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Abstract: We show how machine learning techniques can

be applied for the classification of topological phases in

finite leaky photonic lattices using limited measurement

data. We propose an approach based solely on a single

real-space bulk intensity image, thus exempt from compli-

cated phase retrieval procedures. In particular, we design a

fully connected neural network that accurately determines

topological properties from the output intensity distribution

in dimerized waveguide arrays with leaky channels, after

propagation of a spatially localized initial excitation at a

finite distance, in a setting that closely emulates realistic

experimental conditions.

Keywords: topological photonics; machine learning; non-

Hermitian photonics; waveguide arrays

1 Introduction

Machine learning holds great promise for solving a variety

of problems in nanophotonics. Rather than attempting to

model the system of interest exactly from first principles

(e.g., by solving Maxwell’s equations), machine learning
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techniques aim to discover or reproduce key features of

a system by optimizing parametrized models using a set

of training data [1]. A trained model can often predict the

properties of a device faster than conventional simulation

techniques [2], [3]. Machine learning can also be used to

solve the inverse problems of how to design a nanopho-

tonic structure with desired functionalities, and how to

reconstruct the parameters of a device using indirect mea-

surements [4]–[8]. The latter is particularly important for

nanophotonic devices, since structural parameters may dif-

fer substantially from the nominal design due to fabrication

imperfections.

Recently developed topological photonic systems pro-

vide a useful testbed for better understanding the capa-

bilities and limitations of machine learning approaches

in nanophotonics [9], [10]. Topological photonic structures

host robust edge states which are protected against cer-

tain classes of fabrication imperfections. This robustness

is explained by the bulk-boundary correspondence, which

relates the existence of localized boundary modes to non-

local topological invariants expressed as integrals of a con-

nection or curvature of the bulkmodes [11].While the direct

measurement of a topological invariant entails the recon-

struction of both the intensity and phase profiles of the bulk

modes of a structure, machine learningmodels can perform

supervised classification of topological phases using a lim-

ited set of observables [9].

In general, the performance of machine learning

depends on both the quality and quantity of the data used

to train the model. Supervised learning approaches, such as

deep neural networks, typically require a huge quantity of

labelled training data, which may be hard to come by. This

has motivated recent interest in the use of unsupervised

learning techniques such as manifold learning, which do

not require labelled training data to distinguish topolog-

ical phases [12]–[16]. Broadly speaking, these techniques

are sensitive to sharp changes to observables that occur

in the vicinity of topological phase transition points, and

thus perform best when one has access to measurements

from a large set of different model parameters, which is

most feasible when the parameter controlling the phase

transition is continuously tunable [14].
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The above methods also rely on prior knowledge of the

characteristics of the physical system (such as its sizes, its

internal structure and the parameters of the initial excita-

tion), therefore, being not in line with a realistic experimen-

tal framework. Data quality and feature selection can have

a significant impact on the machine learning-based recon-

struction of topological phase diagrams [17]. For example,

missing data arising from incomplete measurements or

local perturbations to the data can act as adversarial attacks

that fool neural network-based classifiers of topological

phases intomaking incorrect predictions [18]. The existence

of adversarial examples highlights the importance of taking

platform-specific uncertainties and disorder into account in

the selection and design of machine learning classifiers of

topological phases.

The aim of this study is to investigate how common

obstacles encountered in the characterization of nanopho-

tonic devices – disorder, imperfect alignment, and access

to a limited set of output observables – affect the perfor-

mance ofmachine learning-based classification and cluster-

ing methods for topological phases. Specifically, we focus

on the case of one-dimensional waveguide arrays which

have provided a versatile platform for the investigation of

topological effects in nanophotonics [19]–[21], considering

the problem of predicting the existence or absence of edge

states based on bulk intensity measurements of a finite

lattice, i.e., measurements do not include edges of the lattice.

First, we show that while curated input data can improve

the performance of clustering, ambiguity in the training

data (in the formof uncertainty in the alignment of the input

waveguide) leads to incorrect cluster assignments, requir-

ing the use of supervised learning techniques. We compare

the performance of several supervised classification mod-

els, including a convolutional neural network, demonstrat-

ing the ability to predict the existence of different edge state

configurations with high accuracy using bulk intensitymea-

surements. Finally, we show the feasibility of transfer learn-

ing for sufficiently weak disorder strengths, i.e. maintaining

accurate predictions of topological edge states using amodel

trained on disorder-free data. Our numerical results reveal

the feasibility using machine learning techniques to dis-

tinguish nanophotonic topological phases using incomplete

measurements.

The outline of this article is as follows: Section 2 reviews

the properties of the leaky Su-Schrieffer-Heeger (SSH) tight

binding model and introduces the datasets which will be

used in our study. Section 3 presents the results of unsu-

pervised clustering according to the edge state configu-

ration using the t-distributed stochastic neighbor embed-

ding (t-SNE) method. We compare the performance of

different supervised learning techniques in Section 4. As an

example of the feasibility of transfer learning we consider

in Section 5 the classification performance for disordered

waveguide arrays. We conclude with Section 6. The Supple-

mentary Materials contain additional details on the tight

binding model parameters, training data, and the employed

machine learning models.

2 Model and dataset preparation

We consider light propagation in waveguide arrays gov-

erned by the paraxial wave equation,

i
𝜕

𝜕z
+ 1

2k0
Δ⊥ + k0nL(r⊥)

n0
 = 0, (1)

where  is the envelope of the optical wavepacket prop-

agating along the z (waveguide) axis, r⊥ = (x, y) are the

transverse coordinates, k0 = 2𝜋n0∕𝜆 is the wave number,

nL(r⊥) is a perturbation of the refractive index forming the

waveguide lattice, and n0 is the background refractive index

of the medium.

Formally, the final state after a propagation distance L

can be obtained by projecting the input (z = 0) state (0, r⊥)

onto the propagation-invariant modes of the array 𝜙n(r⊥)

with propagation constant 𝛽n, i.e.

(L, r⊥) =
∑
n

Ane
−i𝛽nL𝜙n(r⊥), (2)

where An = ∫ dr⊥𝜙
∗
n
(r⊥)(0, r⊥) are the amplitudes of the

modes excited at the input (z = 0). The intensity of the final

state

|(L, r⊥)|2 =
∑
mn

AnA
∗
m
𝜙n(r⊥)𝜙

∗
m
(r⊥)e

i(𝛽m−𝛽n)L (3)

is sensitive to both the modal excitation amplitudes An and

the propagation length L, so intensity measurements at a

single L are generally insufficient to uniquely reconstruct

the modal profiles, propagation constants, and topological

invariants of the system.

Conventional schemes for predicting topological prop-

erties of the modes 𝜙n(r⊥) based on measuring field dis-

tributions (both amplitude and phase) require either the

large L limit [22], [23] or measuring the evolution as a

function of z [24], [25]. On the other hand, machine learn-

ing approaches can in principle infer topological prop-

erties using intensity measurements at a fixed propaga-

tion distance [26]–[28], at least given access to a sufficient

amount of high-quality training data. However, the latter

requires information about the symmetries, including the
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Hamiltonian structure and geometry. We will employ no a

priori knowledge of full lattice geometry in our approach.

As a specific example, in the following we consider

the leaky Su-Schrieffer-Heeger waveguide lattice shown in

(A)

(D) (E)

(F) (G)

(B) (C)

Figure 1: Photonic lattice platform. (A) Schematic of a dimerized lattice

of single-mode dielectric waveguides with tunable radiative losses and

a possible experiment: the waveguide indexed by i is excited at the input

as indicated by a yellow circle, the intensity distribution is measured

in the central area of Nc elements at the output of the sample (the gray

rectangle) to generate a dataset for learning the topological properties.

(B) Tight binding model visualization of the photonic lattice in (A). The red

and brown circles depict the main array – a one-dimensional dimerised

SSH-like array of coupled elements. Gray circles illustrate auxiliary arrays

constituting leaky channels attached to the main array. The differing

dashing between the elements denote different coupling strengths.

(C) Band structures of the main (dashed red lines) and auxiliary (gray

solid line) arrays in the designed leaky photonic lattice inscribed in glass.

(D) Different configurations of the two edges in a finite SSH lattice.

(E) The output intensity distribution (colored) overlaid with the proposed

lattice cross-section. (F, G) Intensity distribution, numerically obtained

in paraxial modeling at the output facet of the waveguide array for (F)

the Hermitian (lossless) lattice and (G) the lattice with leaky channels.

Figure 1(A), a dimerized array composed of N leaky waveg-

uides with elliptical cross-sections of semi-axes ax,y induced

by the refractive index perturbations of magnitude nA [23].

With increasing coupling between the structural elements,

some supermodes of the lattice become radiative, acquiring

a finite lifetime. The radiation losses can be fine-tuned by

optimizing the effective potential of the environment and

radiation channels. This will allow us to study how changes

to the input dataset affect the performance of machine

learning-based classification of the different topological

phases of this lattice. One possible implementation of the

radiation channels is by coupling themain array to auxiliary

arrays, each consisting of Nenv equidistantly spaced single-

mode waveguides with an index contrast nB, as shown in

Figure 1(B and C). Examples of feasible parameters close

to those employed in the experimental work Ref. [29] are

given in Table 1. Ideally, Nenv should be sufficiently large to

prevent back-reflection from the ends of the environmental

array. We set Nenv = 14 that ensures experimental feasibil-

ity in terms of the overall sample’s size and the propagation

distances.

Provided only one band of the main array overlaps

with the dispersion curve of side-coupled leaky channels,

an initially localised excitation with a broad transverse

wavenumber spectrum would undergo gradual radiation

and decay during propagation. Therefore, only the top

branch will remain populated after a certain propagation

distance, making it possible to calculate the topological

invariant of the band using the projector of the output

Table 1: Parameters of the designed leaky photonic lattice: semiaxes of

elliptical single-mode waveguides ax,y ; center-to-center distances d1,2
between waveguides along the vertical axis; center-to-center distance 𝜌

between waveguides along the horizontal axis. Arrays of auxiliary wave-

guides are set aside from the main array at a distance d𝜖 . Here, 𝜆 is the

operating wavelength, n0 is the background refractive index of silica

glass, nA,B are the perturbations of the refractive index inside the wave-

guides of the main array and arrays of the environment, respectively.

Parameter Value

ay 5.4 μm
ax 4 μm
d1 17 μm
d2 23 μm
𝜌 17 μm
d𝜖 19 μm

n0 1.47

nA 1.2 × 10−3

nB 1.1 × 10−3

𝜆 1030 nm
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field distribution following the method used in Ref. [23].

However, this recipe generally requires knowing the

complex-valued field, whereas phase retrieval could be

a challenging task. For example, the commonly used

scheme to recover the phase is iterative Gerchberg–Saxton

algorithm. It relies on the complex-valued field by taking

the intensitymeasurements in the real-space (picture) plane

and the diffraction plane. The primary concern with this

algorithm, aside from its high computational demand and

resolution requirements on data, is selecting the initial

guess appropriately.Moreover, phase retrieval does not con-

vergewell in one-dimensional case and behaves evenworse

for discrete systems. We will demonstrate the possibility

to unravel topology of the sample lattice based solely on

the output intensity profile in a roughly center-positioned

floating windowwith the use of machine and deep learning

methods.

To simplify propagation simulations, we constructed

the tight binding model (TBM) corresponding to the

schematic in Figure 1(B) and determined parameters of the

effective Hamiltonian in compliance with the paraxial mod-

eling,

i
𝜕𝜓m

𝜕z
= Ĥ0𝜓m + 𝜖cm1, (4a)

i
𝜕cm1
𝜕z

= Δcm1 + 𝜖𝜓m + Jenvcm2, (4b)

i
𝜕cml
𝜕z

= Δcml + Jenv(cml−1 + cml+1), l = 2,…Nenv − 1,

(4c)

i
𝜕cml
𝜕z

= Δcml + Jenv(cml−1), l = Nenv, (4d)

where 𝜓m and cml are the amplitudes of the optical field

in the main array and in the leaky channels, respectively,

Ĥ0 is the N × N Hamiltonian of the main array, made of

the alternating nearest-neighbor (NN) coupling coefficients

J1,2, 𝜖 is the coupling strength between the main array

and the environment, Jenv is the NN hopping coefficient

in leaky channels, and Δ is a detuning of the propagation

constants.

The dispersion characteristics of the disconnected (at

𝜀 = 0) uniform lattices representing the main (SSH) array

and environment (env) are given by

𝛽
(±)
SSH

(𝜘) = ±
√

J2
1
+ J2

2
+ 2 J1 J2 cos𝜘, (5a)

𝛽env(𝜘) = Δ+ 2 Jenv cos𝜘 (5b)

and plotted in Figure 1(C). Here we introduced 𝜘

as a variable 𝜘 = 𝜅 yLy or 𝜘 = 𝜅xLx along y and x

directions, respectively [see detailed derivations in

Section I in Supplementary Materials]. As deliberately

ensured by design, the environmental array’s dispersion

curve fully intersects the lower band of the SSH lattice,

meaning that only the lower band becomes lossy. Given

dimerization, the main array is known to be topologically

nontrivial for J1 < J2 and topologically trivial for J1 > J2.

To prepare a dataset, the TBMequations (4)were solved

numerically. At the input, we excite a single waveguide des-

ignated as i in Figure 1(A). The use of a single-element input

is justified by its wide spectrum, which allows populating

both bands of the lattice. By iterating over parameters of the

photonic lattice in the ranges indicated in Table 2, we accu-

mulated data for the analysis of topology of the main array.

We take into account that the lattice ends can be different,

so that N can be odd. We select a sample window composed

of a finite number Nc of the central waveguides in the main

array. Thereby, we aim to solve the classification problem

for a finite lattice sample, i.e., to distinguish between differ-

ent configurations of the two edges based on the intensity

distribution measured at the output of Nc central waveg-

uides. The edge of the SSH main array can be either trivial

(0) or non-trivial (1), depending on the lattice termination by

strong orweak bond. The nontrivial edge supports amidgap

topological edge state. This yields four classes in total: 00,

11, 10, 01. The four possible configurations are visualized in

Figure 1(D): 01 (left trivial, right non-trivial), 11 (left non-

trivial, right non-trivial), 10 (left non-trivial, right trivial), 00

(left trivial, right trivial). Note that such setup of the problem

is different from that in Ref. [23], where both edges of the

lattice had the same termination. Also, to calculate the field

projector, the field distribution over all elements of themain

array was used, that is Nc = N with N even.

Table 2: Ranges of parameters used in data set preparation. Average

values of the listed TBM parameters correspond to the physical

quantities in Table 1, as established in paraxial modeling. k = 2, p = 1 in

the nontrivial lattice ( J1 < J2), and k = 1, p = 2 in the trivial lattice

( J1 > J2). While preparing the datasets, J1,2 were uniformly sampled from

within the specified intervals for each vector.

Parameter Range

Jk [1.5; 2]

J p [0.4; 0.6]

Jenv [1.7; 2]

𝜖 [0.8; 1]

Δ [−3.3;− 3.5]

L [2.6; 10.6]

N [20; 26]

Nenv 14

Nc 16
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Our previous work [23] presented a proposal for calcu-

lating the topological invariant (Zak phase) for this lattice

(of classes 00 or 11) using the field projector of the out-

put distribution. This procedure is summarized in Figure 2.

By analyzing the complex-valued field distribution [note

Figure 2(C and D) only shows the intensity, with remark-

able differences apparent in the initial evolution stage and

near the edges], we compute the Zak phase, which asymp-

totically approaches 𝜋 in the nontrivial configuration [see

Figure 2(A)] (the orange curve approaches the black dot-

ted line), provided the leaky channels are introduced. At

distances 4 cm < z < 9 cm the upper band is completely

depopulated as a result of leakage. This depopulation is

also evident in the total wavepacket norm, which con-

verges towards 1∕2. However, when the propagation dis-

tance is increased beyond z > 9 cm, reflections occur from

the ends of the finite environment array and the main

lattice, resulting in an increase in the total wavepacket

norm [see Figure 2(B)], rendering the method inapplicable.

Thus, accurate reconstruction of the topological invariant

(A) (C)

(B) (D)

Figure 2: Propagation dynamics. (A, B) Evolution characteristics of the

field in the main array in the lattice with fixed parameters obtained in the

TBM of the nontrivial SSH array with (gold curves) and without (green

curves) leaky channels. The Zak phase at 4 cm < z < 9 cm converges to

the quantised 𝜋 value, provided Nenv = 14 elements in leaky channels.

(C, D) Field evolution in N elements of the main array assembled in

a trivial (C) and nontrivial (D) configuration with fixed parameters of

the lattice. The gray line on the right side marks the area of Nc central

waveguides, the intensity of which is fed to the input of the neural

network.

requires either a large lattice or a well-controlled propaga-

tion length to avoid reflections off the ends.

3 Unsupervised learning

To begin, we perform the preliminary analysis of the

prepared datasets using the t-SNE (t-distributed stochastic

neighbor embedding) method [see Section II in Supple-

mentary Materials]. t-SNE is a nonlinear dimensional-

ity reduction algorithm which learns a low-dimensional

embedding of the input data; pointswithin the input data set

that are close to each other will remain close to each other

in the embedded space [30]. Ideally, a vector will be most

similar to others obtained from the same lattice configura-

tion, resulting in visible clustering in the low-dimensional

embedding.

In this approach, we work with the intensity distri-

bution within Nc = N elements (N = 22 or 23, to be more

specific), and assume that the pumped waveguide can

be shifted from the center of the lattice. Figure 3 shows

t-SNE maps of the system with fixed L = 7.6 cm, N = 22 (23)

and two different positions of the initially excited waveg-

uide. The distributions in Figure 3 represent the clustered

embeddings of the high-dimensional data points in a lower-

dimensional space, generated using t-SNE. These embed-

dings visualize the separability and distribution of the data

clusters. In the Hermitian case (leakage disabled), the dif-

ferent classes become mixed up in the embedded space;

whereas in the case of a lattice with leaky channels, they

do not. This qualitatively agrees with the theory in Ref. [23],

specifically that the different phases will exhibit distinct

intensity distributions in their bulk.

However, as soon as we introduce uncertainty, such

as the position of the initial excitation, the topological

classes are no longer clearly separable: in the Hermi-

tian case different classes become mixed up [Figure 3(C)],

whereas in the leaky lattice too many clusters are obtained

[Figure 3(F)]. Consequently, unsupervised methods are no

longer applicable.

Figure 4 presents the statistic analysis of the data used

for (C, F) panels of Figure 3. This visualization shows that

classes 01 and 00, 10 and 11 can be grouped pairwise.

However, the classes with dissimilar edge topologies (01

and 10) are differentiated from the classes with the iden-

tical edge topologies (00 and 11) by odd N , due to distinct

input vector lengths (the 23th waveguide for which case

is shown shaded). This postprocessing also reveals signif-

icant overlaps of the intensity bars for 00 and 11 classes

in each waveguide of the Hermitian SSH lattice, while

the bars overlap less in the leaky lattice forming shifted
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Figure 3: t-SNE maps of the system having 4 topological classes

depending on its 2 edges: (A–C) Hermitian lattice, (D–F) lattice with leaky

channels. The waveguide excited at the input is indexed by i. (A, B, D, E)

correspond to the case of single-waveguide excitation: (A, D) i = 11 is

odd, (B, E) i = 12 is even, (C, F) the excited waveguide is randomly chosen

within a dimer. For each point in the two-dimensional parameter space

there is a corresponding intensity distribution vector of dimension

N = 22 (or N = 23), depending on the topological class. The four classes

are color-coded: 00 (blue), 11 (red), 10 (green), 01 (black).

dimerized patterns, a feature to be noticed by the neural

network.

4 Supervised learning

For supervised classification of the four topological classes,

we apply machine (K-nearest neighbors (KNN), support

vector machine (SVM), decision tree) and deep (multi-

layer perceptron (MLP), convolutional neural network

(CNN)) learning methods (see details in the Supplemen-

taryMaterials, Section III). Thenumerical experimentswere

carried out with varying parameters: propagation distance

L, total number of waveguides N , number of the central

waveguides in a sample window Nc. The input waveguide

i can be shifted by 1 from the center of the array, accord-

ing to the expression ceil(N∕2+ l), where l can be 0 or 1.

For each L we obtain a dataset of 32000 intensity vectors.

Accordingly by a parameter, subsets from thewhole data set

can be grouped. Let us examine the accuracy of classifica-

tion depending on different parameters. The metric we use

for this non-binary classification problem is the accuracy,

defined as the percentage of correct model predictions,

Accuracy =

n∑
i=1

𝟙[pi = yi]

n
,

(6)

(A) (B)

Figure 4: Statistical characteristics of intensity distributions in wave-

guides. The datasets were prepared for the Hermitian (A) and leaky (B)

cases assuming two possible positions i = 11, 12 of the initial excitation

at L = 7.6 cm. The mean value is indicated by markers in the middle

of horizontal lines, while the standard deviation is represented by

the borders of the lines. The classes are color-coded: 00 (blue crosses),

11 (red circles), 01 (black right-facing triangles), 10 (green left-facing

triangles). The total number of waveguides N is 22 (even) for classes

00 and 11, and 23 (odd) for classes 01 an 10.

where pi and yi are the predicted and the correct answer,

respectively, and 𝟙 is an indicator function equal to one if

the condition is met and zero otherwise.

Figure 5(A) illustrates how the accuracy of the super-

vised learning techniques varies with the parameter L. The

accuracy increases as the propagation distance increases.

When the value of L is small, theoretical predictions

cannot distinguish between different topological phases,

and all methods show similar accuracy plateaus in their

graphs. Further, the accuracy of machine learning methods

increases with increasing L, see Figure 5(A). At the same

time, the theoretical curve for the Zak phase in the non-

trivial case ceases to converge to the quantized invariant

value 𝜋 for L = 10.6 cm [see Figure 2(B)], while the power
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(A)

(B)

Figure 5: Supervised machine learning for determining topological

classes. (A) Accuracy of supervised learning methods as a function

of the propagation distance L. (B) Scheme of the convolutional neural

network, which takes the intensity distribution at z = L as the input and

determines topology of the lattice edges, Nc = 16.

in the main array tends to grow and exceeds one half

[see Figure 2(A)]. This is explained by reflection from the

boundaries of leaky channels, as the field returns back to

the main array. The requirement to know both the intensity

and phase at the output in themethod of Ref. [23] is replaced

by statistical information from dynamics, but only intensity

distributions at fixed L.

Machine learning methods perform better for larger L.

This may be due to the fact that, as soon as the radiation

reaches the edges, to distinguish the trivial case from the

non-trivial one, we can consider not only bulk properties

but also the edges themselves, and machine learning meth-

ods allow us to take this effect into account. For instance, the

trivial and non-trivial cases are even visually distinguish-

able in the dynamics shown in Figure 2(C and D): in the

non-trivial case the bulkmodes poorly couple towaveguides

at the edges. Note that ifwe increase thenumber of auxiliary

waveguides Nenv, the theoretical power curve will exhibit

convergence to 0.5, but the reflection off the main array

edges will still manifest at larger propagation distances.

Thus, neural network methods are applicable in a wider

range of cases than the theoretical scheme based on the

projector calculation.

Based on results summarised in Figure 5(A), we con-

clude that classical machine learning methods show lower

(A)

(B)

Figure 6: Analysis of MLP accuracy. (A) Accuracy of classification by deep

learning methods depending on parameters: the total number of

waveguides N and the number of the central waveguides Nc involved in

the training. (B) Theoretical dependence of the Zak phase on the

propagation distance and Nc in the nontrivial lattice of N = 22 elements.

accuracy compared to neural networks and support vector

machine (SVM). One of the two most promising models, the

MLP method, was chosen for more thorough examination

in Figure 6.

As noted above, training was held using Nc < N

central waveguides. Figure 6(A) shows the dependence of

the classification accuracy on the number of central waveg-

uides while in training batches all L were involved. In the

initially proposed theoretical scheme, we calculated the

field projector for Nc = N elements, but we can formally

calculate it for anyNc < N , as shown in Figure 6(B). The Zak

phase is seen to converge better to the correct quantised

value for larger Nc, and this condition is also necessary

to increase the accuracy of machine learning algorithms:

in Figure 6(B) the precision increases as the Nc∕N ratio

increases.

To better understand the performance of the super-

vised classification approach at distinguishing the different

edge types, we compare topological SSH lattice with even

number of elements and its non-topological counterpart,

where dimerization is stipulated by the alternating differ-

ence in propagation constants (Δ1 andΔ2 = −Δ1), whereas



278 — E. Smolina et al.: Identifying topology of photonic lattices with machine learning

(A) (B)

(C) (D)

Figure 7: Comparing machine learning classification for topological and

non-topological lattices. (A) Schematics of the topological (upper row)

dimerized array and the non-topological (lower row) dimer lattice with

defect potentials Δ̃1,2 at the edges. (B) The accuracy of the neural

network trained for the non-topological case for different values of the

edge defect detuning q1, introduced as Δ̃1,2 = Δ1,2(1− q1), and different

propagation distances L = 7.6 cm (red dots), L = 8.6 cm (blue left-facing

triangles), L = 10.6 cm (black right-facing triangles). For comparison,

the colored horizontal lines depict the accuracy in the topological case for

the corresponding L. (C) The band structure of the finite non-topological

lattice depending on the defect detuning, at the fixed number of

elements within the main array N = 22. The shading shows bands for all

possible coupling coefficients, J, and detunings,Δ1 = −Δ2, that were

utilized to generate the datasets. (D) Profiles of the modes bound to the

ends of the non-topological lattice. Colors and shapes of the markers in

(C) in the representative spectral positions correspond to the profiles

in (D).

the coupling between neighboring elements is uniform and

equal to J, as schematically shown in Figure 7(A). To pre-

pare the corresponding datasets, parameters of the non-

topological lattice (Δ1 and J) are chosen such that its band

structure coincides with the topological one (see Supple-

mentary Materials, Section I). We introduce trivial edge

defects as detunings of the propagation constant in the edge

elements. Thereby, the defect potential for the left end is

Δ̃1 = Δ1(1− q1), whereas the defect potential for the right

end is Δ̃2 = Δ2(1− q2).We compare the accuracy of the neu-

ral network at three propagation distances [see Figure 7(B)]

for the topological SSH array and non-topological arraywith

the edge defects in distinguishing the two classes: both edges

either support confined solutions (class 11) or not (class 00).

We find that for small amplitudes of the defect the accuracy

for the case of the non-topological lattice is small compared

to the topological one, since the defect is not connected

to its bulk properties (unlike in the topological case), but

bulkmodes also changewhen the defect amplitude becomes

large, leading to an increase in the model accuracy.

5 Disorder and transfer learning

Transfer learning refers to the use of a model trained on

one set of data to make accurate predictions on a new

task. Here we consider the performance of models trained

on ideal data in classifying data obtained from different

model parameters. If the quality metric falls slightly, we can

conclude that the model has a generalization ability. This

is particularly important in the context of nanophotonic

circuits, where inevitable disorder will lead to sample-to-

sample variations of device parameters.

First, we note that the generalization ability is not

observed for the parameter L, and the accuracy drops sig-

nificantly when testing on L different from the propagation

distance used for the training data. On the other hand, we

observe generalization over some N , that corresponds to

attaching dimers to both edges of the main array, stipu-

lated by the fact that such an addition of elements does

not qualitatively change the topology of the lattice (see the

cross-validation control map for parameter N in Supple-

mentary Materials, Section IV).

Next, we examine a transfer learning approach that

allows for the reuse of pretrained models at a fixed propa-

gation distance of L = 10.6 cm [referring to the last point in

Figure 5(A)] on models with disorder. We introduce pertur-

bations into the SSH Hamiltonian coefficients of two types:

off-diagonal disorder in the inter-site coupling strengths and

on-site disorder in the propagation constants. The former

preserves the chiral symmetry, while the latter breaks the

symmetry and spoils the topological protection. Incorporat-

ing disorder involves adding random variables to the coef-

ficients of the Hamiltonian. For example, the off-diagonal

disorder perturbs each coupling coefficient by the random

variable l⟨d⟩mean( J1, J2), where l is uniformly distributed
in the range [−1∕2, 1∕2] and ⟨d⟩ is the disorder strength. This
is a chiral type disorder in the sense that the Hamiltonian

describing the disordered system respects the chiral sym-

metry, thus its topological edge states will remain at zero

energy.We train the neural network using a non-disordered
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array and test it on the disordered lattice. We have identi-

fied a range of disorder strengths in which the previously

trained neural network can operate with high confidence.

To quantify the impact of the disorder on the data,

we evaluate the similarity between the output intensi-

ties. Specifically, we compute the output fields 𝜓m(⟨d⟩, i)1,2,
where the superscripts 1 and 2 correspond to diago-

nal and off-diagonal disorders, respectively, and i rep-

resents the number of the specific disorder realization.

We then introduce the intensity overlap as 
1,2(⟨d⟩, i) =∑

m|𝜓m(⟨d⟩, i)1,2)|2 ⋅ |𝜓0
m
|2, where summation is taken over

waveguides of the main array and 𝜓0
m
is the output dis-

tribution in the disorder-free case. This overlap measures

the similarity between the two distributions. It is a useful

quantity to study the effect of disorder on the output of a

system, as it allows us to quantify how much the output

changes due to disorder. To plot the overlap measure, we

calculate1,2(⟨d⟩, i) over 4000 disorder realizations for each

(A)

(C)

(D)

(B)

Figure 8: The transfer learning approach for disordered lattices.

(A) Overlap measure variation induced by the disorder: shaded areas are

ranges of variance due to disorder over an ensemble of 4000 disorder

realizations (green is for diagonal disorder, gray for off-diagonal

disorder), red asterisks and green dots are mean values. All parameters

of the lattice are fixed. (B) Transfer learning for the disordered lattice.

We train neural network in the absence of disorder ⟨d⟩ = 0 and test

the prediction accuracy for different values of disorder. All parameters of

the lattice are varied according to Table 2. (C, D) Probability assigned to

false (C) and true (D) answers of the neural network for different values

of disorder (green bars are for diagonal disorder, red bars are for

off-diagonal disorder).

of the values of ⟨d⟩. To standardize the plotted functions,

we divide them by the value of 1,2(⟨d⟩, i) when ⟨d⟩ is zero.
This normalization process allows us to compare the vari-

ability of the overlap measure across different scenarios.

The dotted areas in Figure 8(A) represent the correspond-

ing ranges. Note, we have rescaled the diagonal disorder

strength ⟨ddiag⟩ = 4⟨doff−diag⟩ such that for a given ⟨d⟩ the
two forms of disorder have a similar effect on the overlap

measure.

To demonstrate transfer learning for disordered arrays,

we train the neural network using a non-disordered array

and test it for the disordered lattice [see Figure 8(B)], the

ranges of parameters as in Table 2. The accuracy curves

are similar for both types of disorder, showing a decrease

in accuracy as the disorder amplitude increases. Expanding

the range of the overlap measure results in a significant

change in the output intensity, which ultimately leads to a

sharp decline in the classification accuracy.

To estimate confidence of the trained neural network,

we study the output of the last layer [see Figure 5(B)]

in detail. Softmax function returns probabilities of four

classes. Here we fix the class 00 (both ends are trivial), but

the results are comparable for the other classes as well. If

the model assigns a high probability to a particular class, it

is more confident in that prediction than if it assigns a lower

probability.

We create a set of test vectors for each disorder ampli-

tude and select vectors that have the highest probability

of belonging to the class 00. If this vector indeed belongs

to the class 00, we label the probability as true; otherwise,

it is labeled as false. And then we average false and true

answers to plot Figure 8(C and D). Interestingly, as the accu-

racy of the neural network decreases, its level of certainty in

both accurate and inaccurate responses increases. In other

words, the neural network will more confidently give the

wrong answer as the disorder strength is increased, indicat-

ing that the fabrication disorder can act as an adversarial

perturbation.

Thus, the neural network does not inherit the robust-

ness of the underlying topological phase. Rather, the similar

performance for the symmetry-preserving and symmetry-

breaking disorders suggests that the network is picking

out features of the intensity as a proxy for the topological

invariant, not the topological invariant itself. One potential

solution to this problem is to consider a more sophisticated

network architecture such as an autoencoder (where the

middle layers are narrower, leading to a loss of informa-

tion), which forces the network to learn the global fea-

tures characterizing the different classes [31], improving the
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robustness to noise and experimental imperfections. This

will be an interesting direction for future work.

6 Conclusions

We have studied the performance of a variety of machine

learning techniques at distinguishing different topological

phases of leaky photonic lattices using measurements of

the bulk intensity profile after a fixed propagation distance.

First, we found that uncertainty in the initial conditions

(such as the excited waveguide) reduces the quality of unsu-

pervised clustering, leading to either mixing between dif-

ferent classes or the prediction of toomany classes. We then

compared the performance of different supervised learning

methods, finding that high accuracy can be achieved for

sufficiently large propagation distances. The classification

accuracy can be further improved by increasing the number

of bulk waveguide intensities used. Other approaches to

enhancing accuracy may involve acquiring more intensity

images of the same system and increasing the number of

initially excited waveguides. For example, wemay employ a

double-input excitationwith a varying phase difference and

record several intensity measurements. Finally, we studied

the transfer learning ability of neural network-based clas-

sifiers. While the accuracy drops significantly if the net-

work is trained on data obtained using a different propa-

gation distance, the networks can accurately classify data

from systems with sufficiently weak disorder, thus avoiding

extensive training on each new system. Our approach for

classifying lattices based on incomplete measurements can

be further developed to solve a more general problem of

reconstruction of the lattice Hamiltonian with some a priori

knowledge of its symmetries in various fields including pho-

tonics, condensed matter physics, and quantum computing.
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