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Abstract: The Thomas–Reiche–Kuhn (TRK) sum rule is a
fundamental consequence of the position–momentum com-
mutation relation for an atomic electron, and it provides an
important constraint on the transitionmatrix elements for an
atom. Here, we propose a TRK sum rule for electromagnetic
fieldswhich is valid even in thepresence of very strong light–
matter interactions and/or optical nonlinearities. While the
standard TRK sum rule involves dipole matrix moments
calculated between atomic energy levels (in the absence of
interaction with the field), the sum rule here proposed in-
volves expectation values of field operators calculated
between general eigenstates of the interacting light–matter
system. This sum rule provides constraints and guidance for
the analysis of strongly interacting light–matter systems and
can be used to test the validity of approximate effective
Hamiltonians often used in quantum optics.

Keywords: cavity QED; quantum optics; sum rules.

1 Introduction

1.1 A brief history of sum rules in quantum
mechanics

Since the beginning of quantum mechanics, sum rules
have proved to be very useful for understanding the gen-
eral features of difficult problems. These relations, ob-
tained by adding (sum) unknown terms, power tool for the
study of physical processes [1]. Historically, the first
important sum rule is found in atomic physics and con-
cerns the interaction of electromagnetism with atoms: the
Thomas–Reiche–Kuhn (TRK) sum rule [2–4]. It states that
the sum of the squares of the dipole matrix moments from
any energy level, weighted by the corresponding energy
differences, is a constant. The TRK and analogous sum
rules, like the Bethe sum rule [5], play an especially
important role in the interaction between light and matter.
They have widely been applied to the problems of electron
excitations in atoms, molecules, and solids [6].

For an atomic electron, the TRK sum rule is a direct
consequence, of the canonical commutation relation be-
tween position andmomentum. It is possible to view it as a
necessary condition in order not to violate this commuta-
tion relation [7]. Among the many consequences of this
sum rule, it constrains the cross sections for absorption and
stimulated emission [8]. It has also been shown that useful
sum rules can be obtained for nonlinear optical suscepti-
bilities [9–11]. A modified TRK sum rule for the motion of
the atomic center of mass and a generalized TRK sum rule
to include ions have been also obtained [12]. Extensions of
the TRK sum rule to the relativistic case have been studied
(see, e.g., [13, 14]). Important sum rules have also been
developed in quantum chromodynamics (see, e.g., [15]).

Such sum rules also play a relevant role in the analysis
of interacting electron systems [16, 17]. Since they are a
direct consequence of particle conservation in the system,
their satisfaction is necessary to guarantee a gauge-
invariant theory [16, 17] (see, e.g., [18, 19] as two recent
examples). In interacting electron systems, the longitudi-
nal version of the TRK sum rule (known as f-sum rule)
provides a very useful check on the consistency of any
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approximate theory and can permit a direct calculation of
collective mode frequencies in the long wavelength limit
[16]. A striking example of the relevance of sum rules in
interacting electron systems is constituted by the apparent
gauge invariance difficulty in superconductors (Meissner
effect), originating by the violation of the f-sum rule of
approximate models [20].

Almost all the developed sum rules have been derived
for the degrees of freedom of particles. One exception is in
the study by Barnett and Loudon [21], where optical sum
rules have beenderived for polaritons propagating through
a linear medium.

1.2 Summary of our main results

Here, we propose a TRK sum rule for electromagnetic fields
which is valid even in the presence of very strong light–
matter interactions and/or optical nonlinearities [22, 23].
While the standard TRK sum rule involves dipole matrix
moments calculated between atomic energy levels (in the
absence of interaction with the field), the sum rule here
proposed involves the expectation values of the field co-
ordinates or momenta calculated between general eigen-
states of the interacting light–matter system (dressed
light–matter states) and the corresponding eigenenergies
of the interacting system.

In this work, we also present a generalized atomic TRK
sum rule for atoms strongly interacting with the electro-
magnetic field. This sum rule has the same form of the
standard TRK sum rule but involves the energy eigenstates
and eigenvalues of the interacting system.

The sum rules for interacting light–matter systems
proposed here can be useful to analyze general quantum
nonlinear optical effects (see, e.g., [24–27]) andmany-body
physics in photonic systems [28], like analogous sum rules
for interacting electron systems, which played a funda-
mental role for understanding the many-body physics of
electron liquids [16, 17, 20]. The proposed sum rules
become particularly interesting in the nonperturbative re-
gimes of light–matter inter-actions.

In the last years, several methods to control the
strength of the light–matter interaction have been devel-
oped, and the ultrastrong coupling (USC) between light and
matter has transitioned from theoretical proposals
to experimental reality [22, 23]. In this new regime of
quantum light–matter interaction, beyondweak and strong
coupling, the coupling strength becomes comparable to the
transition frequencies in the system or even higher (deep
strong coupling [DSC]) [29–32]. In theUSCandDSC regimes,
approximations widely employed in quantum optics break

down [33], allowing processes that do not conserve the
number of excitations in the system (see, e.g., [27, 34–37]).
The nonconservation of the excitation number gives rise to
a wide variety of novel and unexpected physical phenom-
ena in different hybrid quantum systems [35, 38–58]. As a
consequence, all the system eigenstates, dressed by the
interaction, contain different numbers of excitations. Much
research on these systems has dealt with understanding
whether these excitations are real or virtual, how they can
be probed or extracted, how they make possible higher
order processes even at very low excitation densities, and
how they affect the description of input and output for the
system [22, 23].

The eigenstates of these systems, including the ground
state, can display a complex structure involving super-
position of several eigenstates of the noninteracting sub-
systems [22, 23, 59] and can be difficult to calculate. As a
consequence, a number of approximation methods have
been developed [60, 61]. Moreover, the output field corre-
lation functions, connected to measurements, depend on
these eigenstates (see, e.g., [48, 62]). Hence, sum rules
providing general guidance and constraints can be very
useful to test the validity of the approximations. The gen-
eral sum rule proposed in this article can also be used to
test the validity of effective Hamiltonians often used in
quantum optics and cavity optomechanics [58, 63, 64]. In
addition, this generalized TRK sum rule applies to the
broad emerging field of nonperturbative light–matter in-
teractions, including several settings and subfields, as
cavity and circuit quantum electrodynamics (QED) [22],
collective excitations in solids [65], optomechanics [63],
photochemistry and QED chemistry [59, 66].

2 Sum rule for interacting photons

A key property used for the derivation of the TRK sum rule
is that the commutator between the electron coordinate
and the electronic Hamiltonian does not depend on the
electronic potential, which is a function of the coordinate
only, and hence, it is universal. Considering for simplicity,
a single electron 1D system, if x is the electron coordinate

and Ĥat � p̂2/2m + V(x) is the electronic Hamiltonian:

[x, Ĥat] � [x, p̂2/2m] � i(ℏ/m)p̂.
In the Coulombgauge, the (transverse) vector potential

A represents the field coordinate, while its conjugate mo-
mentum Π is proportional to the transverse electric field:

Π(x, t) � −ε0Ê(x, t) � ε0
˙̂A(x, t). (1)
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A general feature of the light–matter interaction Hamilto-
nians derived from the minimal coupling replacement (as
for the Coulomb gauge) is that the momenta of the matter
system are coupled only to the field coordinate. We can
express the total light–matter quantum Hamiltonian as
Ĥ � ĤF + ĤM + ĤI , where the first two terms on the r.h.s.
are the field- and matter system–free Hamiltonians, and
the third describes the light–matter interaction. Using (1)
and the Heisenberg equation iℏ ˙̂A � [Â, Ĥ], we obtain the
following relation:

iℏΠ � ε0[Â, Ĥ] � ε0[Â, ĤF], (2)

where the second equality follows from [Â, ĤI] � 0, which
holds, e.g., in the Coulomb gauge. For simplicity, we
consider the case of a quasi 1D electromagnetic resonator
of length L so that the expression for the electric field
operator can be simplified to Ê(r, t)→ s̃Ê(x, t), where
s̃ � y/

∣∣∣y∣∣∣, where x is the coordinate along the cavity axis,
and y is a coordinate along an axis orthogonal to the cavity
axis. The vector potential (as well as the electric field
operator) can be expanded in terms of photon creation and
destruction operators as

Â(x, t) � ∑
m
Am(x)âme−iωmt + h.c.

and

Ê(x, t) � ∑
m
Em(x)âme−iωmt + h.c.,

where

Am(x) � [ℏ/(2ωmε0S)]1/2um(x),
and

Em(x) � iωmAm(x).
Here SL is the resonator volume, the subscript m labels a
generic mode index with frequency ωm, and um(x) is the
normal modes of the field chosen as real functions. For
example, imposing the vanishing of the electric field at the
two end walls at x � ±L/2 of the cavity,

um(x) � (1/ 		
L

√ ) sin km(x + L/2),
where km � πm/L.

Let us now consider the matrix elements of the oper-

ators in (2) between two generic eigenstates
∣∣∣∣ψi〉 of the total

Hamiltonian Ĥ. We obtain the following:

Πij � iε0ωijAij, (3)

where ωji � ωj − ωi and we used the notation
Oij � 〈ψi

∣∣∣∣∣Ô∣∣∣∣∣ψj〉. Here and in the following, j = 0 indicates the
system ground state, and the energy levels are ordered

according to their energy: j > i if ωj > ωi. We now multiply
both sides of (3) by um(x) and integrate over x. By defining

Q̂(m) � (âm + â†
m)/ 	

2
√

,

and

P̂(m) � i(â†
m − âm)/ 	

2
√

,

we obtain the corresponding relation for the individual
modes:

ωmP(m)
ij � iωijQ(m)

ij . (4)

It is worth noticing that, in the limit when the light–matter
interaction vanishes,

∣∣∣∣∣P(m)
ij

∣∣∣∣∣ � ∣∣∣∣∣Q(m)
ij

∣∣∣∣∣, and (4) can easily be
verified analytically. When the interaction becomes relevant,
so that the system eigenstates differ from the harmonic spec-
trum for free fields, the ratio between the two quadratures can
be very different from 1 and can be determined by the only
knowledge of the energy spectrum, independently on the
specific interacting system.Equation (4) is thefirst result of this
work. It shows that the ratio between the twofield quadratures
is uniquely determined by the energy spectrum. The two
quadratures can display very different matrix elements when
the interaction with the matter system changes significantly
the energy levels of the interacting systems, as it occurs in the
USC and DSC regimes.

Let us now consider the commutator between the
mode coordinate and its conjugate momentum:

i � [Q̂(m)
, P̂(m)] � 1

iℏωm
[Q̂(m)

, [Q̂(m)
, ĤF]], (5)

where we used

ωmP̂(m) � ˙̂Q
(m)

, and [Q̂(m)
, Ĥ] � [Q̂(m)

, ĤF].
Developing the double commutator, considering its matrix
elements between two generic eigenstates of the total

Hamiltonian Ĥ and inserting the identity operators

(Î � ∑
k

∣∣∣∣ψk 〉 〈ψk

∣∣∣∣), we obtain the following relation:

∑
k

ωk, i + ωk, j

ωm
Q(m)

i, k Q(m)
k, j � δi, j, (6)

which reduces (choosing j = i) to the TRK sum rule for
interacting fields:

2∑
k

ωk, i

ωm

∣∣∣∣Q(m)
i, k

∣∣∣∣2 � 1. (7)

By using (4), (7) can be also expressed in terms of the
momenta matrix elements:

2ωm∑
k

∣∣∣∣P(m)
i, k

∣∣∣∣2/ωk, i � 1.
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Formally, it coincides with the TRK sum rule for atoms;
however, in (7) the matrix elements of the field-mode co-
ordinate replace the atomic electric dipolematrix elements.
An important difference is that the atomic TRK sum rule
[67] considers atomic energy eigenstates, calculated in the
absence of interaction with the field. On the contrary, this
sum rule is very general since it holds in the presence of
interactions with arbitrary matter systems every time the
interaction occurs via the field coordinate (e.g., Coulomb
gauge). We also observe that (7) describes a collection of
sum rules, one for each field mode m. Actually, following
the same reasoning which led us to (7), a generalized
atomic TRK sum rule for atoms strongly interacting with
the electromagnetic field [analogous to (7)] can be easily
obtained, as shown in Section 4.

3 Applications

3.1 Quantum Rabi model

The quantum Rabi Hamiltonian describes the dipolar
coupling between a two-level atom and a single mode of
the quantized electromagnetic field. Recently, it has been
shown [68] that the correct (satisfying the gauge principle)
quantum Rabi Hamiltonian in the Coulomb gauge

ĤC � ℏωcâ
†â + ℏω0

2
{σ̂z cos[2η(â + â†)]

+ σ̂y sin[2η(â + â†)]}, (8)

strongly differs from the standard model (see also the
studies by De Bernardis et al [69], Stokes et al [70], and
Settineri et al [71] for gauge issues in the USC regime). Here,
ωc is the resonance frequency of the cavity mode, ω0 is the
transition frequency of a two-level atom, â and â† are the
destruction and creation operators for the cavity field,
respectively, while the qubit degrees of freedom are
described by the Pauli operators σ̂i. The parameter

η � A0d/ℏ
(A0 is thezero-pointfluctuationamplitudeof thefieldpotential
and d is the atomic dipole moment) in (A) describes the
normalized light–matter coupling strength. When the
normalized coupling strength is small (η≪ 1), consideringonly
first-order contributions in η, the standard interaction term
ℏω0η(â + â†)σ̂y is recovered. If the system is prepared in its
first excited state, the photodetection rate for cavity photons is
proportional to

∣∣∣∣P1,0

∣∣∣∣2 (see [62, 71]). Figure 1(a) displays this
quantity (black dashed curve) as well as

∣∣∣∣Q1,0

∣∣∣∣2 (dotted blue)
versus the normalized coupling η, calculated after the nu-
merical diagonalization of (8). The two quantities are equal

only at negligible coupling. When the coupling strength
increases, the two quantities provide very different results.
However, in agreement with (4), the numerically calculated
(ω2

1,0/ω
2
c)
∣∣∣∣Q1,0

∣∣∣∣2 coincides with ∣∣∣∣P1,0

∣∣∣∣2. In contrast, the Jaynes
Cummings (JC) model,

ĤJC � ℏωcâ
†â + ℏω0/2σ̂z + ℏηωc(âσ̂+ + h.c.),

violates (4) providing coupling-independent values∣∣∣∣Q1,0

∣∣∣∣2 � ∣∣∣∣P1,0

∣∣∣∣2 [the horizontal line in Figure 1(a)].
These findings show that, using the wrong quadrature

(Q instead of P) for the calculation of the photodetection
rate for systems in the USC regime can result into signifi-
cantly wrong results. This is a direct consequence of (3).

In order to understand how the sum rule in (7) applies
to the quantum Rabi model, we calculate partial sums with
an increasing number of states. Specifically, we calculate

∑
N

j�1
F 0j, where F 0j � 2(ωj,0/ωc)∣∣∣∣Q0, j

∣∣∣∣2.
Here and in the following, the eigenstates of the total
Hamiltonian, obtained for a given coupling strength η, are
labeled so that i > j forωi >ωj. Differently from the JCmodel,
the quantum Rabi model does not conserve the excitation
number. Therefore, expectation values likeQ0, j (and hence
F 0, j) can be different from zero also for j > 2. Figure 1(b)
displays such partial sums as a function of the number of
levels included, obtained for different values of η. For small
values (η � 0.01), only the two lowest excited levels
contribute to the sumwith approximately equal weights, in
good agreement with the JC model. For η � 0.2, still only
two transitions contribute to the sum rule; however, the
second transition provides a larger contribution to the sum.
For η � 0.5, the contribution of the lowest energy transition
becomes smaller, while F 02 � 0 owing to the parity selec-
tion rule. Note that, at η � ηcr ≃ 0.44, there is a crossing
between the levels 2 and 3 [see inset in Figure 1(b)] so that,
for η > ηcr, state |2〉 has the same parity of state |0〉. It is
sufficient to include F 03 to approximately satisfy the sum
rule. For η � 1, F 0,1 is very small and F 0,2 � 0. In this case,
the sum rule is satisfied mainly with the contributions F 0, j

with 3 ≤ j ≤ 6. Finally, for very high values of the normalized
coupling strength (η � 1.8), only one contribution (F 0,3)
becomes relevant. This effect is due to the light–matter
decoupling [71] which occurs at very high values of η,
where the system ground state |0〉 is well approximated by∣∣∣g,0〉 [the first entry in the ket labels the photon number,
the second labels the qubit state: ground (g) or excited (e)],
then |1 〉 ≃ |e,0〉, |2 〉 ≃ |e, 1〉, |3 〉 ≃ ∣∣∣g, 1〉, and so on: the higher
energy levels are of the kind ≃

∣∣∣g(e), n > 1〉. This explains
why for η � 1.8, the only significant contribution to the sum
isF 0,3. These behaviors of the partial sums and of the terms
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F i, j are closely connected to accessible experimental fea-
tures, as explicitly shown in the example below.

3.2 Nonlinear electromagnetic resonator

As a further test, we analyze a single-mode nonlinear
optical system described by the following effective
Hamiltonian:

Ĥ � ℏωcâ
†â + ηℏωc(â + â†)3 + η

10
ℏωc(â + â†)4. (9)

Here ĤF � ℏωcâ
†â, while the nonlinear terms are assumed

to arise from the dispersive interaction with some material
system [72]. Note that the nonlinear terms in (9) commute
with the field coordinate Q̂ � (â + â†)/ 	

2
√

; hence, Eqs. (4)
and (7) hold. In contrast, the presence of a standard self-
Kerr term ∝ â†2â2 (see, e.g., [73]) would violate them. The
inset in Figure 2 shows the anharmonic energy spectrum
ωk,0 as a function of η. Figure (2) displays the partial sums
∑N

j�1F 0j as versus the number of included levels, calculated
for different values of η. Increasing the anharmonicity co-
efficient η, the number of contributions in the sum in-
creases at the expense of the contributionF 01 of the lowest
energy transition. This behavior is closely connected with
accessible experimental features which can be observed,
e.g., in linear transmission spectra. For a two-port (equally
coupled to the external modes) nonlinear resonator, the
transmission spectrum (see Appendix A for supporting
content) can be written as follows:

T(ω) � ω2

∣∣∣∣∣∣∣∣∑k
Γk,0/ωk,0

ωk,0 − ω − iΓk

∣∣∣∣∣∣∣∣
2

, (10)

where the radiative decay rates are

Γk, j � 2πg2(ωk, j)∣∣∣∣Qk, j

∣∣∣∣2, Γk � ∑
j<k
Γk, j,

and we assumed an ohmic coupling with the external
modes (g2(ω)∝ ω). When the anharmonicity is switched
off (η � 0), Γk,0 ∝ F 0k � 0 for k ≠ 1, and the transmission
spectrum presents a single peak at ω = ωc [dashed curve in
Figure 2(b)]. When η ≠ 0, Γk,0 ∝ F 0k ≠ 0, and the trans-
mission spectrum in Figure 2 evolves accordingly (the blue
continuous curve shows the spectrum calculated for
η � 0.12). By integrating the individual spectral lines in
(10), we obtain for each line a contribution ≃ πΓ2k,0/Γk,
which is approximately proportional to F 0k in the sum
(notice that Γk ∼ kΓ1). The inset in Figure 2 shows the inte-
grated lines for two values of η.

3.3 Frequency conversion in ultrastrong
cavity QED

The relations in (4) and (7) are very general. So far, we
applied them to single-mode fields; however, they are also
valid in the presence of (even interacting) multimode fields
(see, e.g., [74, 75]). Here, we analyze the TRK sum rule for
interacting photons in a three-component system consti-
tuted by two single-mode resonators ultrastrongly coupled
to a single superconducting flux qubit. This coupling can
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induce an effective interaction between the fields of the
two resonators. Using suitable parameters for the three
components, the system provides a method for frequency
conversion of photons which is both versatile and deter-
ministic. It has been shown that it can be used to realize
both single and multiphoton frequency conversion pro-
cesses [52]. The system Hamiltonian is given as follows:

Ĥ � ℏωaâ
†â + ℏωbb̂

†
b̂ + ℏω0

2
σ̂z + ℏ[ga(â + â†)

+ gb(b̂ + b̂
†)][cos(θ)σ̂x + sin(θ)σ̂z], (11)

where (â,ωa, ga) and (b̂,ωb, gb) describe the photon
operator, the frequency mode, and the coupling with the
qubit for the two resonators. The angle θ encodes the qubit
flux offset which determines parity symmetry breaking. A
zero flux offset implies θ = 0. Figure 3(a) displays the lowest
normalized energy levels (ω − ωg)/ω0 (we indicated with
ℏωg the ground state energy) versus the qubit frequency
ω0/ω0 obtained diagonalizing numerically the Hamiltonian
in (11). We used the parameters ωa � 3ω0, ωb � 2ω0,
θ � π/6, ga � gb � 0.2ω0, where ω0 is a reference point for
the qubit frequency. Notice that the two resonators are set in
order that their resonance frequencies satisfy the relationship
ωa � ωb + ω0. The first excited level is a line with slope ≃1,
corresponding to the approximate eigenstate

∣∣∣∣ψ1 〉 ≃|0,0, e〉,
where the first two entries in the ket indicate the number of
photons in resonator a and b, respectively, while the third
entry indicates the qubit state. The second excited level is a
horizontal line corresponding to the eigenstate

∣∣∣∣ψ2 〉 ≃
∣∣∣0, 1, g〉;

the next two lines on the left of the small rectangle in
Figure 3(a) (for values ofω0/ω0 before the apparent crossing)
correspond to the states

∣∣∣∣ψ3 〉 ≃|0, 1, e〉 and
∣∣∣∣ψ4 〉 ≃

∣∣∣1,0, g〉. The
apparent crossing in the rectangle is actually an avoided
level crossing, as can be inferred from the enlarged view in
Figure 3(b). It arises from the hybridization of the states
|0, 1, e〉 and ∣∣∣1,0, g〉 induced by the counter-rotating terms in
the system Hamiltonian. The resulting eigenstates can be
approximately written as follows:

∣∣∣∣ψ3 〉 ≃ cos θ|0, 1, e〉 − sin θ
∣∣∣1,0, g〉∣∣∣∣ψ4 〉 ≃ sin θ|0, 1, e〉 + cos θ
∣∣∣1,0, g〉. (12)

The mixing is maximum when the level splitting is mini-
mum (at ω0/ω0 ≃ 1.056). In this case, θ � π/4.

It has been shown [52] that this effective coupling
can be used to transfer a quantum state constituted by
an arbitrary superposition of zero and one photon in
one resonator (e.g., a) to a quantum state corresponding
to the same superposition in the resonator at frequency
ωb.

This system represents an interesting example of
two interacting optical modes (with the interaction
mediated by a qubit). In order to understand how the sum
rule in (7) applies to such a system, we investigate its
convergence, calculating partial sum rules for the two

modes. Figure 4 shows ∑N
j�0F a

0j (a) and ∑N
j�1F b

1j (b) for

different values of N. The black line describes the zero
detuning case, while the dashed blue line, the case

δ � (ω0 − ω0)/ω0 � −6 × 10−3. The results in Figure 4(a)
can be understood observing that

F a
0j ∝

∣∣∣∣∣ 〈 0|â + â†∣∣∣j〉∣∣∣∣∣2.
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Figure 2: (a) Thomas–Reiche–Kuhn (TRK) sum rule for a single-
mode nonlinear system: partial sums∑N

j�0F 0j versus the number (N )
of levels included for different normalized coupling strengths η.
Inset: anharmonic energy spectrum ωk,0 versus η. (b) Transmission
spectrum T(ω) for a two-port nonlinear resonator for η � 0.12. The
inset shows the integrated lines for two values of η.
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since

|0 〉 ≃
∣∣∣0,0, g〉, |1〉 ≃ |0,0, e〉, |2〉 ≃ ∣∣∣0, 1, g〉, |3〉, and |4〉

are provided in (C), it is easy to obtain

F a
01 ≃ F a

02 ≃ 0,F a
03 ∝ sin2 θ, and F a

04 ∝ cos2 θ,

in agreement with the results in Figure 4(a). Notice that for
δ = 0, it results in θ = π/4, and hence, F a

03 ≃ F a
04. A similar

analysis can be carried out for the results in Figure 4(b).

4 TRK sum rule for atoms
interacting with photons

The standard atomic TRK sum rule [67] considers atomic
energy eigenstates, calculated in the absence of

interaction with the transverse electromagnetic field. A
recent interesting example of descriptions including the
electron–electron interaction can be found in the study by
Andolina et al. [18].

Following the same reasoning which led us to (7), a
generalized atomic TRK sum rule for atoms strongly
interacting with the electromagnetic field [analogous to
(7)] can be easily obtained, starting from the dipole gauge.
In this gauge (see, e.g., [68]), the light–matter interaction
term does not depend on the particle momentum, and
the same steps used to obtain (7) can thus be followed.
The resulting atomic generalized TRK sum rule formally
coincides with the standard one, with the only difference
that all the expectation values are calculated using the
eigenstates of the total light–matter system. For example,
we consider a system described by a single effective
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diagonalization of (11).
(a) Lowest normalized energy levels versus the qubit frequency. (b)
Enlarged view of the spectrum inside the rectangle in (a) showing the
presence of an avoided level crossing. Parameters are given in the text.
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Figure 4: Thomas–Reiche–Kuhn (TRK) sum rule for interacting
photons in the three-component system described by the Hamilto-
nian in (11).
(a) Partial sum rules ∑N

j�1F a
0j relative to the first resonator and (b)

∑N
j�1Fb

1j relative to the second resonator, both for different values of
levels N. The black segmented line describes the zero detuning case
δ = 0, while the dashed blue segmented lines refer to the case
δ � (ω0 − ω0)/ω0 � −6 × 10−3. Parameters are given in the text.
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particle with mass m and charge q displaying a dipolar
interaction with a single mode resonator:

ĤD � 1
2m

p̂2 + V(x) + q2ωcA
2
0

ℏ
x2 + iqωcA0x(â† − â), (13)

whereA0 is the zero-point fluctuation amplitude of the field
potential. The following commutation relation holds:
[x, ĤD] � [x, p̂2/2m] � i(ℏ/m)p̂. From it, following the same
steps used to obtain (7) or to obtain the standard atomic
TRK sum rule, we obtain the TRK sum rule for a dipole
interacting with the electromagnetic field:

2m∑
k
ωk, j

∣∣∣∣xk, j∣∣∣∣2 � 1, (14)

where xk, j ≡ 〈i|x|j〉 is the expectation value of the position
operator between two dressed states. Following the same
reasoning, it can also be shown that also the f-sum rule
[16] (the longitudinal analog of the TRK sum rule) for an
electron system strongly interacting with a quantized
electromagnetic field can be obtained. These sum rules
can find useful applications in the study of correlated
electron systems strongly interacting with photons (see,
e.g., [76]).

5 Discussion

The TRK sum rule for interacting photons proposed here
can be useful for investigating general quantum nonlinear
optical effects andmany-body physics in photonic systems
(see, e.g., [24–28]), like the corresponding sum rules for
interacting electron systems, which played a fundamental
role for understanding the many-body physics of inter-
acting electron systems [16, 17, 20].

We provided a few examples showing how the light–
matter interaction can change significantly the number of
excited photonic states exhausting the sum rule. Using the
sum rule, one can prove without explicit calculations that
other excited states have negligible oscillator strength.

The relations in (4) and (7) are very general. They are
also valid in systems including several dipoles (see, e.g.,
[77, 78]) andmodes (see, e.g., [75]). These relations provide
a very useful check on the consistency of approximate
models in quantum optics. Approximate Hamiltonians and
effective models can violate one of them. Such a violation
indicates that the model may miss some relevant physics
[16]. For example, we have shown that the JC model, a
widespread description for the dipolar coupling between a
two-level atom and a quantized electromagnetic field, vi-
olates the relation (4). An additional example of a model
violating this relation is provided by the well-known
and widely employed cavity optomechanical interaction

Hamiltonian ℏgâ†â(b̂ + b̂
†) (here b̂ is the destruction

operator for the mechanical oscillator) [79]. On the con-
trary, the interaction Hamiltonian obtained by a micro-

scopic model [63] ℏg(â† + â)2(b̂ + b̂
†) satisfies both of these

relations [Eqs (7), (14)]. It turns out that such interaction
Hamiltonian, in addition to the standard optomechanical
effects, also describes the dynamical Casimir effect [58, 64].

An interesting feature of the relations proposed here
is that they hold in the presence of light–matter in-
teractions of arbitrary strength. Moreover, the obtained
sum rule can be useful for the analysis of strongly
interacting light–matter systems, especially when exact
eigenstates are not available. These relations in (4) and
(7) can provide constraints and a guidance in the
development of effective Hamiltonians in quantum op-
tics and cavity optomechanics.

Following the same reasoning leading to (7), we also
proposed a generalized TRK sum rule for the matter compo-
nent involving transitions between the total light–matter
energy eigenstates [(14)], describing particle conservation in
the presence of arbitrary light–matter interactions.
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Appendix: A Linear response theory
and transmission of a nonlinear
optical system

This section provides a derivation of the transmission
coefficient of a nonlinear optical system based on the
dressed master equation approach [80, 81].

The dressedmaster equation in the Schrödinger picture
can be written as follows [80, 81]:

˙̂ρ(t) � −i[ĤS, ρ̂(t)] + Lρ̂(t), (A.1)

where ρ(t) is the density matrix operator for the nonlinear
optical system,

ĤS � ∑
k
ωk|k〉〈k|, (A.2)

is the system Hamiltonian expressed in the dressed basis,
constituted by the energy eigenstates of the nonlinear
system. Dissipation is described by the Lindbladian
superoperator defined by

Lρ̂(t) � ∑
i
∑
j,k<j

{Γ(i)jk n(ωjk ,Ti)D[∣∣∣j 〉 〈k|]ρ̂(t)
+Γ(i)jk [1 + n(ωjk ,Ti)]D[|k 〉 〈j∣∣∣]ρ̂(t)}, (A.3)

This equation includes the thermal populations

n(Δjk ,Ti) � [exp{ωjk/kBTi} − 1]−1, (A.4)

and the damping rates

Γ(i)jk � 2πg2i (ωjk)∣∣∣∣Xjk

∣∣∣∣2. (A.5)

Here, i � {L,R} indicates the input–output ports, g(ω) is the
system reservoir coupling strength, X̂ is the system oper-
ator interacting with the external modes, and

D[Ô]ρ̂ � 1
2
(2Ôρ̂Ô† − ρ̂Ô

†
Ô − Ô

†
Ôρ̂). (A.6)

At T = 0, being n(Δjk ,Ti) � 0, we obtain the following:

Lρ̂
T � 0

L0ρ̂ � ∑
i
∑
j,k<j

{Γjki D[|k 〉 〈j∣∣∣]ρ̂}. (A.7)

We also consider a coherent drive entering from the left
port, described by the following interaction Hamiltonian:

Ĥd(t) � iX̂ ∫ dωgL(ω)[e−iωtβL(ω) − eiωtβ*L(ω)], (A.8)

where X̂ is the system operator interacting with the
external modes, and

βL(ω) � 〈b̂L(ω)〉
is a c-number corresponding to the mean value of the
external (left) field operators, assumed to be in a coherent
state. We will also assume

X̂ � Q̂ � (â + â†)/ 	
2

√
,

where â is the photon destruction operator for a single-
mode electromagnetic resonator. Themaster equation(A.1)
becomes

˙̂ρ(t) � −i[ĤS + Ĥd(t), ρ̂(t)] + L0ρ̂(t). (A.9)

We assume that the light field from the left port is coherent
with driving frequency ω:

〈b̂ω〉 � βL(ω)exp[−iωt].

Retaining only the terms depending linearly from the input
field and using Eqs. (A1), (A7), (A8), assuming

ρn0(t) � ρn0 exp[−iωt]

(i.e., oscillating resonantly with the driving field), and
using the rotating wave approximation, we obtain (to first
order in the field)

ρ(1)n0 � igL(ω)βL(ω)Xn0

(ω − ωn0) + i∑i∑k<nΓn, ki

, (A.10)

where, being T = 0, only the ground state is populated in
the absence of interaction ( ρ(0)00 � 1). In order to calculate
the transmitted signal that can be experimentally
detected, we consider a system constituted by an LC-
oscillator coupled to a transmission line and use the
input–output relations [71] for the positive frequency
component of the output (input) vector potential oper-
ator defined as follows:

ϕ̂
+
out(in)(t) � Λ ∫

∞

0

dω		
ω

√  b̂
out(in)
ω (t), (A.11)

where, for the sake of simplicity, we disregarded

the spatial dependence, and Λ � 						
ℏZ0/4π

√
, with Z0 the

impedance of the in-out transmission line(s). In
addition, we consider two distinct ports for the input
(L) and the output (R) [for simplicity we assume
gL (ω) = gR (ω) = g (ω)], and we have for the output

voltage operator [71] V̂
(R)+
out (t) � ˙̂ϕ

(R)+
out (t):

V̂
(R)+
out (t) � −2πΛ∑

j

g(ωj0)			ωj0
√ X0j

˙̂P0j(t), (A.12)

which can be expressed as follows:

V̂
(R)+
out (t) � −KV̂+(t), (A.13)

where

V̂
+ � Φzpf∑

j
X0j

˙̂P0j(t). (A.14)
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Assuming g(ω) � G
		
ω

√
, the constantsK andΦzpf satisfy the

following relation:

KΦzpf

Λ
� 2πG. (A.15)

Using (A.11), we have for the mean value of the input sent
through the port (L)

〈V̂
(L)+
in (t)〉 � 〈

˙̂ϕ
(L)+
in (t)〉 � −iΛ 		

ω
√

 βL(ω), (A.16)

where we assumed a coherent drive input at frequency ω:

〈b̂
L

ω′(t)〉 � βL(ω)δ(ω′ −ω).
Considering the linear response only, the projection oper-
ator oscillates at the frequency ω of the drive,

˙̂P0j(t) � −iωP̂0j(t),
using Eqs. (A13) and (A14), themean value for the output is
given as follows:

〈V̂
(R)+
out (t)〉 � iKΦzpfω∑

j
X0jρj0(t), (A.17)

where ρ̂ is the density matrix and we used the following
relation:

〈P̂0j(t)〉 � ρj0(t).
Using Eqs. (A15)–(A17), we can calculate the transmission
coefficient T(ω) due to the signal detected from the port (R)
when a driving field is sent through the port (L) as follows:

T(ω) �
∣∣∣∣∣∣∣∣∣
〈V̂

(R)+
out (t)〉

〈V̂
(L)+
in (t)〉

∣∣∣∣∣∣∣∣∣
2

� ω2

∣∣∣∣∣∣∣∣∣∣∣∣∣
∑
j

Γj0/ωj0

(ω − ωj0) + i∑
i
∑
k<n
Γnkj

∣∣∣∣∣∣∣∣∣∣∣∣∣
2

, (A.18)

where Γj0 � 2π
∣∣∣∣g(ωj0)

∣∣∣∣2∣∣∣∣Xj0

∣∣∣∣2. Recalling that we assumed
X̂ � Q̂, (A.18) corresponds to (10).
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