemical reactor to govern the
reaction rate, whereby one adds inert active particles to stir
otherwise slowly diffusing reactant molecules.

Furthermore, it should be noted that the motility transfer
mechanism is associated with some correlated particle
dynamics in the mixture. The most sophisticated way to quan-
tify motion correlation of weak and strong active particles is to
compute the mixture cooperativity.49 However, we focus here
on the role of cooperativity in controlling the velocity distri-
bution and effusion rates of weak JPs via motility transfer.

The outline of the paper is as follows. In section 2, we
present a simple dynamical model for interacting self-propel-
ling JPs in two dimensions, which we implemented in our
numerical simulation code. In section 3, we explore the vel-
ocity distributions of the two mixture components. We con-
sider first the case of a mixture of two identical species (single
species case), of noninteracting, section 3.1, or interacting par-
ticles, section 3.2, and, then, the general case of a binary
mixture of two different species of interacting active JPs. In
section 4, we report our data for the effusion rates of the two
JP species out of a narrow opening of the simulation box.
Finally, in section 5 we draw a few concluding remarks.

2. Model

Let us consider a two-dimensional system consisting of two
types of JPs with different self-propulsion speeds in a thermal
bath: Nw with speed vw and Ns with speed vs. In the following,
we will refer the subscripts ‘s’ and ‘w’ to “strong” and “weak”
mobility JPs, respectively. All N = Nw + Ns particles are rep-
resented by interacting disks of radius r0. For very short dis-
tances, they interact with each other via a truncated Lennard-
Jones potential,

Vij ¼ 4ε
σ

rij

� �12

� σ

rij

� �6� �
; if rij � rm

¼ 0 otherwise;

ð1Þ

where ε is the interaction constant, rm locates the potential
minimum, and σ = 2r0. Thus, particles interact only through
steric repulsion, i.e., no hydrodynamic interactions will be con-
sidered here. To illustrate how the motility of the two species
is interrelated, we computed two quantifiers, the particle vel-
ocity distributions and their effusion rates. However, the
former cannot be computed for massless particles (that is in
the absence of inertia). Therefore, we assumed damped par-
ticle dynamics, although in most practical situations inertia
plays no significant role, due to the comparatively very fast
viscous relaxation of the suspension medium.40 One can
recover the standard massless, or overdamped, limit by taking
very large values of the damping constant γ. This holds on all
physical circumstances when the viscous relaxation time, 1/γ,

is much shorter than any other relevant time scale of the
system dynamics.42–44

The dynamics of the particles in the xy-plane can be
described by the following set of Langevin equations,

mẍi ¼ �γ ẍi þ
X
j

Fx
ij þ v0 cos θi þ

ffiffiffiffiffiffi
D0

p
ξxi tð Þ

" #
; ð2Þ

mÿi ¼ �γ ÿi þ
X
j

Fy
ij þ v0 sin θi þ

ffiffiffiffiffiffi
D0

p
ξyi tð Þ

" #
; ð3Þ

θ̇i ¼ ξθi : ð4Þ

The i-th particle with instantaneous position (xi,yi) diffuses
under the combined action of self-propulsion and equilibrium
thermal fluctuations. Here, (ξxi ,ξ

y
i ) are the components of the

thermal fluctuations responsible for the particle translational
diffusion; they are modeled by Gaussian white noises with
〈ξαi (t )〉 = 0 and 〈ξαi (t )ξ

β
i (0)〉 = 2δijδαβδ(t ), where α,β = x,y. The

constant D0 = kT/γ can be computed by measuring the transla-
tional diffusion of a free JP in the absence of self-propulsion.
Here γ plays the role of an effective damping constant incor-
porating all environmental interactions not explicitly
accounted for in eqn (2) and (3), like fluid viscosity, hydrodyn-
amic drag, surface effects, etc. The second term in the right
hand side of the same equations represents the repulsive
forces derived from the Lennard-Jones pair potential of
eqn (1).

The propulsion velocities with modulus vw and vs are
oriented at an angle θi with respect to the laboratory x-axis.
Due to the particle rotational diffusion, the angles θi change
randomly according to the Wiener process of eqn (4), where
〈ξθi (t )〉 = 0 and 〈ξθi (t )ξ

θ
i (0)〉 = 2Dθδ(t ). For a passive particle, the

rotational diffusion constant, Dθ, is typically related to the vis-
cosity, ηv, and temperature, T, of the suspension medium and
to the geometry of the particle itself.29 For spherical colloidal
particles with radius r0, the rotational diffusion constant can
be expressed as Dθ = kT/8πηvr03. However, for an active JP
rotational diffusion can also depend on the mechanisms
fueling its self-propulsion. For this reason, D0, v0, and Dθ are
treated here as independent model parameters.4,5,30 Moreover,
we assumed for simplicity that the noise parameters D0 and Dθ

are the same for both JP species.
From the correlation function, 〈cos θi(t )cos θi(0)〉 = 〈sin θi(t )

sin θi(0)〉 = (1/2)exp[−Dθ|t|], it is apparent that Dθ coincides
with the rotational relaxation rate of the self-propulsion vel-
ocity~v0 tð Þ. Moreover, we remind that, in the limit of large γ, a
non-interacting JP of eqn (2)–(4) diffuses normally with the
translational constant, D, consisting of two distinct terms,12 a
thermal and a self-propulsion one, namely D = D0 + v0

2/2Dθ.
We numerically integrated eqn (2)–(4) using a standard

Milstein algorithm to obtain the velocity distributions and
effusion rates of the both mixture species. The numerical inte-
gration was performed using a very short time step, 10−6–10−7,
to ensure numerical stability. Computing the velocity distri-
butions requires no confinement scheme. However, to keep
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the mixture densities constant, we set up a simulation box of
dimension xL × yL with periodic boundary conditions. Instead,
to simulate the effusion rates we assumed that the particle
centers are confined inside the simulation box. The particles
can then exit the box only through a very small opening of
width Δ + 2r0, to model a pore of accessible width Δ (see
Fig. 1). The opening can be centered anywhere along the box
wall. Simulating a confined JP requires defining its collisional
dynamics at the boundaries. For the translational velocity ~̇r, we
imposed elastic reflection, whereas the rotational coordinate,
θ, was assumed not to change upon collision (sliding bound-
ary conditions9). As a consequence, an active JP tends to slide
along the walls until rotational fluctuations, ξθ, redirect the
particle inside the box. We computed the effusion rate,
defined as the number of particles exiting the box through the
pore per unit of time, for different particle swimming pro-
perties and confinement geometries. At t = 0, the particles
were uniformly distributed in the box with random orien-
tation. To keep the number density of both species constant, a
particle of the same species was re-injected with a random
position and orientation inside the box, whenever one had
escaped through the pore. The running time was set to 104 × τθ
or 104, whichever was greater, so as to neglect transient effects
due to the initial conditions. The data points reported in the
figures shown here have been obtained by ensemble averaging
over a minimum of 1000 trajectories. For the simulation para-
meter values adopted here, the time and length scales are
seconds and micrometers, respectively. The mass of a silica
bead of radius 0.75 μm is taken as a unit of mass. Taking the
density45 of SiO2 ≈ 2 g cm−3, the unit of mass would be about
4 × 10−12 g. In rescaled units, parameters used in our simu-
lations are consistent with the corresponding values reported
in the experimental literature.

3. Velocity distribution

It is well known that the velocity of overdamped Brownian par-
ticles is an ill-defined quantity. Indeed, massless particles
undergo a displacement only during the action of external
forces,40 here thermal fluctuations, collisions against other
particles or the box walls, and the effective self-propulsion

forces.41 Therefore, to extract a velocity distribution, one needs
to simulate inertial effects.

By numerically integrating the coupled eqn (2)–(4), we sys-
tematically analyzed velocity distributions in systems of non-
interacting and interacting active JPs, as well as in binary mix-
tures of two species of JPs with different self-propulsion
speeds.

3.1. Velocity distribution of non-interacting active particles

Let us begin with the case of a single species of non-interact-
ing particles self-propelling in a thermal bath of temperature T
with speed v0. Velocity distribution at different values of the
rotational diffusion constant, Dθ, is shown in Fig. 2. It is appar-
ent that inertial effects become important as the viscous relax-
ation time constant, τγ = 1/γ, grows comparable to or greater
than the rotational relaxation time τθ = 1/Dθ. When τγ ≫ τθ (or γ
≪ Dθ), the velocity distributions are mostly determined by
thermal fluctuations. In the opposite regime, τγ ≪ τθ (or γ ≫
Dθ), self-propulsion effects seem to prevail. Hence, the tran-
sition from self-propulsion to the inertia-dominated regime
clearly emerges from the velocity distributions of Fig. 2.

Recall that, as anticipated above, for asymptotically large
observation times, a free JP behaves like a persistent Brownian
particle with effective temperature47,48

Teff ¼ γ

k
D0 þ v02

2Dθ

� �
; ð5Þ

and persistence length lθ = v0τθ. For suitably large values of Dθ,
the self-propulsion length is shorter than the free thermal
length,

ffiffiffiffiffiffiffiffiffiffi
mkT

p
=γ, that is Teff ≃ T. As a consequence, one expects

that the particle velocities must be distributed according to
the two-dimensional Maxwellian function,

p vð Þ ¼ mv
kT

� �
exp �mv2

2kT

� �
: ð6Þ

This assertion is corroborated by the numerical results of
Fig. 2(a and b).

A different type of velocity distribution emerges when the
self-propulsion length of the active particle is set much larger
than its thermal length. The ensuing velocity distribution is
governed by the self-propulsion dynamics, its maximum being
centered at around v0. Such a distribution results from the
combination of the Maxwellian distribution of eqn (6), and a
Gaussian distribution with mean v0 and variance kT = γD0,
both due to thermal fluctuations. When lowering the tempera-
ture, T, the contribution of the Maxwellian part is quickly sup-
pressed, which results in the 2D Gaussian distribution

p vð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2πγD0

p
� �

exp �ðv� v0Þ2
2γD0

� �
: ð7Þ

In the zero temperature limit, that is, when translational
noise is negligible with respect to rotational noise, this distri-
bution tends to a δ-function centered at v0, whereas the corres-
ponding velocity distributions in one direction become,
p vx;y
	 
 ¼ 1=π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðvx;y=v0Þ2

q
. These properties are confirmed

Fig. 1 Left: Schematic of a mixture of self-propelled particles in a rec-
tangular box (xL × yL) with an opening of width Δ. Right: Schematic of a
two-dimensional self-propelled JP. Its dynamical, ~v, and self-propulsion
velocities,~v0, are depicted by distinct vectors.
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by the simulation results displayed in Fig. 2(a) and ESI
Fig. SM1.†

3.2. Velocity distribution in a system of interacting active
particles

Velocity distributions for different values of the packing frac-
tion, ϕ = 4r0

2Nt/(xL + 2r0)(yL + 2r0), are displayed in Fig. 2(b).
These distributions are centered at v0 for weakly interacting
particles and their center shifts towards lower values with
increasing ϕ. As apparent here, in dense systems, say with ϕ >
0.5, interacting active JPs obey the Maxwellian velocity
distribution,

p vð Þ ¼ v
B
exp � v2

2B

� �
; ð8Þ

where the fitting parameter, B, depends on the bath tempera-
ture T, the particle rotational diffusion Dθ and self-propulsion
speed v0, and the system packing fraction ϕ. For v0 → 0, the
distribution is insensitive to the pair interaction, so that B =
γD0, like in gas kinetic theory. Therefore, the interaction
dependence of the velocity distribution is a non-equilibrium
effect of self-propulsion. To examine the impact of self-propul-
sion on the velocity distribution in a dense system, in Fig. 2(c)
we plotted p(v) (main panel) and distribution width B (inset)
as a function of Dθ for different values of the speed v0. One
notices immediately that:

(i) For very slow rotational relaxation, the width of the distri-
bution is almost independent of Dθ. In this regime, the self-
propulsion length lθ is much larger than the average effective
inter-particle distance ls, so that the particle free path cannot
exceed ls. The fitting parameter seems to obey the empirical
law, B = γ(D0 + αv2), with α a function of the packing fraction.
This result can be explained by comparing B with kTeff in eqn

(5), which we rewrite here as kTeff = γ(D0 + v0
2τθ/2). Upon

increasing ϕ, both the mean-free ballistic time τs = ls/v0 and
the mean-free diffusion time τD = ls

2/2D0 grow larger than the
persistence time τθ. As a consequence, τθ in the above
expression for kTeff should now be replaced by τ̄ = min{τs,τD}.
When the active suspension is so dense that D0 > v0ls/2, then
τ̄ = τD, so that the fitting parameter B depends quadratically on
v0 with α a function of ϕ.

On a closer look, one notices that α also weakly depends on
v0. This is because self-propulsion makes the colliding par-
ticles to occasionally overlap, thus slightly lowering the
effective ϕ value. The pair penetration length and, hence, the
effective particle size can be estimated by equating the self-pro-
pulsion force to the inter-particle repulsion.

(ii) In the opposite limit, lθ < ls, the active particles manage
to change their direction before colliding with other particles,
so that their inter-collisional dynamics is dominated by the
self-propulsion dynamics. They behave as if they were floating
in a thermal bath with the effective temperature of eqn (5).
The ensuing estimates of the distribution fitting parameter, B
= γ(D0 + v2τθ/2), drawn in the inset of Fig. 2(c) fairly agree with
the numerical data.

Fig. 2(b and c) [and ESI Fig. SM2†] also suggest that, under
the condition that v0

2 ≫ B, the most probable value of v, vmp,
approaches v0. Based on our argument of (i) for dense active
suspensions, this requires v0

2 ≫ γD0/(1 − α), with α = ls
2γ/4D0.

Of course, this estimate holds only for not too large γ values,
so that α < 1, i.e., for ls

2γ/4 < D0.
(iii) In the intermediate regime, the curves B versus Dθ

exhibit a maximum. Starting with ls ≪ lθ, as one increases the
rotational diffusion constant, self-propulsion enters gradually
into play by enhancing B. On the other hand, self-propulsion
effects disappear in the diffusive regime, lθ ≪ ls, where B
decreases with increasing Dθ. Not surprisingly, B appears to

Fig. 2 (a) Velocity distribution of non-interacting active JPs for different Dθ (see legends). The inset illustrates the effect of thermal noise for Dθ =
0.3. Symbols denote numerical simulation data; solid lines are the analytical estimates of eqn (6), main panel, and eqn (7), inset. The parameters used
are (unless reported otherwise in the legends): D0 = 0.03, v0 = 1, γ = 10, m = 1. (b) Velocity distribution of interacting self-propelled particles for
different packing fractions, ϕ. (c) Velocity distribution of interacting self-propelled particles for different Dθ. In the main panels (b) and (c), solid lines
represent the least-squares fitted 2D Gaussian distributions of eqn (8). The parameters used are (unless reported otherwise in the legends): v0 = 1, τθ
= 3.33, τγ = 0.1, r0 = 0.75, D0 = 0.01, ε = 1, ϕ = 0.7. Insets: (b) most probable velocity, vmp, versus packing fraction. Asymptotes, at ϕ → 0, vmp → v0
and for ϕ → 1, vmp ! ffiffiffiffi

B
p

are depicted by horizontal arrows. (c) Variance of the distribution eqn (8) as a function of Dθ for different values of v0 and
D0. Dotted lines are analytical curves corresponding to the effective temperature of eqn (5) (see text).
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reach its maximum in the intermediate regime for lθ of the
order of the mean inter-particle distance ls.

Finally, it should be noted that the fitting values of B have
been extracted by least-squares fitting. The fidelity of such fit-
tings has been assessed by computing the mean square
weighted deviation46 χv

2. It always returned values close to 1,
except for large v0. This deviation is noticeable for v0 = 4, where
the rotational diffusion is rather low (shown in ESI Fig. SM2†).

3.3. Velocity distribution in a binary mixture of active
particles

Let us consider now a mixture of active particles of two types.
Let us denote the Nw particles with fixed self-propulsion speed
vw, as weakly active, and the remaining Ns particles with tunable
self-propulsion velocity vs, as strongly active. A comparison of
velocity distributions of the weak (hollow symbols) and strong
(solid symbols) JPs in a binary mixture is shown in Fig. 3(a) for
different fractions ηs = Ns/N of the strong active particles. Plots
here correspond to situations where the system packing fraction
ϕ is quite large and the velocity distributions p(v) are of the
Maxwellian type, eqn (8). As to be expected, the plots in Fig. 3(a)
show that weak active particle distributions grow wider, and
their maxima shift to higher velocities, with increasing ηs. On
the other hand, the distributions of the stronger component
shrink and their maxima shift toward lower velocity values in
comparison with the single component system. This result
suggests an effective motility transfer from more active to less
active particles. To better characterize the underlying mecha-
nism, we estimated the distribution half-widths B for different
mixture compositions. The ratio Bw(ηs)/Bw(0) in the inset of
Fig. 3(a) grows linearly with ηs, its slope depending on the
thermal energy, kT = γD0, and self-propulsion speed of both JP
species. This behavior can be explained as follows. Since the
system is dense and ls ≪ lθ, self-propulsion only contributes to

the effective thermal motion of the system, see item (i) of
section 3.2. Adding up the average kinetic energy contribution
from both species and equating the result to the corresponding
prediction based on eqn (8), one can arrive at

Bi ηj

� �
Bi 0ð Þ ¼ 1þ αjvj2 � αivi2

γD0 þ αivi2

� �
ηj : ð9Þ

where {i,j} = {s,w} with i ≠ j. The above estimate rests on the
assumption that the self-propulsion contributions to the
kinetic energy in this regime are directly proportional to vi

2

with a proportionality constant αi. For ls ≪ lθ, both αi are
insensitive to the rotational diffusion constant Dθ, and weakly
depend on vi. In contrast, for ls ≫ lθ, αw = αs = γ/2Dθ.

To better interpret the mechanism of host–guest mobility
transfer, in Fig. 3(b) we compare the widths Bs and Bw of the
relevant velocity distributions. We simplify our analysis by
focusing on the parameter regimes where both mixture com-
ponents exhibit a Maxwellian velocity distribution. Fig. 3(b)
shows that Bw linearly grows as the fraction, ηs, of strong active
particles increases. By contrast, Bs decreases with increasing ηw.
Eqn (9) is useful to explain the linear dependence of both Bs
and Bw on ηs. It is apparent from both numerical simulations
and eqn (9) that in a binary mixture the velocity distribution of
the weak host depends not as much on its own self-propulsion
parameters but on the presence of the strong guest. Under the
Maxwellian conditions assumed here, vw

2 ≪ vs
2 and γD0 ≫

τθvw
2, one can easily relate the effective temperature of the

binary mixture to the distribution widths Bs,w as follows,

kTeff ¼ ð 1� ηsÞBwðηsÞ þ ηBsðηsÞ: ð10Þ
This estimate for Teff is in good agreement with the numeri-

cal results shown in Fig. 3(c). In view of the linear η depen-
dence of B, one would then expect Teff to be a nonlinear func-

Fig. 3 (a) Comparison of velocity distribution p(v) of weak (empty symbols) and strong (filled symbols) active particles with varying composition ηs
of the binary mixture. Note that solid (hollow) circles represent velocity distribution of strong (weak) active particles for the interacting single species
case. Solid lines correspond to eqn (8) where B is obtained from least-squares fittings. Inset plots depict the variation of distribution width of weak
JPs Bw as a function of the fraction of strong active particles, ηs = Ns/Nt. Thus, ηs = 0 means that all particles are weak and ηs = 1 that all particles are
strong. Dotted lines represent eqn (9) with the relevant best-fit parameters αs and αw. (b) Distribution widths of weak, Bw (empty symbols), and
strong active JPs, Bs (filled symbols), respectively versus ηs and ηw for different vw. (c) kTeff versus ηs for different vw: numerical data (symbols) are
compared with the analytical estimates of eqn (10) (dotted lines). The remaining model parameters are (unless reported otherwise in the legends): vs
= 1, Dθ = 0.3, τγ = 0.1, r0 = 0.75, D0 = 0.01, ε = 1, and ϕ = 0.61.
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tion of η. However, by inspecting eqn (9) and (10) one easily
concludes that, for the simulation parameters adopted in
Fig. 3(c), nonlinear corrections are negligible. As a result, the
effective temperature of the binary mixture grows (almost) line-
arly with the molar fraction of the guest particles. Moreover,
eqn (9) also hints at how the self-propulsion properties of the
host and guest particles impact Teff.

One often needs to know the fraction of weakly active par-
ticles whose speed exceeds a specified value, say vc. One can
calculate this quantity, χ(ηs,vc), directly from the velocity distri-
bution function of the less active JPs, that is

χ ηs; vcð Þ ¼
ð1
vc

p v; ηsð Þdv: ð11Þ

Thus, χ(ηs,vc) is the fraction of weakly active particles having
an instantaneous velocity greater than the cut-off velocity vc in
the binary mixture with Nw weak JPs. To clarify the role of vc,
we consider the kinetic model of reaction rate theory. As the
reactant particles collide with each other, only a certain frac-
tion of such collisions leads to the formation of the desired
product. For this purpose it is necessary that the energy of the
reactants at the moment of the impact exceeds a threshold
value, Ea, also known as reaction activation energy, which
corresponds to the cut-off activation speed, vc ¼

ffiffiffiffiffiffiffiffiffiffiffi
2mEa

p
.

Therefore, coming back to the problem at hand, it would be
desirable to know how the ratio χ(ηs,vc)/χ(0,vc) changes by
adding a certain amount of strongly active particles.

For the velocity distributions of eqn (8), such a ratio reads
as follows

χ ηs; vcð Þ
χ 0; vcð Þ ¼ exp � vc2

2
1

B ηsð Þ �
1

B 0ð Þ
� �� �

: ð12Þ

This quantity, namely the ratio of the number of weakly
active JPs with speed larger than vc to the same number, but in
the absence of strongly active JPs, is plotted in Fig. 4 for
different values of vc. Our simulations show that χ(ηs,vc)/χ(0,vc) is
a monotonically growing function of ηs; its growth rate increases
with increasing vc. These observations support the strategy dis-
cussed in section 1 aiming at enhancing the motility of weakly

active, or even passive particles, by adding to the system a small
fraction of strongly active particles as autonomous stirrers.

4. Effusion

In the previous section, we showed how adding a relatively
small fraction of highly motile microswimmers to a suspen-
sion of less motile microswimmers can considerably enhance
the overall motility of the mixture. This effect was demon-
strated in the presence of inertia. We consider now the limit-
ing case of overdamped, or massless, active particles. This
limit corresponds to low Reynolds numbers, a hydrodynamic
regime that applies to most microswimmers investigated in
the literature, both biological and artificial. This raises a
problem, because, as mentioned above, the velocity distri-
bution of massless particles is mathematically ill-defined. To
avoid this difficulty, in our simulations we computed an
alternative motility quantifier for the overdamped limit,
namely the effusion rate of the active JPs through a narrow
pore of the simulation box. The corresponding Langevin
equations in the highly damped situation are obtained by
ignoring inertia in eqn (2)–(4),

ẋi ¼
X
j

Fx
ij þ v0 cos θi þ

ffiffiffiffiffiffi
D0

p
ξxi tð Þ; ð13Þ

ẏi ¼
X
j

Fy
ij þ v0 sin θi þ

ffiffiffiffiffiffi
D0

p
ξyi tð Þ; ð14Þ

θ̇i ¼
ffiffiffiffiffiffi
Dθ

p
ξθi : ð15Þ

The effusion rate has been studied in depth to characterize
classical transport in constrained geometries.50 We define the
effusion rate of the strong (s) [weak (w)] JPs, Es (Ew), as the
number of s (w) particles exiting the simulation box per unit
time. In the case of a single-component system, we denote the
effusion rate by Em.

Let us consider the effusion rate Em(0) of a single species of
non-interacting JPs with ε = 0. In Fig. 5(a) we plotted a few
curves Em(0) versus v0 for different values of Dθ. For v0 → 0, the
effusion is controlled by thermal motion and, as expected, is
insensitive to v0. Effects due to self-propulsion become
appreciable only for values of v0 larger than the particle
thermal speed

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2D0Dθ

p
. Beyond this critical value, the effusion

rate grows first quadratically with v0 and then saturates toward
an asymptotic value. The rising branches occur for lθ ≪ xL,yL.
Indeed, for very short rotational relaxation times τθ, when it
can safely be assumed that particles diffuse in a thermal bath
with effective constant Deff, the effusion rate through a narrow
pore of effective width Δ ≪ xL,yL, reads as follows

50–52

Ei ¼ πρiDeff ln
xL þ yL

Δ

� �h i�1
: ð16Þ

Here, the suffix i refers to either s or w, ρi denotes the
number density of the mixture component i, and Deff is now
D0 + v0

2/2Dθ – see eqn (5). This estimate for Ei(0) agrees fairly
closely with the simulation results reported in Fig. 5(a). In the

Fig. 4 The ratio, χ(ηs,vc)/χ(ηs,vc) versus ηs for different vc. The parameters
used are (unless mentioned in the legends): vs = 1, vw = 0.2, Dθ = 0.3, τγ
= 0.1, r0 = 0.75, D0 = 0.01, ε = 1, and ϕ = 0.8.
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opposite rotational regime, when lθ ≫ xL,yL, the slow direction
changes of the self-propulsion velocity tend to suppress the
particle effusion through the pore. Assuming that τθ is much
larger than any other system time scale, the effusion rate can
be approximated by51

Eið0Þ � xLyLρiDθ=π: ð17Þ
This asymptotic estimate has been marked in Fig. 5(a) by

horizontal arrows.
The effusion rate of interacting self-propelling particles

with ε > 0 is plotted in the inset of Fig. 5(a). This figure shows
the v0-dependence of the effusion rate relative to the corres-
ponding rate in the absence of interaction, Em(ε)/Em(0), for
several values of Dθ. The system we simulated here was quite
dense (ϕ = 0.66), so that the self-propulsion mechanism

becomes strongly constrained, being ls ≪ lθ. Like in non-inter-
acting systems, the effusion rate is insensitive to self-propul-
sion with low v0. More remarkably, with increasing v0 the rela-
tive effusion decreases.

We attributed this result to the jamming of the interacting
particles caused by self-propulsion in the vicinity of the box
walls. Snapshots of the mixture configurations [see the inset of
Fig 6(b) and ESI Fig. SM3†] corroborate this assertion. The
jamming effect becomes noticeable as soon as the self-propul-
sion length becomes larger than the confining box. Therefore,
the appearance of such an effect and minima of Em(ε)/Em(0)
versus v0 are inversely related to the rotational diffusion [see
the inset of Fig. 5(a)]. By the same token, one expects that both
the decaying and raising branches of the curves Em(ε)/Em(0)
versus v0 are quite insensitive to the packing fraction, ϕ, in

Fig. 5 (a) Effusion rate Em(0) of non-interacting JPs with ε = 0, as a
function of the self-propulsion velocity v0 for different rotational
diffusion coefficient Dθ. Dotted lines are the predictions based on eqn
(16). Horizontal arrows indicate the corresponding rate upper bound,
eqn (17), for large τθ = 1/Dθ. Inset: The effusion rate ratio Em(ε)/Em(0) for
ε = 0.1 and different Dθ (see legends). (b) Effusion rate Em(ε) of interact-
ing self-propelled particles versus v0 for ε = 1 and different packing frac-
tion ϕ. Inset: Em(ε)/Em(0) versus v0 for the same set of parameters as the
main panel. Other simulation parameters for main panels and inset: xL =
yL = 10, Δ = 0.5, r0 = 0.5, D0 = 0.03, and Nm = 80.

Fig. 6 (a) Effusion rates Es (filled dots) and Ew (empty dots) versus vs for
binary mixture with ηs = 0.5 and different values of Dθ (see legends).
Inset: Effusion ratio of stronger component, Em(ε)/Em(0) versus v0 for
different ηs and Dθ = 1. (b) Effusion rates Es (filled dots) and Ew (empty
dots) versus vs in a binary mixture for Dθ = 1 and different ηs (see
legends). Inset: Snapshot of binary mixture with ηs = 0.75, Dθ = 1 and
different vs [0.025 (top-left), 6.5 (top-right), 100 (bottom-left), and 800
(bottom-right)]. Filled and empty circles represent strong and weak JPs,
respectively. Other simulation parameters for main panels and insets: vw
= 1, ε = 1’xL = yL = 10, Δ = 0.5, r0 = 0.5, D0 = 0.03, and Nm = 80.
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agreement with the data plotted in the inset of Fig. 5(b). In the
very strong self-propulsion regime, both Em(ε) and Em(0) tend
to saturate [see Fig. 5(b)]. However, Em(ε) saturates at larger v0
values than in the non-interacting case. A plausible expla-
nation is suggested by a comparison of the mixture snapshots.
The particles far away from the walls are more mobile and con-
tribute more to the effusion rate; they are not jammed against
the walls and “see” a larger opening-width to compartment-
size ratio, Δ/yL. In contrast, particles jammed against the walls
tend to clog the box opening. However, the fraction of the
more mobile particles drops fast with increasing v0, thus
leading to plateaus in the effusion rate in the limit v0 → ∞.

Fig. 5(b) shows that the clogging mechanism works even at
a low packing fraction, though its impact on effusion is
reduced. More remarkably, the excluded volume effect
becomes apparent for v0 → 0: the interacting particles become
more effusive than the non-interacting ones. In a dilute solu-
tion, this effect persists until the self-propulsion length grows
larger than the average inter-particle spacing. This explains
why, in the presence of strong self-propulsion, the computed
effusion ratios still grow with v0, though quite slowly.

Fig. 6(a) illustrates the dependence of the effusion rates of
the two active mixture components on their self-propulsion
parameters, v0 and Dθ. The mixture is of 1 : 1 molar ratio of
strongly (s) and weakly (w) active particles. We kept the self-
propulsion speed vw fixed and varied vs from values lower to
values higher than vw. First of all, we notice that the effusion
rates of both JP species are almost insensitive to the rotational
diffusion for vs → 0, while developing a strong dependence on
Dθ in the opposite limit, vs → ∞. For vs > 10vw, at Dθ = 1 the
effusion rate is about one order of magnitude larger than that
at Dθ = 0.1.

In Fig. 6(b), we examine the consequences of gradually
increasing the fraction of guest particles for different values of
their self-propulsion speed, vs. While all effusion plots exhibit
the same general behavior as in Fig 6(a), a few additional fea-
tures are remarkable:

(i) The effusion rate of the strongly active JPs keeps increas-
ing, but more slowly than Em(0) in Fig. 5(a), due to their inter-
action with the less active JPs. In such a limit, the most active
particles tend to push the less active ones against the box
walls. Moreover, like in one component systems, clogging
effects have great impact on the effusion of both the weak and
strong active components.

(ii) In contrast, the effusion rate of the weak JPs remains
unchanged for vs up to vw; upon further increasing vs, it goes
through a maximum in agreement with the mechanism of
effective motility transfer. Again, for very large self-propulsion,
vs ≫ xLDθ,xLDθ, strongly active JPs jam against the container
walls, thus pushing the weaker JPs inside [see snapshots of
Fig. 6(b) and ESI Fig. SM4†]. Accordingly, the weaker JPs have
a small chance to escape through the opening so that effusion
becomes drastically suppressed. Moreover, no decaying branch
of Ew vs. vs is detectable at low ηs. This happens because very
few strong JPs cannot possibly confine all weak particles in the
box interior.

In conclusion, we stress that adding a small amount of
strongly active JPs does suffice to enhance the effusion of slug-
gish active JPs, but an excess of them can produce the opposite
effect! Recall that, as illustrated by our simulation snapshots,
the two components of an active binary mixture can separate
into two distinct phases, when the self-propulsion length of
one component is much larger than the size of the container
and the other one much shorter, that is, for vs/Dθ ≫ xL,yL ≫
vw/Dθ. However, phase segregation should be avoided for better
motility transfer.

As shown in Fig. 5(b), there is a window of tunable vs,
where the effusion rate of the w particles is enhanced by 2 to 7
times, depending on their rotational relaxation time and the
composition of the binary mixture. Also, the span of this
window is sensitive to the persistence length of self-propelled
motion. This striking result confirms that, even in the absence
of inertia, the motility of the more active microswimmers can be
effectively transferred to the less active microswimmers.

In our numerical analysis we assumed the pore to be cen-
tered in one side of a square-shaped simulation box. However,
sliding boundary conditions as the JPs move against the cavity
walls can affect their average effusion rate. Our simulation
shows that this may become an issue only at zero temperature.
As a matter of fact, thermal fluctuations assist the escape
mechanism by enhancing particle diffusion along the bound-
aries, thus suppressing possible effects related to the cavity
geometry and the actual pore location. To verify this point, we
simulated the effusion rate (not shown) for a modified box
geometry, whereby the escape pore was moved toward one
corner; for the simulation parameters of Fig. 5 we detected no
appreciable variations of the relevant effusion rates.

5. Conclusions

We have analyzed the effects of active nano/micromotors with
tunable high motility in a suspension of particles whose moti-
lity cannot be directly controlled. We showed that by injecting
a small fraction of more active Janus particles one can substan-
tially enhance the motility of other less active species. Such a
motility enhancement was demonstrated for two typical cases:
particles with weak inertia, by studying the velocity distri-
butions of both species, and for overdamped particles, by com-
paring their effusion rates.

Our numerical study proves that in dense binary mixtures
of active particles, the width of the velocity distribution of the
less active particles linearly grows with the fraction of more
active particles. Thus, the number of particles moving with
larger velocity is considerably enhanced. Moreover, for an
appropriate choice of the mixture parameters, in the over-
damped regime the motility transfer from the more active to
the less active subsystem can raise the effusion rate of the
latter by 2 to 7 times.

Such a technique of motility control can be implemented in
a large variety of biological and medical situations, where one
wishes to enhance the motility of insufficiently active nano- or
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micro-particles. For example, in the case of weakly motile
sperm cells, our proposal has advantages over other similar
proposals (e.g., using self-propelled metallic rotors trapping
sperm cells53), whereby it is substantially less damaging to
living swimmers and much easier to implement, as it does not
require the fast guest swimmers to localize and trap individual
host particles one by one. Another suggestive application of
this method of motility transfer is to speed up a chemical reac-
tion involving slowly diffusing nano-particles, by adding a
small amount of more active neutral particles as stirrers.54
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