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S1. EXPERIMENTAL SETUP AND DEVICE

Figure S1 shows the experimental setups for samples 1 and 2. In both samples, transmon qubits are coupled to a
semi-infinite one-dimensional (1D) transmission line with characteristic impedance Z0 ' 50 Ω. Arbitrary waveform
generators (AWGs) shape the waveform of input coherent photons, while digitizers capture the reflected signal,
enabling us to resolve the time dynamics of the qubit and the photons.

[†] W. -J. L, Y. L and P. Y. W contributed equally to this work.
[∗] I.-C. Hoi (iochoi@cityu.edu.hk), Y. Lu (kdluyong@outlook.com)
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Figure S1. Photos of our devices and sketches of the experimental setups. (a) Measurement setup for sample 1. In the device
image, shown in the zoom-in at the bottom, the two long bright parts form the qubit capacitance, and the extended pad from
the one on the right determines the relatively weak capacitive coupling to the transmission line. Two Josephson junctions
form a superconducting quantum interference device (SQUID) loop between the two islands forming the qubit capacitance. In
the sketch of the setup, the red curve represents the electromagnetic field distribution along the transmission line. The qubit
is placed L ' 12 mm from the mirror (capacitance to ground at the end of the transmission line). For the qubit frequency
ω10/2π = 4.85 GHz, the location corresponds to 0.65λ. The roundtrip time from the qubit to the mirror and back, 2L/v ∼ 0.2 ns,
is small compared to the timescale of the atomic evolution, T2. A superconducting coil controlled by a dc voltage V induces
a global magnetic field and enables us to tune the qubit frequency ω10. For measurements, coherent signals at frequency ωp
are synthesized at room temperature and fed through attenuators (blue rectangles) to the sample, which resides in a cryostat
cooled to 20 mK to avoid thermal fluctuations affecting the experiment. The reflected signal passes circulators, filters (green
rectangle), and amplifiers (red triangles), and is then collected by the digitizer. (b) Measurement setup of sample 2. In the
device image, shown in the zoom-in in the lower right, the bright cross forms the qubit capacitance. A SQUID loop with two
Josephson junctions connects to the left piece of the cross, while the transmission line couples to the qubit through the right
piece of the cross. The measurement scheme is similar to (a) except for the inclusion of a travelling-wave parametric amplifier
(TWPA), which leads to a noise level VN about two times smaller than in sample 1 and smaller uncertainty in extracted qubit
parameters.
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Figure S2. Steady-state reflection measurement with a continuous coherent probe. (a, b) Measured magnitude |r| (red dots)
and phase Φ (black dots) of r = |r|eiΦ as a function of probe frequency ωp with a probe power of −166 dBm for samples 1 and
2, respectively. Theoretical fits (solid curves) give us the values of Γ , γ, and ω10 mentioned in the main text. (c) Measured
magnitude response |r| as a function of the incident resonant power Pin for samples 1 (red dots) and 2 (black dots). The
theoretical fits (solid curves) yield the atom-field coupling k mentioned in the main text.

S2. STEADY-STATE REFLECTION COEFFICIENT FOR EXTRACTING PARAMETERS OF THE
QUBITS

In this section, we describe how we extract the parameters of the qubit from data obtained in the steady-state
reflection measurements. The reflection coefficient for a continuous weak probe is given by [S1]

r = 1− Γ

γ + iδωp
, (S1)

where Γ is the qubit relaxation rate, γ is the qubit decoherence rate 1/T2, and δωp = ω10 − ωp. We apply a weak
probe with a power of −166 dBm and measure the reflection coefficient of the two samples. The results are shown in
Fig. S2(a)-(b). The solid curves (both magnitude and phase) in Fig. S2(a)-(b) are fits to the data using Eq. (S1) and
the circle fit technique in Ref. [S2]. This allows us to extract values for Γ , γ, and ω10.

For a resonant probe, the reflection coefficient is given by [S1]

r = 1− Γ 2

Γγ +Ω2
p

, (S2)

where Ωp is the Rabi frequency of the probe. In Fig. S2(c), we show the measured magnitude of the reflection
coefficient as a function of resonant input power Pin. The nonlinear power dependence allows us to extract k in
Ωp = k

√
Pin using Eq. (S2).

This nonlinear power dependence can be used to calibrate the absolute power Pin. The calibration is done by
finding the critical power Pin = ~ω10Γ/8, assuming negligible pure dephasing, where coherent emission is perfectly
suppressed, i.e., |r| = 0 [S3].

We calculate Γφ,n from Γ and γ, using γ = 1/T2 = Γ/2 + Γφ,n, where Γφ,n = Γn/2 + Γφ with the pure dephasing
rate Γφ and nonradiative decay Γn. Note that Γφ and Γn can be further separated different contributions as in [S2].
We expect that Γφ,n is dominated by the pure dephasing rate since the same fabrication process as in [S3] was used
where the non-radiative decay is negligible. We calculate T2 from γ.
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Figure S3. Magnitude of the reflected field for sample 1 when driven with an exponentially rising input coherent pulse with
N = 0.09. (a, c) The experimental data of the reflected field with the qubit far off resonance, |Voffres|, and on resonance, |Vres|,
respectively. (b, d) Theory simulations of the data in panels (a) and (c), respectively. The simulations are performed using the
parameters extracted from Fig. S2 (no free parameters). The agreement between the data and the simulations is excellent.

S3. FULL DATA FOR LOADING COHERENT PHOTONS WITH EXPONENTIALLY RISING
WAVEFORMS ONTO A QUBIT

In this section, we present the full data of Fig. 2 and Fig. 3 in the main text. To obtain the output, we further use
the calibrated gain of the amplifiers, which is about 68 dB for sample 1 and 99 dB for sample 2. This is because that
we know the absolute power at the critical point at the sample, and we know the power at the critical point at the
digitizer at room temperature, so we can calibrate the gain. Figure S3 shows the magnitude of the reflected field as
a function of characteristic time τ and time t when the input field has the number of photons contained in the pulse
N = 0.09. This is the data from which we calculate the loading efficiency η and symmetry factor S in Fig. 2(b)-(c).
Figure S4 shows a magnification in Fig. 2a. Figure S5 shows step by step how the raw data in Fig. S3(a,c) was
converted to the values in Fig. 2(b)(c) for τ =140 ns. In experiment, due to the finite sampling resolution and in order
to obtain more accurate values of S and η, we use the definitions

η =

∫ tf
tres
0

[|Vres(t)| − |VN |]2dt∫ toffres
0
ti

[|Voffres(t)| − |VN |]2dt
, (S3)

S =
∫ toffres

0
ti

[|Voffres(t)| − |VN |][|Vres(2t0 − t)| − |VN |]dt∫ toffres
0
ti

[|Voffres(t)| − |VN |]2dt
, (S4)

where toffres
0 and tres

0 are slightly different. In the ideal case, where the time resolution is zero, we have tres
0 = toffres

0 .
To simplify the formulas, we therefore use t0 = toffres

0 = tres
0 for the definition of S and η in the main text. The values

of the different times appearing in Eqs. (S3) and (S4) are given in Table S1. Note that Voffres is the reflected voltage
amplitude when the qubit is far detuned. The incoming voltage field will be fully reflected by the mirror and therefore
the reflected voltage is the same as the incoming field. Vres is the reflected voltage amplitude when the qubit is on
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Time tres
0 toffres

0 t0 =
(
tres
0 + toffres

0
)
/2 tf ti

µs 2.64 2.62 2.63 3.2 2.1

Table S1. Times used in the integrals in Fig. S5, Eq. (S3), and Eq. (S4).

resonance. The detection of these signals is based on heterodyne detection. Since there is a π phase shift between
Voffres and Vres, we use the absolute sign to rule out the change of the phase and ensure positive value of symmetry
factor S.

Figure S6 shows the magnitude of the reflected field for different N from 0.0004 to 4.12, but with the same
characteristic time τ of 145 ns. This is the data from which we calculate the loading efficiency η and symmetry factor
S in Fig. 3(a)-(b).
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Figure S4. The magnification in Fig. 2a in the main text. The experimental data of the reflected field with (a) the qubit far off
resonance, |Voffres|, and (b) on resonance, |Vres|, respectively. The agreement between the data and the simulations is excellent.
When the pulse is on, destructive interference between the qubit emission and the reflected input field suppresses the output.
Nearly perfect interference between input and qubit emission is observed for τ = 230 ns. After the pulse is turned off, the atom
emits a coherent field. The amount of emitted field depends on τ . Before t0, the incoming field has an exponentially rising
shape. For τ far away from T2, such as 40 ns and 600 ns, the emitted field does not interfere perfectly destructively with the
incoming field, leading to significant increasing signal before t0.
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Figure S6. Magnitude of the reflected field for sample 1 when driven with an exponentially rising input coherent pulse with
different N , but with the same characteristic time τ = 145 ns. (a, c) The experimental data of the reflected field with the qubit
far off resonance, |Voffres|, and on resonance, |Vres|, respectively. (b, d) Theory simulations of the data in panels (a) and (c),
respectively. The simulations are performed using the parameters extracted from Fig. S2 (no free parameters). The agreement
between the data and the simulations is excellent. (e) The relation between N and amplitude A in panels (a)-(d), where A is
given in arbitrary units. With a high-power resonant drive, the atom will increase incoherent scattering, and decrease coherent
scattering, leading to low loading efficiency.
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Figure S7. Loading a weak coherent state onto the qubit of sample 1 with other pulse shapes, all with N = 0.004. In all
plots, black and red represents input (off-resonant) and output (resonant), respectively. Experimental data are shown as square
markers; each trace is averaged over 450 million runs. Solid curves are theoretical calculations. (a) Exponentially decaying
pulse with characteristic time 145 ns. (b) Square pulse with width 145 ns. (c) Gaussian pulse with full width at half maximum
145 ns.

Sample EC/h EJ/h EJ/EC

Units [MHz] [GHz] -

1 385 8.9 23

2 200 15.7 78

Table S2. From the two-tone spectroscopy, we extract the anharmonicity, which approximately equals the charging energy EC
of the transmon qubits. We calculate the Josephson energy EJ and EJ/EC from ω10 and EC , where ω10 '

√
8EJEC − EC .

S4. LOADING A WEAK COHERENT STATE ONTO A QUBIT WITH OTHER WAVEFORMS

For comparison, we study different input pulse shapes with the same N for sample 1: exponentially decaying,
square, and Gaussian. In Fig. S7(a), we show the exponentially decaying waveform, whose power spectrum is the
same as for the exponentially rising pulse. The incoming wave and emitted wave interfere, leading to distortion
of the waveform. For the square pulse in Fig. S7(b), the loading efficiency is 47.4 %, which is 17 % lower than for
the exponentially rising pulse (64.4 %). For the Gaussian pulse in Fig. S7(c), the output splits into two peaks. For
exponentially decaying waveform and Gaussian waveform, since there is no clear time separation between absorption
and emission, the loading efficiency cannot be well defined.

S5. DISCUSSION ON OPTIMAL LOADING EFFICIENCY AND OPTIMAL SYMMETRY FACTOR

Assuming a weak drive Ω � γ, with optimal mode matching 1/τ = γ, according to Eq. (8) in the main text,
we have the maximal value of loading efficiency η = (1 + 2Γφ,n/Γ )−2 and the maximal value of symmetry factor
S = (1 + 2Γφ,n/Γ )−1. This was demonstrated using sample 1. To further increase S and η, in particular, when
Γ � Γφ,n, both the loading efficiency and the symmetry factor reach unity. Sample 2 achieved this by having a
high EJ/EC ratio S2, which reduced charge noise, and thus the pure dephasing (Γφ,n/2π = 0.113 MHz for sample
1; Γφ,n/2π = 0.031 MHz for sample 2). As an outlook, keeping Γφ,n fixed, we can also decrease the ratio Γφ,n/Γ by
increasing the coupling between the waveguide and the qubit, and thus increase S and η.

S6. GENERAL FORMALISM FOR A SINGLE-PHOTON PULSE (FOCK STATE)

The Hamiltonian describing a transmon qubit coupled to a semi-infinite 1D waveguide can be written as H =
HS + HB + Hint, where we only consider the ground state and the first-excited state of the transmon. The bare
qubit part HS = ~ω0σ+σ− and the field one HB =

∫∞
0 dω~ωa†ωaω, where σ+ = |e〉〈g| and σ− = |g〉〈e| are the

ladder operators between the qubit ground state |g〉 and excited state |e〉 separated by the transition energy ~ω0; a†ω
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and aω are the field creation and annihilation operators, respectively, of mode ω. The photonic operators obey the

commutation relation
[
aω, a

†
ω′

]
= δ(ω − ω′). Under the rotating-wave approximation, the interaction Hamiltonian

reads

Hint = −i~
∫ ∞

0
dωg(ω) cos(kωx+ φ0)σ−a†ω + H.c., (S5)

where g(ω) is the coupling strength at frequency ω, the wavenumber is kω = ω/vg with vg the speed of light in the
waveguide, and H.c. denotes Hermitian conjugate. Note that the cosine function in Hint reflects the formation of a
standing wave when the transmission line is terminated by a mirror at x = 0 with a phase φ0 depending on whether
the mirror is capacitive or inductive. The phase φ0 = 0 (π/2) corresponds to an anti-node (a node) at x = 0.

The Heisenberg equations of motion of the atomic operators are given by [S4, S5]

σ̇z =− Γ (x)(σz + I) + 2
∫ ∞

0
dωg(ω) cos(kωx)

(
σ̃+(t)aω(0)e−i(ω−ω0)t + H.c.

)
, (S6)

˙̃σ+ =− γ(x)σ̃+ −
∫ ∞

0
dωg(ω) cos(kωx)ei(ω−ω0)ta†ω(0)σz(t), (S7)

where we have used σ± = σ̃±e
±iωt and looked at the slowly varying σ̃±. The spontaneous decay rate of the qubit is

given by Γ (x) = Γ cos2(k0x) ≡ T−1
1 with Γ = 2πg2(ω0). The overall decoherence rate is γ(x) = Γ (x)/2 +Γφ,n ≡ T−1

2
with Γφ,n the sum of pure dephasing rate and non-radiative decay.

An arbitrary single-photon state can be expressed as

|1p〉 =
∫ ∞

0
dωg(ω) cos(kωx)f(ω)a†ω|0〉, (S8)

where f(ω) is the spectral distribution function [S4, S6, S7] and |0〉 denotes the multi-mode vacuum state. Then the
initial state of the system can be written as a direct product state of the qubit ground state and a single-photon state
|ψ0〉 = |g, 1p〉. The evolution of the atomic variables can be obtained by solving

〈g, 1p|σ̇z|g, 1p〉 =− Γ (x)(〈g, 1p|σz|g, 1p〉+ 1) + 2
√
Γ cos(k0x)[ξ(t)〈g, 1p|σ̃+|g, 0〉+ ξ∗(t)〈g, 0|σ̃−|g, 1p〉], (S9)〈

g, 1p
∣∣ ˙̃σ+
∣∣g, 0〉 =− γ(x)〈g, 1p|σ̃+|g, 0〉+

√
Γ cos(k0x)ξ∗(t), (S10)

where

ξ(t) =
√
Γ cos(k0x)

2π

∫ ∞
0

f(ω)e−i(ω−ω0)tdω (S11)

represents the temporal waveform of the incident pulse, which should be properly normalized by
∫∞
−∞|ξ(t)|

2
dt = 1.

S7. OUTPUT FIELD AND LOADING EFFICIENCY

In this section, we define the efficiency of “loading a photon” given an incident pulse in the semi-infinite waveguide
geometry. Following the standard input-output formalism, we have [S8, S9]

aout(t) = ain(t)−
√
Γ cos(k0x)σ̃−(t), (S12)

where the input and output operators are given by

ain(t) = 1√
2π

∫ ∞
0

dωaω(0)e−i(ω−ω0)t (S13)

and

aout(t) = 1√
2π

∫ ∞
0

dωaω(tf )e−i(ω−ω0)teiωtf (S14)

respectively. We calculate the input and output photon fluxes via

Fin(t) =
〈
a†in(t)ain(t)

〉
, (S15)
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and

Fout(t) =
〈
a†out(t)aout(t)

〉
= Fin(t) + Γ (x)〈σ̃+σ̃−〉 −

√
Γ cos(k0x)

(
〈σ̃+ain〉+

〈
a†inσ̃−

〉)
. (S16)

The loading efficiency is then defined as

η =
∫∞
t0
Fout(t)dt∫∞

−∞ Fin(t)dt
, (S17)

where t0 refers to the end time of the loading pulse. The definition of loading efficiency and symmetry factor for the
Fock-state photon is different from the coherent state, due to their distinct properties. This definition of efficiency
captures the contribution of incoherent emission and directly reflects the excitation of the qubit. In our experiments
with exponentially rising input pulses, t0 is simply the time when the pulse is turned off: t0 = 0. Note that this
efficiency is nothing but the ratio of the emitted energy to the incident energy. In the following, we look at the case
with a single-photon Fock state being fed in. The efficiency can be numerically computed by solving the dynamical
Eqs. (S9)-(S10).
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S8. LOADING A SINGLE-PHOTON FOCK STATE USING AN EXPONENTIALLY RISING
WAVEFORM

Now we calculate the loading efficiency with an incident single-photon Fock state |1p〉, N=1, which has the expo-
nentially rising waveform

ξ(t) =
√

2/τet/τΘ(−t) (S18)

with τ the characteristic time constant and

Θ(t) =
{

0 t < 0
1 t ≥ 0

(S19)

the Heaviside step function. We assume that the qubit is placed at one of the antinodes x = 2nπ/k0 with k0 = ω0/vg
and n an integer. Following the approach summarized in the preceding sections, we obtain the input flux

Fin(t) = 2
τ
e2t/τΘ(−t) (S20)

and the output flux

Fout(t) =


[
1− 4Γ

τ(γ+1/τ)(Γ+2/τ)

]
2e2t/τ
τ t < 0

4Γ 2

τ(γ+1/τ)(Γ+2/τ)e
−Γt t > 0

(S21)

with γ = Γ/2 + Γφ,n. The corresponding loading efficiency is

η(τ) = 4Γ
τ(γ + 1/τ)(Γ + 2/τ) . (S22)

It is expected that, for t < 0, the output signal is proportional to the input one with the second term inside the square
bracket of Eq. (S21) accounting for the scattered contribution due to the qubit. Typical photon input/output curves
are shown in Fig. S8. In order to maximize the loading efficiency, any output flux needs to be eliminated by perfect
destructive cancellation between the input and scattered signals. This occurs only when τ = 2/Γ with Γφ,n = 0,
which corresponds to the exact time reversal of the spontaneous emission process and yields η = 1. For the general
case with finite pure dephasing, the time constant yielding the highest efficiency is determined by τopt =

√
2/(γΓ ),

slightly different from τopt = 1/γ in the coherent case discussed in the main text.
Now we discuss the effect of Γφ,n on the efficiency with single-photon Fock-state inputs. Panels (a) and (b) in

Figs. S8, S9, and S11 compare two samples with different Γφ,n. For each sample, we vary the characteristic time
constant of the exponentially rising input pulse, as shown in Fig. S8, and find the optimal time constant τopt that
maximizes the loading efficiency. In the first sample with Γφ,n/Γ ≈ 7 %, we find η ≈ 93.8 % owing to an observable
Fout, interpreted as excitation loss, during the loading stage (t < 0). This loss is suppressed as Γφ,n/Γ decreases and
we find η ≈ 98.5 % in the second sample with Γφ,n/Γ ≈ 1.5 %. Further, we observe, by comparing the curves of the
same type of input in Fig. S9(a)-(b), that generally the loading efficiency is more robust against pure dephasing for
Fock-state input than for coherent-state input.

Compared to a N = 1 coherent state with a Poisson distribution over the photon numbers, a single-photon Fock
state only has a single photon (N = 1), leading to a much higher loading efficiency. If Γφ,n = 0, the loading efficiency
approaches unity both for coherent-state N � 1 and single-photon Fock-state (N = 1) pumping when perfect
destructive interference between the input and the scattered field is realized during the loading process. However, the
loading of a coherent state is less robust to dephasing than the loading of a single-photon Fock state. This is because
a coherent state is a superposition of multiple Fock states with definite phase relations, which are more easily affected
by dephasing, leading to a lower loading efficiency.

Figure S10(b) shows that the loading efficiency is a monotonic decreasing function of the Γφ,n. For a large Γφ,n,
the efficiency can still be kept above 50 % given an exponentially rising Fock-state input pulse, but becomes very poor
for coherent-state input. Note that the optimized pulse profile also depends on the choice of input states. This can
be seen from previous discussions and Fig. S10(a).
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Figure S8. Theory plot of input and output photon flux as functions of time. (a) and (b) correspond to sample 1 and 2 with
Γφ,n = 0.067Γ and Γφ,n = 0.0152Γ , respectively (see main text). The red dashed curves represent the exponential rising

incident flux Fin(t) with τopt =
√

2/(γΓ ) and the blue solid curves the resulting output flux Fout(t). The fluxes Fin/out are

given in units of Γ−1.

Fock state

coherent state

(a) (b)

Sample 1 Sample 2

𝛤𝜏

Ef
fic

ie
nc

y

𝛤𝜏

Fock state

coherent state

Figure S9. Theory plot of loading efficiency as a function of time constant τ of the exponentially rising input pulse. (a)
and (b) correspond to sample 1 and 2, respectively (see main text). The blue (solid) and red (dashed) curves correspond to
single-photon Fock-state and coherent-state inputs, respectively.
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single-photon Fock-state input (solid curves) and weak coherent input (dashed curves).
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Figure S11. Theory plot of the symmetry factor as a function of time constant τ of the exponentially rising input pulse. (a)
and (b) correspond to sample 1 and 2, respectively (see main text). The blue (solid) and red (dashed) curves correspond to
single-photon Fock-state and coherent-state inputs, respectively.

S9. TIME-REVERSAL SYMMETRY FOR FOCK-STATE INPUT

In order to reveal the role of time-reversal symmetry between the input and output pulses, we explicitly define a
symmetry factor that characterizes the overlap of the temporal waveforms of the input and the time-reversed output
signals:

S ≡
∫ t0=0
−∞

√
Fin(t)F em

out(−t)dt∫ t0
−∞ Fin(t)dt

, (S23)

where F em
out(−t) denotes the time-reversed spontaneous-emission photon flux. For single-photon Fock-state inputs, we

then obtain

S =
√

32Γ 2

τ2(γ + 1/τ)(Γ + 2/τ)3 (S24)

with Γ = 2πg2(ω0) maximized at τSopt =
[
(Γ − 2γ) +

√
4γ2 + 28γΓ + Γ 2

]
/8. We also calculate the symmetry factor

for the coherent-state case and find τSopt = τopt = 1/γ.
Note that S ≤ 1; the upper limit corresponds to perfect time-reversal symmetry between the input pulse and the

output signal. In the case with Γφ,n = 0, τSopt = 2/Γ also leads to η = 1. For arbitrary Γφ,n, the condition given by
the maximal symmetry factor only differs slightly from that of the maximal loading efficiency. In Fig. S11, we show
the symmetry factor as a function of the characteristic time constant τ of the input pulse. We find S

(
τSopt

)
≈ 96.8 %

and η ≈ 93.8 % for sample 1 and S
(
τSopt

)
≈ 99.3 % and η ≈ 98.5 % for sample 2. We also observe that the symmetry

factor is more robust against pure dephasing in the Fock-state cases than in the coherent-state cases.
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