Gate-Sensing Coherent Charge Oscillations in a Silicon Field-Effect Transistor

M. Fernando Gonzalez-Zalba,*† Sergey N. Shevchenko,‡§∥ Sylvain Barraud,¶ J. Robert Johansson,∥ Andrew J. Ferguson,)# Franco Nori,⊥ and Andreas C. Betz†

†Hitachi Cambridge Laboratory, Cambridge CB3 0HE, United Kingdom
‡B.Verkin Institute for Low Temperature Physics and Engineering, Kharkov 61103, Ukraine
§V. Karazin Kharkov National University, Kharkov 61022, Ukraine
∥Center for Emergent Matter Science, RIKEN, Wako-shi, Saitama 351-0198, Japan
⊥CEA/LETI-MINATEC, CEA-Grenoble, 38000 Grenoble, France
#Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
VDepartment of Physics, The University of Michigan, Ann Arbor, Michigan 48109, United States

*Supporting Information

ABSTRACT: Quantum mechanical effects induced by the miniaturization of complementary metal-oxide-semiconductor (CMOS) technology hamper the performance and scalability prospects of field-effect transistors. However, those quantum effects, such as tunneling and coherence, can be harnessed to use existing CMOS technology for quantum information processing. Here, we report the observation of coherent charge oscillations in a double quantum dot formed in a silicon nanowire transistor detected via its dispersive interaction with a radio frequency resonant circuit coupled via the gate. Differential capacitance changes at the interdot charge transitions allow us to monitor the state of the system in the strong-driving regime where we observe the emergence of Landau−Zener−Stückelberg−Majorana interference on the phase response of the resonator. A theoretical analysis of the dispersive signal demonstrates that quantum and tunneling capacitance changes must be included to describe the qubit-resonator interaction. Furthermore, a Fourier analysis of the interference pattern reveals a charge coherence time, \(T_2 \approx 100 \text{ ps} \). Our results demonstrate charge coherent control and readout in a simple silicon transistor and open up the possibility to implement charge and spin qubits in existing CMOS technology.

KEYWORDS: Qubit, silicon, coherence, high-frequency resonator, interference, transistor

Quantum computation promises to be exponentially more efficient than classical computers in solving a particular set of problems. However, implementing the underlying quantum algorithms requires a scalable hardware that would allow making multiqubit structures possible. Silicon quantum-dot-based qubits are promising candidates for such quantum hardware due to their tunability, flexible coupling geometries, and long coherence times. Furthermore, using silicon, one can exploit the advances of complementary metal-oxide-semiconductor (CMOS) technology and benefit from an industrial platform dedicated to building complex scalable circuits.

A first step toward quantum computation with CMOS quantum dots would be demonstrating that time-dependent coherent phenomena can be harnessed in a scalable CMOS device. One approach to test the coherent nature of a system is Landau−Zener-Stückelberg−Majorana (LZSM) interferometry, in which a coupled two-level system is strongly driven through its anticrossing. This approach has been successfully applied for coherent quantum control of superconducting qubits, semiconductor quantum dots and donors in silicon.

Additionally, interfacing quantum systems with high-frequency electrical resonators promises compact high-sensitivity quantum-state read-out and long distance transfer of information, ideal characteristics for a prospective scalable architecture. In these systems, the dispersive shift on the resonator response due to the qubit’s state-dependent quantum or tunneling capacitance is exploited for read-out. However, in the strong-driving regime, these two different dispersive contributions can coexist and it becomes important to understand the nature of the qubit-resonator interaction and the different contributions to the dispersive response.

Received: October 27, 2015
Revised: January 12, 2016

DOI: 10.1021/acs.nanolett.5b04356
Nano Lett. XXXX, XXX, XXX−XXX
Here, we demonstrate coherent control and read-out of the charge state of a double quantum dot (DQD) in a CMOS transistor. We perform dispersive charge detection in situ by coupling the gate of the transistor to a MHz resonator and monitoring changes in the differential capacitance at the interdot charge transitions. We show coherent manipulation of the charge state in the strong-driving regime, where we observe LZSM interference on the charge occupation probabilities of the DQD. We find that the DQD-resonator interaction is accurately described by a combination of quantum capacitance changes, due to the nonzero energy-band curvature, and tunnelling capacitance variations, since the quantum state probability redistribution happens at a rate much faster than the probing frequency of the resonator. Finally, we obtain the charge coherence time by analyzing the interference signal in Fourier space. Overall, our work demonstrates charge coherent manipulation and read-out in a CMOS transistor, paving the way toward CMOS-based quantum computing.

The device studied here is a fully depleted silicon-on-insulator (SOI) nanowire transistor fabricated under CMOS standards. It consists of a 11 nm thick and 80 nm wide undoped Si (001) channel gated by a 50 nm long polycrystalline wrap-around silicon top-gate (G), as can be seen in Figure 1a,b. The SOI layer sits on a 145 nm thick SiO2 buried oxide and a 850 μm handle wafer that can be used as a back gate.32 The highly doped source and drain are formed by ion implantation, after deposition of 12 nm long Si3N4 spacers at both sides of the top gate. A doping gradient occurs between the source-channel and drain-channel junctions producing confinement along the transport direction.32 Furthermore, due to the corner effect in square cross section nanowire transistors, accumulation happens first at the topmost corners generating a DQD in parallel.28,29,31

In the presence of interdot tunnel coupling Δ_0 the energy spectrum of a DQD with one electron presents a well-defined two-level system with an avoided crossing at zero-energy detuning ($\epsilon = 0$), as depicted in Figure 1c. At large detuning $|\epsilon| > 0$, the electron is strongly localized in one of the dots (left IL) or right IR) charge states). The ground ($-$) and excited state ($+$) energies of this system are given by

$$E_{\pm} = \pm \frac{1}{2} \sqrt{\epsilon^2 + \Delta_0^2}$$

(1)

This two-level system has an associated differential capacitance, as seen from the top gate, given by

$$C_{\text{diff}} = C_{\text{geom}} + (\alpha \epsilon)^2 \frac{\partial \langle n \rangle}{\partial \epsilon}$$

(2)

where C_{geom} corresponds to the DQD’s geometrical capacitance and α is the difference between the right and left dot-to-gate couplings (see the Supporting Information). The average electron occupation (defined here for the right dot) can be conveniently expressed as a function of the difference between ground state and excited state occupation probabilities $Z = P_+ - P_-$, as

$$\langle n \rangle = \frac{1}{2} \left(1 + \frac{\epsilon}{Z} - \frac{\Delta E}{Z} \right)$$

(3)

where $\Delta E = E_+ - E_-$. Finally, using eqs 2 and 3, we arrive at the generalized expressions for the differential capacitance of a DQD,

$$C_{\text{diff}} = C_{\text{geom}} + C_T^{\text{Q}}(\epsilon) + C_T(\epsilon)$$

(4)

Expression 4 contains two contributions parametric on ϵ. The first, C_T^{Q} corresponds to the so-called quantum capacitance arising from adiabatic charge transitions and the nonzero curvature of the energy bands.26,27 The second, the tunnelling capacitance C_T, appears when population redistribution processes, such as relaxation and thermal excitation, occur at a rate comparable or faster than the probing frequency.

In general, both contributions must be considered when analyzing the effect of the qubit on an external system.

To detect the differential capacitance of the DQD, we use gate-based radio frequency reflectometry31,34,36 at the base temperature of a dilution refrigerator. We couple the DQD via the gate to a $f = 355$ MHz resonant tank circuit formed by a surface mount inductor ($L = 390$ nH) and the gate to ground parasitic capacitance ($C_g = 515$ fF). Additionally, a surface

![Figure 1. Device characterization and measurement of interdot quantum capacitance.](image-url)
mount bias-tee allows us to apply a DC gate voltage \((V_G)\). We apply a \(-95\) dBm signal at the resonant frequency and monitor the phase of the reflected signal obtained from IQ-demodulation after cryogenic and room temperature amplification. The demodulated phase response is sensitive to capacitance changes \(\Delta C\) of the probed system, \(\Delta \Phi \approx -2Q\Delta C/C_0\), where \(Q\) is the quality factor of the resonator (\(Q = 42\)). Figure 1d shows the demodulated phase response of the resonator \((\Delta \Phi)\) as a function of the top-gate voltage \((V_G)\) and back-gate voltage \((V_{BG})\) in the subthreshold regime of the transistor, where direct source-drain current measurements are not sensitive enough (see the Supporting Information). Here, we observe a diagonal line of enhanced phase response, which we identify with a single valence electron shared between quantum dots, as demonstrated below. In this voltage regime, the tunnel rate between the source and drain reservoirs and the two quantum dots is slow, leading to a negligible reservoir-to-dot signals and indicating that both dots are well-centered in the channel. On the contrary, the interdot charge transition is still visible due to the finite tunnel coupling \(\Delta\) between quantum dots and also due to a slight asymmetry in the dot-to-dot couplings, which could be due to potential irregularities at the interface. The interdot line is the last transition we observe, however excited-state spectroscopy revealed it is not the \((0,1)-(1,0)\) transition but an odd-parity charge transition with total electron number higher than 1. Overall, these measurements demonstrate that gate-based reflectometry simplifies the qubit architecture and presents the advantage that charge motion can be detected without the need of direct transport or external electrometers.

In order to confirm the quantum nature of the interdot transition, we do a line-shape analysis of the signal, as can be seen in Figure 1e. Here, we plot the phase response as a function of gate voltage for \(V_{BG} = 0\). We use eq 4 to fit the data assuming adiabatic conditions for the interdot transition \((\Delta_\ast \gg k_B T_C, hf)\) since the electron temperature in the leads is \(T_C < 200\) mK. Under these conditions \(Z \approx 1\) and the differential capacitance of the system becomes only dependent on the tunnel coupling. We obtain \(\Delta_\ast = 98 \pm 2\) meV. Here, we have used \(\epsilon = e\alpha(V_G - V_{C0})\), where \(\alpha = 0.25\), accurately obtained from microwave spectroscopy measurements, as shown below, and \(V_{C0}\) is the gate voltage value at which the signal is maximum.

We now move on to the investigation of microwave-driven coherent charge oscillations between quantum dots. Coherent transitions between the two charge states can be promoted by fast-oscillating voltage signals that vary the energy splitting periodically, as sketched in Figure 2a, where we plot the ground (red) and excited (black) state energies as a function of time. At the point of minimum energy splitting, a Landau–Zener transition occurs that splits the electron wave function into ground and excited states with certain probability \(P_{LZ} = \exp(-\pi\Delta_0^2/2A_{mw}h\nu_{mw})\), where \(A_{mw}\) and \(\nu_{mw}\) are the amplitude and frequency of the driving signal, respectively, and \(h\) is Planck’s constant. After the first passage, the two states acquire a second transition occurs that splits the electron wave function into two states with certain probability \(P_{\ast\ast}\). This phenomenon is known as Landau–Zener–Stückelberg–Majorana interference, analogous to Mach–Zehnder interferometry, and allows probing coherent charge tunnelling and the time scale at which they occur. To generate the required conditions to observe this phenomenon in our system, we vary the energy detuning periodically, \(\epsilon + A_{mw}\cos(2\pi\nu_{mw}t)\), by applying an attenuated MW signal via the source of the device (see Figure 1a). Here we use \(\nu_{mw} = 34\) GHz and variable amplitude \(A_{mw} = kV_{mw}\) where we use \(k = 0.46\) meV/V to calibrate the microwave generator output, \(V_{mw}\) (see the Supporting Information). The characteristic LZSM interference pattern is shown in Figure 2b, where we plot \(\Delta \Phi\) as a function of detuning and microwave amplitude. In the region defined by \(A_{mw} \geq \epsilon\), the qubit is periodically driven through the avoided crossing which in turns affects the resonator response. First, we observe that \(\Delta \Phi\) varies periodically as a function of \(\epsilon\), with resonant lines appearing at equally spaced points \(\epsilon = nh\nu_{mw}\). Here, \(n\)-photon transitions mediate the charge oscillation between quantum dots and allow calibrating the dot-to-resonator coupling \(\kappa\). Moreover, we see that, at fixed detuning, \(\Delta \Phi\) oscillates (quasi)periodically around zero as a function of the microwave amplitude (seen in more detail in Figure 3b). Since \(\Delta \Phi\) is an increasing function of \(A_{mw}\), what we observe here is the alternation between constructive and destructive interference in the ground state occupation probability. Overall, the results in Figure 2b demonstrate the dispersive readout of coherent charge oscillations in a semiconductor DQD via its interaction with an electrical resonator.
Note worthy are the regions of positive resonator phase shift in Figure 2b. In the simple adiabatic picture, the differential capacitance of a DQD simplifies to its quantum capacitance C_Q. Considering this limit, $\Delta \Phi > 0$ implies an average population inversion, which is not achievable in two-level systems. Understanding the qubit–resonator interaction in nonadiabatic regimes, such as LZSM, requires studying a hybrid regime in which not only quantum capacitance changes occur but also tunnelling capacitance variations.

We consider here the qubit-resonator system semiclassically: a quantum system coupled to a classical resonator ($\hbar f_\text{dr} \ll k_b T$). Such a semiclassical approach was successful for the description of most phenomena related to atom-light interaction.\cite{42} In our case, this assumption means that all characteristic qubit times are much shorter than the resonator period $f_\text{dr}^{-1} \gg \hbar/\Delta \omega T_{1,2}$. Since the resonator is much slower than the qubit ($f_\text{dr} \ll f_\text{res}$), it sees the stationary value for the occupation probabilities. Assuming this, we can make use of the analytic result for the time-averaged upper-level occupation probability P_+ in the strong-driving regime, obtained in the rotating-wave approximation:

$$P_+ = \frac{1}{2} \sum_n \frac{\Delta_{\omega,n}^2}{\Delta_{\omega,n} + \frac{\hbar}{4\pi T_1} (\varepsilon - nhf_{\text{res}})^2}$$

(7)

where $\Delta_{\omega,n} = \Delta_n (A_{\text{res}}/hf_{\text{res}})$, and J_n is the nth order Bessel function.

The differential capacitance of the DQD can then be calculated using eqs 4 and 7. We note that eq 7 describes the series of Lorentzian-shaped multiphoton resonances, while its derivative gives the alternation of positive and negative values.\cite{43} Figure 3a shows the comparison of the measured (left) and calculated (right) LZSM interferometry patterns. Here, we use $T_1 = 100$ ps, obtained from Fourier analysis, as demonstrated below, and we use T_1 as a fitting parameter. We find the best fit for $T_1 \approx 100$ ps. These results justify our assumption that all characteristic qubit’s times are much shorter than the resonator period. This short T_1 could be due to the presence of low-lying orbital excited states in the silicon quantum dots which have been reported to have relaxation times ranging down to the picosecond regime.\cite{45}

To further demonstrate the good match between experiment and theory, we plot, as a function of the amplitude of the MW signal, the measured and calculated n-photon traces in Figure 3b,c, respectively. The $n = 0,1,2,3$ (black, red, green, blue) are obtained at the points marked by the arrows in panel (a). We observe that the theory successfully captures the oscillatory behavior of the differential capacitance, highlighting the importance of the third term in eq 4 and sets LZSM in a regime where quantum and tunnelling capacitance changes must be considered. The match is particularly good for the $n = 1,2,3$ photon lines while for the 0-photon line the agreement is qualitative. This can be understood knowing that eq 7 assumes $\Delta \ll |\varepsilon|$, which means that it is not exact at around $\varepsilon = 0$. Nevertheless, its practical implementations\cite{21,44,46} demonstrated that this gives reasonable description even for $\varepsilon \sim \Delta$.

Finally, we move on to the study of electron phase coherence time in our strongly driven two-level system. In Figure 4a, we perform a Fourier analysis of the dispersive response of the resonator of Figure 2b. The two-dimensional Fourier transform of the phase response, $\Delta \hat{\Phi}$, shows the characteristic lemon-shaped oval of increased intensity in the reciprocal space (k_x, k_y) similar to results obtained for superconducting qubits\cite{13} and semiconductor quantum dots.\cite{20,44} Two-dimensional Fourier transforms of the occupation probabilities in the LZSM regime have been demonstrated to carry information about the qubit’s dephasing mechanisms. More particularly, the transformed populations decay exponentially in k_y as $\exp(-k_y/T_2)$.\cite{20,47} This result is directly applicable to $\Delta \hat{\Phi}$ since its associated differential capacitance is proportional to the occupation probabilities, P_+ and P_- through the quantum capacitance term as seen in eq 5. We demonstrate this in Figure 4b where a one-dimensional k_y trace at $k_x = 0$ reveals an exponentially attenuated signal. From the fit, we find $T_2 = 100 \pm 50$ ps, similar to values reported for charge coherence in semiconductor double dots\cite{21,48} and Cooper-pair transistors.\cite{49}

We confirm our estimation of T_2 by performing a frequency dependence of the LZSM pattern in Figure 4c–e. Here we explore three driving regimes: the quantum coherent regime [panel (c)] the incoherent driving regime [panel (e)] and an intermediate driving regime [panel (d)]. In the quantum

Figure 3. Theoretical analysis. (a) Comparison between experimental and calculated LZSM interferograms. Experimental (b) and calculated (c) n-photon traces as a function of microwave amplitude. The traces are taken at the points indicated by the colored arrows in (a). The 0, 1, 2, 3 photon traces correspond to the black, red, green, and blue solid lines, respectively.

Figure 2. (a) Simulated multiphoton resonances in the periodic driving regime $\Delta \equiv \pi$ (left) and the intermediate $\Delta \equiv 0$ (right). The solid curves represent the full n-photon probabilities, whereas the dashed lines show their differential counterparts $\Delta \Phi (\varepsilon)$. Noteworthy are the regions of positive resonator phase shift.
coherent regime, measured at \(f_{\text{mw}} = 34 \ \text{GHz} \), successive transitions through the anticrossing are correlated and we observe the clear signature of the interference fringes indicating \(f_{\text{mw}} \gg T_{\text{Z}}^{-1} \). In the incoherent regime, \(f_{\text{mw}} = 14 \ \text{GHz} \), Landau–Zener transitions are uncorrelated and we observe no sign of interference oscillations, hence \(f_{\text{mw}} < T_{\text{Z}}^{-1} \). However, in the intermediate regime, \(f_{\text{mw}} = 26 \ \text{GHz} \), we observe only one clear minima and maxima regions, indicating that the number of correlated passages is close to two and hence \(f_{\text{mw}} \approx T_{\text{Z}}^{-1} \). These results agree well with the coherence time obtained from the Fourier analysis.

In conclusion, we have reported the dispersive read-out and coherent manipulation of a DQD in the channel of a CMOS nanowire transistor. Gate-sensing allows for in situ detection of charge motion within the double-dot system without the need of external electrometers. Additionally, we have performed coherent manipulation of the DQD charge state by means of high-frequency microwave signals and observed the emergence of LZSM interference in the resonator’s response. Furthermore, we have demonstrated that, in fast relaxing systems, the dispersive DQD–resonator interaction contains contributions from both the quantum capacitance and the tunnelling capacitance. In the future, split-gate CMOS transistors, as the ones reported in refs 21 and 36, could provide better control of the energy detuning between dots and a larger asymmetry in the dot–resonator coupling, improving the sensitivity of the read-out protocol. Overall, our results demonstrate that it is possible to integrate qubit control and read-out with existing CMOS technology opening a path toward large-scale integrated qubit architectures.

REFERENCES

(53) Betz, A. C.; Barraud, S.; Wilmart, Q.; Plaçais, B.; Jehl, X.; Sanquer, M.; Gonzalez-Zalba, M. F. High-frequency characterization of