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Abstract: A quantum dipole interacting with an optical
cavity is one of the key models in cavity quantum electro-
dynamics (cavity-QED). To treat this system theoretically,
the typical approach is to truncate the dipole to two levels.
However, it has been shown that in the ultrastrong-
coupling regime, this truncation naively destroys gauge
invariance. By truncating in a manner consistent with the
gauge principle, we introduce master equations for open
systems to compute gauge-invariant emission spectra,

photon flux rates, and quantum correlation functions
which show significant disagreement with previous results
obtained using the standard quantum Rabi model. Explicit
examples are shown using both the dipole gauge and the
Coulomb gauge.

Keywords: cavity-QED; gauge invariance; master equa-
tions; open systems; quantum Rabi model; ultrastrong
coupling.

1 Introduction

The intricate interactions between light and matter allow
one to observe drastically different behavior depending on
the relative strength of the light–matter coupling. In the
weak-coupling regime, the losses in the system exceed the
light–matter coupling strength, and energy in the system is
primarily lost before it has the chance to coherently
transfer between the matter and the light. Accessing this
regime experimentally has allowed for breakthroughs in
quantum technologies such as single-photon emitters
[1–4]. Beyond weak-coupling, in the strong-coupling
regime the rate of decoherence is smaller than the rate of
excitation exchange, allowing for the observation of vac-
uumRabi oscillations: the coherent oscillatory exchange of
energy between light and matter. The strong-coupling
regime has helped initiate a second generation of quantum
technologies [5, 6]. See Figure 1 for a simple schematic of a
typical cavity-QED system with system-bath leakage.

Around 2005, the “ultrastrong-coupling” (USC) regime
was predicted for intersubband polaritons [7]. This regime
is characterized not by still lower rates of decoherence, but
by a coupling strength that is a comparable fraction of the
bare energies of the system. The dimensionless parameter
η = g/ω0 (i.e., the cavity-emitter coupling rate divided by
the transition frequency) is used to quantify this coupling
regime for cavity-QED. Typically, USC effects are expected
when η ≳ 0.1, at which point the rotating wave approxi-
mation (RWA) used in the weak and strong regimes
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becomes invalid. Reported signs of USC emerged in 2009
with experiments involving quantum-well intersubband
microcavities [8], achieving η ≈ 0.11. Terahertz-driven
quantumwells have also demonstratedUSC effects [9], and
similar effects have been exploited to achieve carrier-wave
Rabi flopping with strong optical pulses [10–12]. To date,
many different systems have exhibited USC [13, 14].
Recently, using plasmonic nanoparticle crystals, η = 1.83
has been achieved, with potential to lead to η = 2.2 [15].

With experiments pushing the normalized coupling
strength continuously higher, the interest in USC effects
also continues to grow, helping to improve the underlying
theories of light–matter interactions [16], even at arbitrarily
high coupling strengths [17]. There have also been various
predictions made about what novel technologies USC will
bring about, including modifications to chemical or phys-
ical properties of various systems caused by their USC to
light [7, 18], and the potential to create faster quantum
gates and gain a high level of control over chemical re-
actions [13]. To push these advancements forward, it is
essential to have a fundamental understanding of the
physics involved with these systems and to accurately
connect to experimental observables.

The cornerstone model in cavity-QED is a two-level
system (TLS) interacting with a quantized cavity mode [19].
This model has been applied to atoms [20–23], quantum
dots [24–27], and circuit QED [28–31]. Outside the USC
regime, this model is typically represented by the canoni-
cal Jaynes–Cummings (JC) Hamiltonian [32], which makes
an RWA and can be easily diagonalized. In the USC regime,
however, it is necessary to retain counter-rotating terms,
giving rise to the quantumRabimodel (QRM) [13, 14, 33]. By
detecting resonance fluorescence of light emitted from the
cavity as quantified by the first-order degree of coherence
correlation function (CF), the spectral content of these
cavity-QED models can be explored, while the second-
order intensity CF is fundamental to understanding the
photon statistics as probed by intensity interferometry.

The main contribution of this work is to present a self-
consistent and unambiguous way to model observables in
the USC regime of open system cavity-QED. Apart from
addressing the subtle (and unknown) effects of dissipation,
and excitation, and input-output, we show the striking in-
fluence of modelling experimentally relevant observables
such as the emission spectra and quantum correlation func-
tions.Wealso showhowandwhy the formof the system-bath
interactions matters, yet the form is gauge-invariant, if—and
only if—treated properly (in contrast to the usual master
equation approaches) using gauge-invariant master equa-
tions. We show equivalence between dipole gauge and
Coulomb gauge master equations, if one applies gauge
corrections in a consistent way, and we also demonstrate
the drastic failure of currently adoptedmaster equations in
the USC regime. Our framework and formalism, to the best
of our knowledge, constitutes a first way to do this, and can
thus be applied to a wide range of measurements in the
USC regime for open systems.

2 Gauge invariance and system-
reservoir interactions

It was recently shown that extra care is needed when con-
structing gauge-independent theories [34], for computing
experimental observables for suitably strong light–matter
interactions. This development started with a series of
papers dealing with so-called gauge ambiguities in the
USC regime [35–37]. As a U(1) gauge theory, different
gauges in QED manifest in different representations of
the Hamiltonian of a given system, but these should be
unitarily equivalent and give rise to equivalent physical
observables. Without proper care, gauge invariance of
cavity-QED theories can break down when considering
USC [38]. This is due to the truncation of the matter sys-
tem’s formally infinite Hilbert space to the two lowest
eigenstates in forming the TLS—only keeping an infinite
number of energy levels formally preserves gauge invari-
ance [39]. Consequently, previous model predictions in the
USC regime can be ambiguous since the predictions are
impacted by the choice of gauge. While this issue has been
known in general for several decades [40], only recently
was this specific problem presented as rather insur-
mountable [38]. However, the issue has been resolved by
using a self-consistent theory at the system Hamiltonian
level [37, 41], restoring gauge invariance to the theory for
systems with a finite Hilbert space.

Despite this, additional subtleties occur in the USC
regime regarding the interaction of the cavity-QED system

Figure 1: Schematic of a generic cavity-QED system. The optical
cavity mode has quantized energy levels (in blue), with a decay rate
κ. The matter system is a truncated TLS (in red), with a possible
spontaneous emission decay rate γ. The two systems have a
coherent coupling strength g. A coherent laser (in orange) drives the
system with Rabi frequency Ωd.
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with its environment. To connect to experiments, one also
requires an input–output model of dissipation from the
cavity to external modes, requiring an open-system model
of cavity-QED. In the USC regime, complications arise with
this input–output formalism associated with approxima-
tions typically made outside of the USC regime. These
complications originate from the hybridization of light
and matter that occurs in USC, and as such the quanta of
excitations inside the cavity-QED system have different
quasiparticle representations than the photons actually
emitted from the system. Moreover, the separation of
operators into light and matter components becomes
highly gauge-specific in the USC regime, and proper care
must be taken to ensure self-consistency.

To fully synthesize these considerations with the resto-
ration of gauge invariance, we present a dissipative and
gauge-invariant master equation model, which is required
to properly describe experimentally-observable quantities
arising from output channels of the cavity. Key experiments
to probe such observables include resonance fluorescence
and two-photon detection schemes, and we make a direct
connection to both of these.We also showhowpreviousQRM
master equations in theUSC regimeare ambiguous in general
as they produce gauge-dependent results for observables,
and we show how to fix such problems. Moreover, our the-
ories can be used to explore the precise form of the system-
bath interactions, which in fact yield different experimental
signatures in the USC regime.

3 Model

In the dipole gauge (namely, the multipolar gauge in the
dipole approximation), we can write the system Hamilto-
nian, using the QRM, as (ℏ = 1)

HQR = ωca†a + ω0σ+σ− + ig(a† − a)(σ+ + σ−), (1)

where ω0 (ωc) is the TLS (cavity) transition frequency, σ+

(σ−) is the raising (lowering) operator for the TLS, and a† (a)
is the cavity mode creation (annihilation) operator; g is the
TLS-cavity coupling strength. We take ωc = ω0 throughout.
In contrast to the Coulomb gauge, straightforwardly trun-
cating the dipole in the light–matter interaction to a TLS
subspace does not break gauge invariance in the dipole
gauge [37]. Making an RWA on Eq. (1) (i.e., neglecting
counter-rotating terms a†σ+ and aσ−, which do not conserve
excitation number), yields the simpler JC Hamiltonian.

Outside of the USC regime, the usual approach to
include dissipation iswith a Lindbladmaster equation [42],

ρ̇ = − i
ℏ
[HQR, ρ] + Lbareρ, (2)

where ρ is the reduced density matrix. The dissipation
term, Lbareρ = κ

2D[a]ρ, is the Lindbladian superoperator
where D[O]ρ = 2OρO† − ρO†O − O†Oρ( ) and κ is the cavity
photon decay rate. Since dissipation is usually dominated
by cavity decay, we neglect direct TLS relaxation and pure
dephasing [43, 44]. However, the theory of how to include
TLS dissipation is discussed in Appendix A.4

The Lindbladian can be derived by following the
typical approach in which one neglects the TLS-cavity
interactionwhen considering the coupling of these systems
to the environment [29]. However, when moving into the
USC regime, this approach fails, and the Lindbladian must
be derived while self-consistently including the coupling
between the subsystems. For sufficiently strong subsystem
coupling, transitions occur between dressed eigenstates of
the full Hamiltonian rather than between eigenstates of the
individual free Hamiltonians [43].

In the USC regime, the system has transition operators
|j⟩⟨k| which cause transitions between the dressed eigen-
states of the system {|j⟩, |k⟩}. To obtain these transitions for
the cavity mode operator, we use dressed operators [43],

x+ = ∑
j,k>j

Cjk| j 〉 〈k|, (3)

and x− = (x+)†, where the sum is over states |j⟩ and |k⟩, with
ωk > ωj, Cjk =⟨j|ΠC|k⟩, and we neglect thermal excitation
effects; ΠC is an operator which couples linearly to dissi-
pation channel modes which we assume proportional to
the cavity electric field operator such thatΠC = i(a† − a). We
then replace Lbare in Eq. (2) with Ldressedρ = κ

2D[x+]ρ, to
arrive at the dressed state (DS) master equation. One can
also use a generalizedmaster equation to capture coupling
to frequency-dependent reservoirs [43, 45]. SeeAppendix A
for a derivation of the generalized master equation, and
Section 5 for an example application using an Ohmic bath.

Beyond this dressing transformation, it has been
shown that there exists a potential gauge ambiguity in the
electric field operator which causes further problems when
computing observables in the USC regime [37]; namely, ΠC

corresponds to the Coulomb gauge electric field, but the
QRMHamiltonian is derived in the dipole gauge. The gauge
transformation from the Coulomb gauge to the dipole
gauge is generated by a unitary transformation, which for
the restricted TLS subspace is given by the projected uni-

tary operator [37] U = exp( −iη(a + a†)σx). The photon

destruction operator transforms as a→ UaU† = a + iησx

[34]. Thus, to “gauge-correct” the master equation in the
dipole gauge, we conduct the dressing operation as above,
but with
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x± → x±GC = ∑
j,k>j

C′
jk|j 〉 〈k|, (4)

where we take C′
jk = 〈j|UΠCU†|k〉 = 〈j|ΠD|k〉 = 〈j|i(a† − a) +

2ησx|k〉; see Appendix A for a derivation of the master
equation in the dipole and Coulomb gauges and their
equivalence.

To study the quantum dynamics and spectral reso-
nances, we excite the system with an incoherent pump
term, PincD x−GC[ ]/2, or with a coherent laser drive,

Hdrive(t) = (Ωd/2)(x−GCe−iωLt + x+GCe
−iωLt), added to HQR,

where Ωd is the Rabi frequency and ωL = ωc is the laser
frequency; thus,HS =HQR+Hdrive. Note that theQRMwith a
coherent drive is time-dependent and oscillates around a
pseudo-steady-state. In addition, because of the driving
laser, the periodic nature of the systemHamiltonianmeans
that in principle the QRM spectra, already quite rich, are
modified further; however, we use Ωd ≪ g, and neglect the
influence of the coherent drive on the system eigenstates.
The first few (lowest) energy eigenvalues are plotted for the
QRM (dipole gauge) and JC model in Figure 2(a) for a range
of normalized coupling strengths. Three transitions are
shown, which we will refer to below.

4 Gauge-invariant observables

We first define the system excitation number,

Ncav(t) = ⟨x−GC(t)x+GC(t)⟩, (5)

and a quadrature operator matrix element squared,

|P ′
j, k|2 = |C′

jk/ 2̅
√ |2, (6)

which is proportional to the photodetection rate of cavity-
emitted photons from the |j⟩ → |k⟩ transition [41]. In
Figure 2(b), we showNcav versus η, using incoherent driving
(cf. Figure 3),where the solid curves show the effect of gauge
corrections. Equivalent gauge-corrected results are obtained
in the Coulomb gauge. With the correction, the population
saturates, while the uncorrected population continues to
increase superlinearly, and jumps when states 2 and 3 cross
in energy, potentially related to the photon blockade [46].
With gauge corrections, we see a strong influence from the
TLS operator physics. In Figure 2(c), we show |P ′

jk|2 for the
relevant transitions which are, for weak excitation, propor-
tional to the transition linewidths; again, the solid lines
show the gauge corrected results. Note that the corrected
dipole gauge quadrature operator (Π′

D = i(a† − a) + 2ησx)
causes a major modification of the transitions, significantly
impacting their behavior in the nonperturbative regime.

In Appendix E, we give analytical insight into these
quadrature matrix elements using a Bloch–Siegert (BS)
transformation, which analytically (to lowest order in η)
predicts the following changes with gauge correction:

|PI |2 = 1/4(1 + 3η/2)→ 1/4(1 − 5η/2), and |PIII |2 = 1/4
(1 − 3η/2)→ 1/4(1 + 5η/2), causing a reversed asymmetry
with gauge corrections. Physically, this asymmetry arises
from the BS shift of cavity and TLS resonances giving rise to
photon-like and atom-like polariton branches; the
composition of the Π operator (which is affected by the
gauge correction) ultimately determines which state is
more cavity-like, and thus has a greater decay rate (see
Appendix E for details).

Next, we define the cavity-emitted spectrum,

Scav ∝ Re ∫
∞

0

dτeiΩτ ∫
∞

0

⟨x−GC,Δ(t)x+GC,Δ(t + τ)⟩dt[ ], (7)

where x±GC,Δ = x±GC − ⟨x±GC⟩ and Ω = ω − ωL. Beyond the
spectrum, which uses a first-order quantum CF, we also
compute the normalized second-order quantum CF,

g(2)(t, τ) = ⟨x−GC(t)x−GC(t + τ)x+GC(t + τ)x+GC(t)⟩
⟨x−GC(t)x+GC(t)⟩⟨x−GC(t + τ)x+GC(t + τ)⟩, (8)

which can quantify, for example, the likelihood of a photon
being detected at (t + τ) if one was detected at t. We also

(a)

(b) (c)

Figure 2: Example energy eigenvalues, as well as steady state
excitation numbers and selected transitions rates (with and without
gauge corrections). (a) The energy eigenvalues of the six lowest states
of the QRM (blue, solid) and the JC model (red, dotted). Arrows mark
transitions of interest, placed at arbitrary locations on the η-axis,
(b) steady state excitation number for incoherent driving (cf. Figure 3),
and (c) selected transition rates, with colorsmatching the arrows in (a).
On the bottom two panels, solid (dashed) lines are with (without) the
gauge correction in the dipole gauge. Note a sudden increase of Ncav

near η ≈ 0.4 when states 2 and 3 cross.
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introduce the time-averaged g(2)(τ) = ∫
t1+T
t1

g(2)(t, τ)dt/T,
where t1 is an arbitrary time point at which the system has
reached the pseudo-steady-state and T is the period of
oscillation (see Appendix D). Note that without the gauge-
correction, we use the uncorrected (corresponding to a
Coulomb gauge representation) x±, x±Δ for computing the
observables, and x± for incoherent or coherent driving (see
Appendix A). All calculations use Python with the QuTiP
package [47, 48].

For weak incoherent pumping, Figure 3 compares the
computed spectra with and without the gauge correction
(DGC: dipole-gauge-corrected and DG: dipole-gauge,
respectively), for η ranging from 0.05 (strong coupling) to
0.5 (USC). For relatively small η = 0.05, the DGC (with
gauge correction) spectra already begin to noticeably
deviate from the DG spectra (usual QRM master equation
solution).

With increasing η, notably, the DGC and DG spectra
are substantially different above η = 0.1: the DGC spectra
still show a reversed asymmetry, with a significant nar-
rowing of the lower polariton resonance (I) and a
broadening of the upper polariton resonance (III); the
ratio of higher-lower polariton peak areas under weak

excitation changes from 1 − 3η +O(η2) to 1 + 5η +O(η2)
with gauge correction—a dramatic change even for η < 0.1
(see Appendix E). These peaks can be identified as
resulting from the |1⟩ → |0⟩ (olive arrow on Figure 2(a))
and |2⟩ → |0⟩ (brown arrow) transitions, respectively.

Since |Pj, k |2 contributes to photon emission directly

through the κ decay channel [41], the narrowing (broad-
ening) of peak I (III) with increasing η can be explained
with Figure 2(c). Without the correction, the opposite
trend is observed, which is again consistent with
Figure 2(c) (dashed lines). At η = 0.5, there is also a
noticeable resonance (II) around ω = 0.8g, showing a
deep mixing of the TLS and cavity dynamics in the USC
regime. We can identify this energy difference with the
|3⟩→ |1⟩ transition, pink arrow on Figure 2(a), which also
has reduced broadening with η, cf. Figure 2(c).

We have shown how the gauge correction manifests in
modified linewidths and drastically different spectral
weights in comparison to the usual QRM—even so far as to
result in a complete reversal of the asymmetry predicted
from a non-gauge-corrected model [49] (Figure 9, η = 0.5).
We now demonstrate how this gauge correction manifests
in the Coulomb gauge. To do this, we display results for the
cavity-emitted spectrum and CFs with coherent and inco-
herent pumping, using the discussed dipole gauge and the
Coulomb gauge master equation.

In the Coulomb gauge, the standard system Hamilto-
nian for the QRM is [37]

HC
QR = ωca†a + ω0

2
σz + gC(a + a†)σy + D(a + a†)2, (9)

where gC = gDω0/ωc and D is the strength of the diamag-
netic term. Using the Thomas–Reiche–Kuhn sum rule
[47], then D ≥ g2C/ω0, and for our simulations we take
D = g2C/ω0. Thus, with ω0 = ωc and gD ≡ g, we have D =
η2ω0. Unfortunately, this form does not satisfy the gauge
principle, and produces the wrong eigenenergies and
eigenstates in the USC regime [35, 37, 41]. Instead, the
corrected Coulomb gauge uses a different system Hamil-
tonian [37],

HC′

QR = ωca†a + ω0

2
σz cos 2η(a + a†)( ){

 +σy sin 2η(a + a†)( )}, (10)

which contains field operators to all orders, and the C′
superscript indicates we are using the corrected form for
the system Hamiltonian. In the Coulomb gauge, the gauge-
invariant dissipator term is (see Appendix A)

LC
dressedρ = κ

2
D x+C[ ]ρ, (11)

where x+C = ∑j, k>jC
C
jk|j 〉 〈k| with CC

jk = ⟨j|ΠC|k⟩, and we now
compute the dressed states in the Coulomb gauge, using
both uncorrected and corrected forms of the system
Hamiltonian.

Figure 4 (top) shows the coherent and incoherent
spectra at η=0.5, showing that the gauge correction results

Figure 3: Cavity spectra outside the RWA (QRM) with DG model
(orange dashed line), and DGC model (with gauge correction, blue
line) for varying η andweak incoherent driving: Pinc = 0.01g. Spectra
are normalized to have the samemaxima. Other system parameters
are κ = 0.25g, and ωL = ωc = ω0. Note a small change with the DG
corrected model even below the USC regime (η = 0.05).
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in a profound effect in either case. For coherent driving,
using Ωd = 0.1g, there is a significant sharpening of the
resonances. The Coulomb gauge result without the gauge
correction corresponds to aminimal coupling Hamiltonian
naively truncated to a TLS, which results in incorrect en-
ergy levels for the dressed-state master equation [37]. This
effect of having the incorrect energy levels and eigenstates
is clearly shown in the uncorrected Coulomb gauge results
in Figure 4, which is especially wrong with coherent
pumping, since the system is effectively being pumped off
resonance, because of the diamagnetic term. For coherent
pumping, additional Rabi field strengths are shown in
Appendix C, where we also show simulations with and
without an RWA for the pump field.

Next, in Figure 4 (bottom), we examine the second-
order coherence, which is important for characterising the
generation of non-classical light. In all cases shown, we
observe photon bunching at short time-delays. With the
gauge correction, there is a significant reduction in
the level of bunching, and the usual USC master equations
significantly overestimate the bunching characteristics.
Moreover, the dynamics are qualitatively different, and
thus the non-GC master equations results clearly fail in the
USC regime. In all cases, we confirm full agreement be-
tween the corrected dipole gauge and corrected Coulomb
gauge results, since these are the correct gauge-invariant
solutions, and thus produce identical results.

5 Influence of the spectral bath
function on the gauge correction
and gauge-invariant spectra with
an Ohmic bath

In the simulations above, for simplicity, we used a flat
density of states (DOS) for the spectral bath function;
namely, the DOSwas assumed to be constant relative to the
energy scale of the resonances. This helps to better identify
intrinsic spectral asymmetries related to gauge correcting.

For completeness, here we explicitly show an example
numerical solution without invoking the approximation
that κ(ω) is frequency independent. Specifically, we
compute the emitted spectrawhen κ(ω) = κ aswell as κ(ω) =
κω/ωc (Ohmic bath). We use the same example as in
Figure 3 with incoherent driving at η = 0.5. These numerical
solutions are obtained from the generalizedmaster Eq. (A9),
described in Appendix A.

As can be seen in Figure 5, clearly the form of the
spectral bath function does not affect any of our general
conclusions, as the gauge correction is, in both cases,
dramatic, and of course produces exactly the same result
for both the dipole gauge and the Coulomb gauge. To be
clear, if we plot these together, then they are indistin-
guishable, which also confirms that our numerical results
are well converged in terms of basis size and time steps.

Figure 4: Direct comparison between master equation results using the dipole and Coulomb gauges at η = 0.5, for both coherent and
incoherent excitation, showing the profound effect of the gauge correction and how this manifests in identical spectra (top) and g(2)(τ)
correlation functions (bottom). Solid and dashed curves are with and without the gauge correction, respectively. For the coherent drive (left),
we use Ωd = 0.1g, and the incoherent pumping (right) is the same as in Figure 3 (Pinc = 0.01g).
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6 Conclusions

We have presented a gauge-invariant master equation
approach and calculations for the cavity emission spectra in
the USC regime, and shown how the usual QRM in the dipole
gauge fails, yielding effects that are just as pronounced (or
even more pronounced) as counter-rotating wave effects in
this regime.We have demonstrated how the gauge correction
significantly affects the intensity CF and cavity excitation
number. We have also shown how the gauge correction
modifies results in the Coulomb gauge compared to typically
usedmodels.Apart fromyieldingnew insights into thenature
of cavity-QED system-bath interactions and presenting
gauge-invariantmaster equations that can be used to explore
a wide range of light–matter interaction in the USC regime,
our results show that currently adopted master equations in
the USC regime produce ambiguous results since they do not
satisfy gauge invariance.

While we have shown explicit results for the cavity
spectrum and intensity CF, the gauge correction causes pro-
found effects on any observable that is computed from the
master equations in the same coupling regimes. Thenature of
the system-bath coupling is also very important, which must
also be related to the quadrature coupling to the external
fields and the observables to ensure a gauge-invariantmaster
equation. For example, it may be more appropriate to useΠC

= a + a† (vector potential coupling) rather than ΠC = i(a† − a)
(electric field coupling) for the interaction (in the Coulomb

gauge), or some linear combination of the two; this change
affects the dissipators, incoherent pumping, and coherent
excitation in a way that still yields gauge-independent re-
sults, but the observables are different. By unitary equiva-
lence, the form of the quadrature coupling used in the system
Hamiltonian is thus also not arbitrary, which is in stark
contrast to the JC model, where both these coupling forms
yield identical results. These two coupling forms are widely
used in theUSC literature andareassumed to lead to the same
result; however, they differ significantly,which reinforces the
need, highlighted recently [50, 51], to go beyond the usual
phenomenological formulation of system-environment
coupling Hamiltonians in the USC regime of cavity QED in
favor of a general fundamental microscopic derivation. So-
lutions to such problems can likely be rigorously addressed
using quantized quasinormal modes [52–56], which even
apply to cavities and media in the presence of gain [57, 58].

Appendix A:
Gauge-independent master equa-
tions: dipole gauge and Coulomb
gauge forms

A.1 Simple generic model for cavity-bath
leakage

Let us first consider a general bath (or reservoir) that
interacts with the system of interest (e.g., the cavity mode)
weakly, as shown schematically in Figure 1 of themain text.
The bath is described in the usual way by a collection of
harmonic oscillators (ℏ = 1),

HB = ∑
k
ωkb

†
kbk , (A1)

where bk and b†
k are bosonic annihilation and creation

operators.
A simple model for a single cavity interacting with the

bath can be written as follows:

HSB = ∑
k
λkΠ bk + b†

k( ), (A2)

where λk represent the coupling strengths (assumed real),
which aremodel specific, andΠ is a gauge-dependent system
operator linear in the canonical quantization variables, the
form of which we specify based on gauge considerations in
the following sections. In the interaction picture, we have

H̃SB = ∑
k
λkeiHQR tΠe−iHQR t bke−iωkt + b†

ke
iωkt( ). (A3)

(a)

(b) (d)

(c)

Figure 5: The computed cavity spectra using the dipole gauge (left)
andCoulombgauge (right), with a flat DOS [κ(ω) = κ, panels (a), (c)] and
an Ohmic DOS [κ(ω) = κω/ωc, panels (b), (d)] using the generalized
master equation [see Eqs. (A9) and (A10) in Appendix A]. In both cases,
the effect of the gauge correction (solid lines versus dashed lines) is
dramatic. We use the same parameters as in Figure 2 of the main text,
with incoherent driving, andparametersη=0.5 and κ=0.25g. Notably,
in all cases, regardless of the spectral function, the corrected dipole
gauge and corrected Coulomb gauge results are identical.
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In the dressed-state basis, which is necessary to use in the
USC regime (as the standard dissipator fails, as discussed
in the main text), we can express the lowering operators of
the system excitations from

S̃(t) = ∑
j,k>j

Cjk|j 〉 〈k|eiΔjk t , (A4)

where

Cjk = ⟨j|Π|k⟩, (A5)

and Δjk = ωj − ωk, such that

Π(t) = eiHQRtΠe−iHQRt = S̃(t) + S̃
†(t), (A6)

and any Cjj terms uniformly vanish due to the parity sym-
metry of the quantum Rabi model. The bath operators can
also be written as

B̃(t) = ∑
k
λkbke−iωkt . (A7)

Thus we can write [43],

H̃SB = S̃(t)B̃†(t) + S̃
†(t)B̃(t), (A8)

where we have dropped all terms which oscillate at a fre-
quency equal to a sum of positive system and reservoir
frequency components which do not ultimately contribute
to the master equation we will derive.

Applying a Born–Markov approximation, assuming
continuous bath frequencies, a zero temperature
approximation (namely, neglecting thermal excitation and
taking the bath tobe in the vacuumstate), andneglecting any
Lamb-like renormalization of the quantum Rabi Hamiltonian
parameters, one can derive a generalized master equation
[43], which takes into account the dressed-states’ coupling to
all the relevant baths for each system operator:

d
dt

ρ = − i
ℏ
[HQR + Hdrive, ρ] + LGρ, (A9)

where the cavity dissipator term is

LGρ = 1
2
∑

ω,ω′>0

Γc(ω) X+(ω)ρX−(ω′)[
−X−(ω′)X+(ω)ρ] + Γc(ω′) X+(ω)ρX−(ω′)[
−ρX−(ω′)X+(ω)].

(A10)

The dressed-state operators, X±, decomposed in a basis of
energy eigenstateswith respect toHQR, are defined through

X+(ω) = ⟨j|Π|k⟩|j 〉 〈k|, (A11)

where ω = ωk − ωj > 0 and X− = (X+)†. Note we can also
derive a similar generalized master equation for other
system decay channels (i.e., TLS losses), but below we

concentrate on the cavity operators and relevant system-
reservoir interactions, though we also briefly discuss the
TLS-bath interactions.

One can employ any representative bath functions for
the cavity reservoir, Jc(ω) = gc(ω)|λ(ω)|2, where gc(ω) is the
bath density of states (DOS), and the decay rates are
subsequently defined from

Γc(ω) = 2πJc(ω) = 2πgc(ω)|λ(ω)|2. (A12)

Thus, for example, in the case of anOhmic bath ( Jc(ω)∝ω),
then Γc(ω) = γcω/ωc, where γc ≡ κ.

Finally, assuming a relatively flat bath function with
respect to the frequency differences of interest (we relaxed
this approximation in Section 5), so that Γc(Δjk) ≈ κ, with
κ = κ(ω0) (nominal cavity decay rate) over the energy scales
of interest, we obtain

Ldressedρ = κ
2
D[x+]ρ, (A13)

where

x+ = ∑
j,k>j

Cjk|j 〉 〈k|, (A14)

with

Cjk = ⟨j|Π|k⟩, (A15)

and the usual Lindblad superoperator term,

D[O]ρ = 2OρO† − ρO†O − O†Oρ. (A16)

Equation (A13) is the standard dissipator form in the USC
regime for the dressed-state master equation. Without any
considerationofgauge,onemightnaively takeΠ= i(a†−a) (the
form we take for the non gauge-corrected form of the dipole
gaugemodel in themain text), or perhapsΠ= a+ a†; however,
in contrast to usual cavity-QED systems outside of the USC
regime, these choices give rise to different observables, and
furthermore, lead to gauge-dependent results (in the USC
regime). We address this explicitly in the following sections,
and review how the breaking of gauge invariance that can be
introduced by truncation to a TLS subspace is “gauge
corrected” in the dipole gauge by modification of the Π
operators from their naive form, and in the Coulomb gauge by
modifying the Hamiltonian [37, 59, 60].

A.2 Gauge-invariant master equation in
the dipole gauge

To specify our dissipationmodel, wemust assign a specific
form to the gauge-dependent system operator Π, and thus
we must consider how relevant physical quantities are
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represented in each gauge. In the dipole gauge, it is the
displacement field that is expanded in terms of bosonic

creation/destruction operators, and not the transverse

electric field as in the Coulomb gauge. The relevant field

operator is F = D/ϵ0ϵb(r) [60–62], where D is the

displacement field and ϵb is the dielectric constant that

the TLS is embedded (e.g., for free space this is 1).

Importantly, D also includes a contribution from the TLS

dipole field through the polarization. The single cavity

mode field-TLS interaction is then

V I = −μ ⋅ F(r0) = σx gca + g*ca
†( ), (A17)

where gc = −i
̅̅
ωc
2ϵ0

√
μ ⋅ fc(r0) and r0 is the dipole (TLS) loca-

tion. The cavity mode amplitude is real (corresponding to a
normal mode), and defining gc = −ig, where g is real, then

V I = i(a† − a)gσx, (A18)

which is projected onto a two level subspace. Relating F to
E (the electric field operator), and using a TLS coupling
for the source of the polarization, results in the electric field
being expanded in terms of transformed cavity operators,
a′ = a + iησx, such that [59]

ED(r, t) = i
̅̅̅
ωc

2ϵ0

√
fc(r)a′(t) + H.c. = iωcA(r)(a′ − a′†)

= iωcA(r) a − a† + i2ησx( ),
(A19)

where A(r) = ̅̅̅̅̅̅̅
1/2ϵ0ωc

√
fc(r), the amplitude of the vector

potential field.
Note that the explicit coupling betweena andσxhere is a

direct consequence of a strict single mode approximation. If

we assume a weak coupling between the cavity electric field

and reservoir modes, the system-reservoir coupling takes the

gauge-corrected form:

ΠD = i(a′† − a′)
= i(a† − a) + 2ησx,

(A20)

where we let ΠD denote the system operator to be inserted
into Eq. (A2) in the dipole gauge, and we assume the bk are
unchanged. Note asmentioned abovewe could also consider
a linear coupling between the vector potentials of the cavity
and reservoir fields, such thatΠ∝ a + a† (which ismanifestly
gauge-invariant in form). Outside of the USC regime, these
couplings produce identical results within the RWA, and are
often assumed to be interchangable; however, in our simu-
lations, choosing this formof system-reservoir coupling leads
to significantly different observables (similar conclusions
were drawn in Refs. [41, 52]). This is because in the JC model,
x+ ∝ a +O(η) in anygauge, andanychange in thephaseofa
is compensated for in the Lindblad termwhich pairs a and a†.

In the USC regime, the counter-rotating terms in the QRM
ensure that the dissipator is not invariant under such a
change. Noting that a coupling of the form a + a† can be
transformed into i(a† − a) by the unitary transformation
U = exp[ −i π2a†a], an important consequence of this is that a
coupling in the (dipole gauge) QRM of the form ig(a† − a)σx is
not equivalent to one of the form g(a + a†)σxwhen dissipation
is to be considered, despite what is commonly assumed. In
theUSC regime, thegaugeand formof thedissipatorsmustbe
properly considered in conjunction with the Hamiltonian in
order to ensure gauge-invariant observables. The only sym-
metry in the dissipative QRM is then that of parity symmetry,
which ensures that the overall sign of any couplings terms
canbe changed. For thiswork,we restrict ourselves to electric
field-like couplings such that ΠC = i(a† − a).

Following the same steps as above, we obtain the
dipole gauge result for the dressed-state dissipator,

LD
dressedρ = κ

2
D x+D[ ]ρ, (A21)

where

x+D = ∑
j,k>j

CD
jk|j 〉 〈k|, (A22)

with

CD
jk = ⟨j|ΠD|k⟩, (A23)

and the QRM system Hamiltonian is

HD
QR = ωca†a + ω0

2
σz + ig(a† − a)σx, (A24)

where we useω0/2σz instead ofω0σ+σ− (in the main text) to
compare with the Coulomb forms below. The key equations
((A21), (A23), (A24)) represent the gauge-corrected dis-
sipator and QRM system Hamiltonian in the dipole gauge.
Note that as in the main text, to compute optical observ-
ables emitted from the cavity in this gauge we should also
apply the gauge correction (i.e., use the x±D operators), to be
consistent with input–output theory [63].

More formally, beforewe switch to the Coulombgauge,
we should also identify g ≡ gD as being the TLS-cavity
coupling rate in the dipole gauge. In the main text, we let
quantities without explicit subscript/superscript refer to
the dipole gauge.

A.3 Gauge-invariant master equation in the
Coulomb gauge

As discussed in the main text, in the Coulomb gauge
Hamiltonian, we have the following system Hamiltonian
for the QRM [37]
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HC
QR = ωca†a + ω0

2
σz + gC(a + a†)σy + D(a + a†)2, (A25)

wheregC=gDω0/ωc andD is thediamagnetic term.Forω0=ωc

and gD ≡ g, we can use D = η2ω0 as a lower bound [41].
In theUSC regime, Eq. (A25) does not produce the same

eigenenergies as Eq. (A24), since it fails to respect the
gauge principle. Instead, the properly gauge-transformed
form, which does produce the same eigenenergies, is given
by the following system Hamiltonian for the QRM [37]:

HC′

QR  =U†HD
QRU = ωca†a

+ ω0

2
σz cos(2η(a + a†)) + σy sin(2η(a + a†)){ },

(A26)

where U = exp( −iη(a + a†)σx), as in the main text.
Notably, HC′

QR  contains field operators to all orders. In the
Coulomb gauge, the form of the electric field operator is
proportional to i(a† − a), assuming the same bath in-
teractions, and thus we have ΠC = U†ΠDU = i(a† − a), and
the system-bath coupling is written as

HC
SB = ∑

k
λCkΠC bk + b†

k( ), (A27)

where λCk is cavity-bath interaction in the Coulomb gauge.
Following similar steps to before, we obtain the gauge-

invariant dissipator term:

LC
dressedρ = κ

2
D x+C[ ]ρ, (A28)

where

x+C = ∑
j,k>j

CC
jk|j 〉 〈k|, (A29)

with

CC
jk = ⟨j|ΠC|k⟩, (A30)

and now one uses the dressed states in the Coulomb gauge,
namely using HC

QR.
Note, to include an arbitrary spectral function, thenwe

use

Γc(ω) = 2πJc(ω) = 2πgc(ω)|λ(ω)|2, (A31)

and Jc and λ(ω) are identical in the dipole gauge and
Coulomb gauge. Below we show this explicitly for the case
of an Ohmic bath.

The three equations ((A26), (A29), (A30)) represent the
correct form for the Coulomb gauge master equation to give
equivalent results to the dipole-gauge forms, whichwe prove
in Sec. B and show explicitly in Figure 3 of the main text.

Note also that the expressions for Cjk can be rewritten
via a sum rule [41]. For example, in the Coulombgauge [41]:

⟨k|a† − a|j⟩ = ωkj

ωc
⟨ k|a† + a|j⟩, (A32)

and in the dipole gauge:

⟨k|a† − a − 2iησx|j⟩ = ωkj

ωc
⟨ k|a† + a|j ⟩ . (A33)

A.4 Two level system (TLS) dissipator

Next, for completeness, we discuss the TLS dissipator
(whose contribution is neglected in our simulations) and
again show equivalence between the dipole gauge and
Coulomb gauge. The σx is invariant when transformed
through the gauge correction, and thus there is no change;
namely we simply have:

LD/C
dressed|γρ = γ

2
D y+D/C[ ]ρ. (A34)

where

y+D/C = ∑
j,k>j

CD/C
jk |j 〉 〈k|, (A35)

with

CD/C
jk = ⟨j|σx|k⟩, (A36)

in either gauge. However, for a specific model for the
spontaneous emission decay, amore realistic model would
include frequency dependent reservoirs representative of
the free space emission channel (such as Ohmic).

A.5 Incoherent pump term

In a standardmaster equation, the incoherent pumping for
the cavity mode is usually written as a reversed Lindblad
decay process [64, 65],

Lpumpρ = Pinc

2
D[a†]ρ, (A37)

which in a dressed-state decomposition is

Lpump
dressedρ = Pinc

2
D[x−]ρ. (A38)

This type of excitation can be derived by input–output
theory with (for example) non-vacuum inputs (e.g., a
thermal statewith T≠0) [63]. Thus to be consistentwith our
dissipation channels and the microscopic form of the
system-reservoir coupling, we choose

Lpump
dressedρ = Pinc

2
D x−D/C[ ]ρ. (A39)
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A.6 Coherent pump term

Next we present a derivation of the coherent drive term in
the Hamiltonian, Hdrive(t). We consider the general
interaction picture Hamiltonian of Eq. (A2),

H̃SB(t) = S̃(t) + S̃
†(t)( ) B̃(t) + B̃

†(t)( ), (A40)

where the gauge of this interaction is ultimately deter-
mined by the form of S̃(t), which is left general here. In
deriving the master equation models, we formally consid-
ered the reservoir to be in a multimode vacuum state |0⟩ as
t → 0. To model coherent driving at the level of a system-
reservoir approach, where the input drive (laser field) is not
significantly impacted by the dynamics of the cavity-QED
system, we can instead assume the reservoir to be in a
multimode (or approximately single mode) coherent state,
with the input condition:

ρB(t = 0) = Uc|0 〉 〈0|U†
c, (A41)

where Uc = ∏kDk(βk), Dk(βk) = exp βkb
†
k − β*kbk[ ] is the

displacement operator, with Dk(βk)|0⟩ = |βk⟩ (where all
k′ ≠ k remain in the vacuum state), and βk are substantial
only for wavevectors k around the laser resonance. Since
Uc is unitary, we can apply a unitary transformation to
the system plus reservoir density operator and Hamilto-
nian. Within the Born–Markov approximation, we have
ρ̃S +B = ρ̃SρB, thus we apply the unitary transformation

ρ̃S +B → U†
cρ̃S+BUc, and H̃SB → U†

cH̃SBUc. The effect of this is
merely to take bk → bk + βk within the interaction picture.

Thus we have B̃(t)→ B̃(t) +∑kλkβke−iωk t, and

H̃SB(t)→H̃SB(t)+∑
k

S̃(t)+ S̃†(t)( ) λkβke
−iωkt+c.c.( ). (A42)

Since the new term in Eq. (A42) only depends on the system
operators, we can call it H̃drive and consider it part of the
systemHamiltonian.Moving back to the Schrödinger picture:

Hdrive(t) = ∑
k
x+D/C + x−D/C( ) λkβke

−iωkt + c.c.( ). (A43)

In this new frame, thebath is in themultimodevacuumstate |
0⟩. Thus, the master equation can be derived in exactly the
same manner as before, with the only difference in the
equations being the addition of Hdrive(t) in the system
Hamiltonian. Typically,wecanmakeanRWAfor this term, as
we have separated positive and negative frequency compo-
nents, but inprinciplewe leave this general as theRWAcould
break down for ultrastrong coherent driving (however, in this
regime, a Floquet master equation would be more accurate).

To transform Eq. (A43) into an effective single-mode
drive, we move to a continuous frequency representation:

Hdrive(t) = x+D/C +x−D/C( )∫∞
0

dωgc(ω)λc(ω)βc(ω)e−iωt

+c.c.
(A44)

Since βc(ω) is only nonzero around a very narrow window
around ω = ωL (the laser center frequency), we have

∫
∞

0

dωgc(ω)λc(ω)βc(ω)e−iωt

≈gc(ωL)λc(ωL)e−iωLt ∫
∞

−∞
dδβc(ωL + δ)e−iδt .

(A45)

The form of βc(ω) is not important provided it is sharply
peaked around ω = ωL; for concreteness we can assume a
Lorentzian form:

βc(ω) = βc(ωL) ( Δω/2)2
( Δω/2)2 + δ2

, (A46)

whereΔω is the FWHMbandwidth of the laser, andwefind:

Hdrive(t) = x+D/C + x−D/C( ) Ωde−iω0t + c.c.( )e−Δωt/2, (A47)

where we have defined

Ωd = πgc(ωL)λc(ωL)βc(ωL)Δω. (A48)

We assume that the Δω is small enough such that the drive
remains coherent over any experiment of interest.We can also
choose Ωd to be real without loss of generality, as the phase
factor can be absorbed into the initial phase of the drivewhich
is not relevant. Thus we find the form used in the main text:

HD/C
pump = Ωd cos(ωLt) x−D/C + x+D/C( ), (A49)

using identical system operators as in the dissipators and
incoherent pump terms. Also note, the coherent drive should
not be too strong to invalidate the dressed-state representation
for the systemHamiltonian, namelyΩd≪ g, and in this regime
one could make an RWA for the pump term such that
HD/C

pump ≈ (Ωd/2) x−D/Ce
−iωct + x+D/Ce

iωct( ). In themain text,weuse
this RWA pumping term and also consider a resonant drive
whereωL=ωc. For completeness, inAppendixC,wealso show
example calculations with and without an RWA on the pump
term, and confirm that they yield essentially identical spectra,
as expected (i.e., for the stated approximations).

Appendix B:
Equivalence between the dipole
gauge and Coulomb gauge master
equations and gauge-invariant
expectation values

Naturally, any observables from a unitarily transformed
quantum master equation should be gauge-independent;
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we include this section primarily to show that the x±

operators transform in thewayonemight expect. By gauge-
independent expectation values, we mean expectation
values that do not and should not depend on the choice of
gauge.

Ultimately, for anygauge-dependentHermitianoperator
OD and OC corresponding to a physical observable, the
expectation value should be gauge-independent, so

⟨Ȯ⟩ = Tr ρ̇DOD{ } = Tr ρ̇COC{ }. (B1)

Beginning with the evaluation in the Coulomb gauge,

⟨Ȯ⟩ = −iTr OC HC
QR,O

C[ ]{ } + κ
2
Tr OC D x+C[ ]ρC( ){ }

= −iTr OD HD
QR,O

D[ ]{ }
+κ
2
Tr ODUD x+C[ ]ρCU†{ }.

(B2)

Clearly, the evolution is gauge-invariant if,

UD x+C[ ]ρCU† = D x+D[ ]ρD = D Ux+CU†[ ]ρD. (B3)

We have (explicitly noting the gauge of each state):

Ux+CU† = ∑
jC ,kC>jC

CC
jkU|jC 〉 〈kC|U†

= ∑
jC ,kC>jC

〈 jC|ΠC|kC 〉 |jD 〉 〈kD|

= ∑
jC ,kC>jC

〈 jC|U†ΠDU|kC 〉 |jD 〉 〈kD|

= ∑
jC ,kC>jC

〈 jD|ΠD|kD 〉 |jD 〉 〈kD|

= ∑
jD ,kD>jD

CD
jk|jD 〉 〈kD|

= x+D,

(B4)

where we have noted in the second last line that energy
eigenvalues are preserved under unitary transformation.
This argument can be trivially extended to incoherent
excitation master equations with terms likeD x−C/D[ ]ρC/D, or
time-dependent coherent drive terms, provided they are
transformed appropriately between gauges.

Appendix C:
Role of the coherent pump strength
and coherent pumping with and
without a rotating wave
approximation

In the main text, we chose an example coherent pump
strength of Ωd = 0.1g. Obviously if we increase this value,

thenhigher order nonlinearities become important, though
we cannot increase it arbitrarily or the assumed dressed
states are no longer valid. We also note that if this value is
too small, then the numerical simulations can become very
difficult. For completeness, here we show two further
examples, for the larger pump strengths of Ωd = 0.2g
and Ωd = 0.3g.

Figure 6 shows that in comparison to Figure 3 if themain
text, the center peak increases with larger coherent driving
(as expected), and begins to dominate the spectral response
when the pump is sufficiently large. The gauge correction is
also seen to be even more dramatic for the larger pump
strength, especially in the dipole gauge. In both cases we
see a significant influence from the gauge correction, and
recognize once again that the corrected dipole gauge and
corrected Coulomb gauge master equations yield identical
results.

Next we also investigate the results of coherent
driving with and without an RWA on the drive term. With
a rotating-wave approximation, as mentioned earlier,
we use Hdrive(t) = (Ωd/2)(x−GFe−iωLt + x+GFe

−iωLt) (as in the
main text), and without this approximation, we use
Hdrive(t) = Ωd x−GF + x+GF( )cos(ωLt). Figure 7 compares
these two pump forms for computing the cavity
spectrum and g(2)(τ), which are shown to essentially
yield the same behavior, apart from fast oscillations in
some of the CFs when an RWA is not made. Since we do
not consider the effect of coherent driving on the dressed-
states (from which we solve the master equations), then
pumping within an RWA should be valid within the
same level of approximations, and is arguably more self
consistent.

Appendix D:
Further details on the numerical
calculations

D.1 Simulation parameters

In our numerical simulations in themain text, a large initial
basis size of 50 photon states was used. This ensures that
the lowest dressed states, which have a significant chance
to become populated, are correct, before computing the
spectra in a truncated basis space.With 24 dressed states in
the truncated space, we observe negligible excitation in
the highest states and numerically converged results
(i.e., additional dressed states make no change to our
simulations and results). The eigenenergy simulation in
Figure 2a of the main text was conducted with 200 photon
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states to ensure accurate numerical convergence. Longer
times are required for simulations at higher η and as such,
the simulation time was between 150/g and 550/g
throughout, with 20 time-steps in each period of the
pseudo-steady-state oscillation. This was also carefully
checked to be sufficient. Numerical calculations were
performed using QuTiP under Python [48].

With coherent excitation, numerical calculations of the
spectra outside the rotating wave approximation require

some care. Specifically, the t integral in the spectra definition
(Eq. (7) of themain text) was completed over the lastωL time
period so as to ignore turn-on dynamics, after ensuring that
the system had reached its pseudo-steady-state (namely,
after it evolves to a continuous oscillation dynamic with
no change). Consequently, there is a potential issue with
computing a Fourier transform of an oscillating function
over a finite range. This is commonly done for computing
USC spectra but is rarely discussed. Formally, the Fourier

Figure 6: Left four panels show cavity spectra and g(2)(τ) forΩd = 0.2g, and the right four panels are forΩd = 0.3g (cf. Figure 4 of the main text
and also below). Solid lines show the gauge corrected master equation results.

Figure 7: Cavity spectra and g(2) withΩd = 0.1g coherent pumping, using a full cosine excitation (left), and an RWA for the pumping term (right,
as also shown in Figure 4 of the main text). Solid lines show the gauge corrected master equation results.
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transform of a sinω0t function over a finite range a is
proportional to the difference of two sinc functions at ±ω0,
shown explicitly below,

F−a→a(ω) = 1̅ ̅̅
2π

√ ∫
a

−a e
−iωt sinω0tdt

= 1
2i

̅̅̅
2π

√ ∫
a

−a ei(ω0−ω)t − e−i(ω0+ω)t[ ]dt
= −ia̅̅̅

2π
√ sinc a(ω − ω0)( ) − sinc a(ω + ω0)( )[ ].

(D1)

When extending this time sampling range to infinity, the
Fourier transform tends towards the sum of two Dirac delta
functions,

F(ω) = i

̅̅
π
2

√
δ(ω + ω0) − δ(ω − ω0)[ ]. (D2)

This can have a significant effect on both the total and
coherent spectrum, but in all our simulations the
incoherent spectrum with coherent driving is unaffected,
as it does decay to zero for large time delays, and
performing the quantum regression theorem over only a
single period is thus adequate for our case. For example,
we have checked that we obtain the same result when
integrating over ten periods.

D.2 Quantum regression theorem

To calculate the two-time CF in the spectrum definition
(Eq. (7) of the main text), we make use of the quantum
regression theorem,

⟨x−Δ(t)x+Δ(t + τ)⟩
= Tr x+Δ(0)U(t + τ, t) ρ(t)x−Δ(0)[ ]U†(t + τ, t){ }, (D3)

whereU(t + τ, t) is the total (system + environment) unitary
evolution operator such that A(t + τ) = U†(t + τ, t)
A(t)[ ]U(t + τ, t) for an operator A(t). Within the Born–
Markov approximation, the implementation of the quan-
tum regression theorem for Eq. (D3) is as follows: find the
reduced density matrix at t, multiply on the right by x−Δ(0),
evolve this new operator from t to (t + τ) with the master
equation to form the effective density matrix, and finally
take the expectation value of x+Δ(0) with respect to this
effective density matrix. Note that x−Δ(0) = x−(0) − ⟨x−(t)⟩
where the second termmust be evaluated at t, so x−Δ(0)does
implicitly depend on t. For the positive frequency operator,
we have x+Δ(0) = x+(0) − ⟨x+(t + τ)⟩, but if we substitute
this into Eq. (D3), we see that the second term (proportional
to ⟨x+(t + τ)⟩) is exactly zero, so there is no need to find the

expectation value of x+ at (t+ τ). In practice,we conduct the
quantum regression theorem for every t in the last period
(in the simulation) of the pseudo-steady-state.

For the more complex second-order CF in Eq. (8) of the
main text, we have a more complicated version of the
quantum regression theorem seen in Eq. (D3) as follows:

G(2)(t, τ) = ⟨x−(t)x−(t + τ)x+(t + τ)x+(t)⟩
= Tr x−(t)x−(t + τ)x+(t + τ)x+(t)ρ(0){ }
= Tr U†(t)x−U(t)U†(t + τ)x−x+{

×U(t + τ)U†(t)x+U(t)ρ(0)}
= Tr x−U†(t + τ, t)x−x+U(t + τ, t)x+ρ(t){ }
= Tr x−x+U(t + τ, t){

× x+ρ(t)x−[ ]U†(t + τ, t)},
(D4)

where we have written U(t) ≡ U(t, 0), we use the notation
A(0) = A for an operator A(t), and we make use of the
identities U(t + τ) = U(t + τ, t)U(t) and U(t)U†(t) = U†(t)
U(t) = 1 where 1 is the identity matrix. This can be
understood simply as the expectation value of the oper-
ator x−x+ with respect to the effective density matrix
ρ̃(t + τ) = U(t + τ, t) x+ρ(t)x−[ ]U†(t + τ, t), which is the
density matrix at t multiplied on the left by x+ and on the
right by x− and evolved from t to t + τ.

Appendix E:
Bloch–Siegert Hamiltonian and per-
turbative unitary transform to obtain
analytical scattering rates and
spectra

Here we show the approximate solution for the spectra and
the origin of asymmetry using the Bloch–Siegert (BS)
Hamiltonian [29, 66]. From the system Hamiltonian in the
dipole gauge,

H = ω0σ+σ− + ω0a†a + ig(a† − a)σx, (E1)

we apply the unitary transformation (“BS transformation”)
HBS = U†

BSHUBS, where

UBS = exp −i η
2
(a†σ+ + aσ−)[ ] exp −η

2

4
σz(a2 − a†2)[ ], (E2)

which is chosen to eliminate counter-rotating terms in the
systemHamiltonian, and retain terms of up to second order
in g [66], finding

HBS = ω0(1 + η2/2)σ+σ− + ω0(1 − η2/2)a†a
+ig(a†σ− − aσ+), (E3)

where we are considering aweak excitation approximation
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(WEA), and so a term proportional to a†aσ+σ− has been
dropped, aswell as terms proportional to the identity so the
ground state energy remains zero. The resulting BS
Hamiltonian of Eq. (E3) conserves excitation number, and
thus is easily diagonalized.

For resonant bare dipole and cavity frequencies
however, the BS Hamiltonian gives no corrections to the
JC energies to order η2 (and thus often finds more utility in
describing the dispersive regime of cavity QED), but does
correct the eigenstates. To first order in η, the corrected
JC-like states are

| + 〉 = 1̅
2

√ 1 + η
4

( )|e,0 〉 +i 1 − η
4

( )|g, 1〉[ ], (E4)

| − 〉 = 1
2̅

√ 1 − η
4

( )|e,0 〉 −i 1 + η
4

( )|g, 1〉[ ], (E5)

which in conjunction with the ground state |G⟩ ≡ |g, 0⟩ gives
the three states considered in the WEA. Note that in this
section, we use a notation where the system states are iden-
tified by their composition in the transformed frame.

The effect of the counter-rotating terms eliminated in
the BS transformation can be quantified by considering the
transition matrix elements of the quadrature operator Π
which we use to couple to the external reservoir fields. As
in the main text, we use ΠC to refer to the uncorrected
operator in the dipole gauge (which is equivalent in form
to the Coulomb gauge operator) corresponding to the
electric field quadrature mode operator. Performing the
BS transformation, we find ΠC = i(a† − a)→ P = 1̅

2
√

i(a† − a) − η/[ 2σx], and so x+ = −ia − η/2σ−, where x+ is the
“positive frequency” (taking higher energy states to lower
energy ones) component of the transformed operator
P = 1̅

2
√ U†ΠCU = 1̅

2
√ x+ + x−( ). We introduce the notation P

to reiterate that the operator which we assume to couple
the system to the reservoir modes is proportional to the
momentum quadrature operator of the cavity mode. With
gauge corrections, the correct dipole gauge quadrature
operator is insteadΠD = i(a† − a) + 2ησx, and so to first order
in η, we find P → P ′ = 1̅

2
√ i(a† − a) + 3η/[ 2(σ+ + σ−)], and

x+ → x+GC = −ia + 3η/2σ−.
The transition matrix elements (modulus squared)

with respect to P are, with no gauge corrections,

|P±G|2 = |⟨±|P|G⟩|2 = 1
4
(1 ∓ 3η/2) +O(η2). (E6)

However, with gauge corrections, we have

|P ′
±G|2 = | ⟨ ±|P ′|G ⟩ | = 1

4
(1 ± 5η/2) +O(η2), (E7)

and we can infer immediately, that the linewidth asym-
metry will change with gauge correction.

As shown in Figure 8, the leading order effect in η of gauge
corrections is in excellent agreement with the numerical
solution (Figure 2(c) of main text), for the perturbative
regime (η ≲ 0.2). For higher values of η, then the
numerically exact |⟨G|P|j⟩|2 with and without gauge
corrections explain the main features of the spectra,
especially the different linewidths as a function of η, and
how these drastically differ with gauge correction. Below
we explain why, to the same order of approximations, that
the change in linewidth is directly proportional to the
weights of the spectral peaks in the spectra.

Solving the relevant Bloch equation with weak
excitations, then the spectral linewidths (full widths at half
maxima)of the first twoexcited states are, in theSC limitg/κ≫
1, simply given by the projections abovemultiplied by 2κ. This
is theprimary effect for theobservedasymmetry for increasing
η (as we can also see from the full numerical calculations).
Thus, even in the perturbative BS regime, the asymmetry
stemming from the counter rotating wave effects is
qualitatively different when one properly accounts for gauge
corrections. We justify this assumption in more detail below.

Considering the effect of the BS transformation to first
order in in η, the relevant Bloch equations are

ρ̇± = −Γ(GC)± ρ± + Γc(ρ+− + ρ−+) + EΓ(GC)± ρG, (E8)

ρ̇+− = −2(ig + Γc)ρ+− + Γc(ρ+ + ρ−) − 2EΓcρG, (E9)

ρ̇±G = − Γ(GC)±
2

+ i(ωc ± g)( )ρ±G + Γcρ∓G, (E10)

where ρm =⟨m|ρ|m⟩, ρij =⟨i|ρ|j⟩, Γc = κ/4, and E = Pinc/κ. The
polariton decay rates are Γ± = κ

2 (1 ∓ 3
2 η) without

Figure 8: Here we show the full numerical calculations as shown in
Figure 2(c) of the main text with (olive solid curve) and without
gauge corrections (olive dashed dashed). We also show the BS
models, up to first order, againwith (blue solid curve, 1/4(1 − 5η/2))
and without gauge corrections (orange dashed curve, 1/4(1 + 3η/2)).
The general trends at lower η are well represented.
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considering the dipole gauge correction, and ΓGC± =
κ
2 (1 ± 5

2 η)with the correction. We require E ≪ 1 for theWEA
to be a valid approximation.

Within the WEA, it is possible to find an analytic
expression for the emission spectrum Scav that is valid
perturbatively up to order η by solving the above Bloch
equations derived from the BS Hamiltonian. In the strong
coupling regime, this spectrum takes on a particularly simple
form, which is useful to gain qualitative insight into the
spectral asymmetries which are shown to arise in our main
results. In particular, to leading order in E, the steady state
solutions to the Bloch equations give the very simple solution
ρ+ = ρ− = (1 − ρG)/2 = E, with all other matrix elements zero.

The steady-state cavity spectrum with incoherent
driving is

Scav(ω)∝ Re ∫
∞

0

dτeiωτ ⟨ x−x+(τ)⟩[ ]. (E11)

The steady-state CF ⟨x−x+(τ)⟩ can be calculated with the
QRT, and the result for the spectrum after Fourier trans-
forming is

Scav(ω)∝ Re
̅̅̅̅
Γ(GC)+

√
χ̃+G(ω) −

̅̅̅̅
Γ(GC)−

√
χ̃−G(ω)[ ], (E12)

where

χ̃±G(ω)

= ±E
−Γc

̅̅̅̅
Γ(GC)∓

√
+

̅̅̅̅
Γ(GC)±

√
i(ω0 ∓ g − ω) + Γ∓

2
[ ]

i(ω0 + G − ω) + κ
4

( ) i(ω0 − G − ω) + κ
4

( ),
(E13)

where

G =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
g2 − κ

4
( )2

− ig
Γ+ − Γ−

2

√
. (E14)

Much simplification can be made if we assume α ≡ g/κ is
large, and neglect terms of order 1/α2 Then, G ≈ g − i
(Γ(GC)+ − Γ(GC)− )/4, and we find

χ̃±G(ω) ≈ ±E
̅̅̅̅
Γ(GC)±

√
i(ω0 ± g − ω) + Γ(GC)±

2

, (E15)

and

Scav(ω)≈ Γ2(GC)+
(ω−ω0 −g)2 + Γ2(GC)+

4

+ Γ2(GC)−
(ω−ω0 +g)2 + Γ2(GC)−

4

. (E16)

Within this approximation (SC, first order η corrections, and
weak excitation), the two polariton peaks have the same
height, and have a ratio of peak areas A+/A− = Γ(GC)+ /Γ(GC)− .
Without gauge correction, this ratio is ∼1 − 3η +O(η2), and
with corrections it is ∼1 + 5η+ O(η2), which quantifies the
change in asymmetry to leading order. We can understand
this asymmetry on physical grounds as arising from
which polariton branch is more cavity-like: In the BS
frame, the BS shift causes a detuning between cavity and
TLS resonances, which leads to cavity-like and atom-like
polariton branches. In the WEA, both polariton branches
become equally populated, and thus, in the SC regime, their
spectral weights are determined by the transition matrix
elements PG±, or in other words, how much the operator
which couples the cavity field to decay channel modes also
couples the polariton-ground transition. Themore cavity-like
transition experiences a larger decay rate, but which branch
this corresponds to is dependent on both the gauge
corrections and the BS frame transformation. The interplay
of these effects thus gives the overall asymmetry.

Finally, to confirm the accuracy of the analytical formula
using the same material parameters as in the main text, we
show a zoom in of the two main polariton peaks (near ωc ± g)
using the full numerical solution versus the simple analytical
formula in Figure 3, using η = 0.05 and η = 0.1. Clearly the
comparison is qualitatively excellent and themain differences
with gauge corrections stem from the changing linewidth.
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responsibility for the entire content of this submitted
manuscript and approved submission.

Figure 9: A zoom in of the full numerical spectra (solid curves), with (blue solid curve) andwithout (orange solid curve) the gauge correction,
compared with the analytical solution in Eq. (E16) (dashed curves), again with (pink dashed curve) and without (brown dashed curve)
the gauge correction. Parameters are the same as in the main text, with κ = 0.25g, though we use a slightly smaller driving strength to
ensure the WEA remains valid, Pinc = 0.00025g.
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