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Here, we present technical details on anti-parity-time (PT )-symmetry-broken nonreciprocity in a linear resonator.
In Sec. S1, we discuss the experimental feasibility of our scheme. In Sec. S2, we provide the detailed derivations of
the anti-PT -symmetric Hamiltonian. In Sec. S3, we show the extended results about nonreciprocal light transmission
and ultrasensitive nanoparticle sensing.

S1. EXPERIMENTAL FEASIBILITY

A. Stable coupling between the tapered fiber and the spinning resonator

To realize anti-PT symmetry, one indispensable condition is two excited modes with opposite frequency detunings.
Inspired by a recent experiment [S1], we find due to the Sagnac effect, counterpropagating modes with opposite
frequency shifts naturally exist in a spinning resonator, which is pumped bidirectionally. Mounting a silica microtoroid
resonator on a turbine and positioning it near a tapered region of a single-mode telecommunication fiber, the light
can be coupled into or out of the spinning cavity evanescently.

1. Self-adjustment process and critical coupling

According to the experiment [S1], the aerodynamic process plays a key role in stable resonator-fiber coupling. When
the resonator rotates at an angular velocity Ω, a boundary layer of air will be dragged into the region between the
taper and the resonator. Hence, the taper will fly above the resonator with a separation of several nanometers. If
some perturbations cause the taper to rise higher than the stable-equilibrium height, it floats back to its original
position, which is called “self-adjustment”.

Using similar methods in Ref. [S1], we consider the local deformation of the taper [see Fig. S1(a)], break it into a
set of infinitesimal cylinders and focus on the outermost one. The air pressure on this infinitesimal cylinder, leading
to a tiny displacement d, is written as ∆Tair = (ρ∆θ)Tair/L , where ρ (θ) represents the radius (angle) of the winding
shape for the deformed region of the fiber. Total pressure on the taper from a boundary layer of air (the “air bearing”
surface), Tair, can be estimated analytically from [S1]

Tair = 6.19µR 5/2 Ω

∫ r

0

(
h−

√
r2 − x2 + r

)−3/2
dx, (S1)

where µ is the viscosity of air, r (R) is the radius of the taper (resonator), h = h0 +d is the taper-resonator separation
with h0 being the gap between the taper and the surface of the non-spinning resonator. Note that in this device, the
curvature of the microtoroid is so small compared with the width of the film-lubricated region of interest, thus its
surface can be considered as a flat plane, which is similar to the case of spinning sphere in Ref. [S1].
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FIG. S1. (a) Schematics of the “self-adjustment” behaviour. (b) The air pressure versus fiber-resonator separation at Ω =
700 Hz. (c) The strain and the displacement as a function of the angular velocity for h = 20 nm.

The tension on this infinitesimal cylinder induced by the deformation can be calculated by ∆Tela = 2F sin (∆θ/2) ≈
F∆θ, where the elastic force on the taper F obeys Hooke’s law:

σ = Eε. (S2)

Here, E is the Young’s modulus of silica, σ = F
/(
πr2
)

represents the uniaxial stress, ε = δL/L is the strain, L stands
for the original length of the deformation region of the taper, and δL = L′ − L denotes the change in length, which
can be derived with the aid of L′ = ρθ, (L/2)

2
+ (ρ− d)

2
= ρ2, and sin (θ/2) = L/(2ρ) . Therefore, in the case of

stable equilibrium (∆Tair = ∆Tela), we can describe Tair in another form:

Tair = 2πr2E [arcsin (φ)− φ] ≈ πr2φ3E
/

3, (S3)

with φ = 4Ld
/(
L2 + 4d2

)
being much smaller than 1 under the approximation of d/L� 1 . The inverse trigono-

metric function arcsin (φ) can be expanded using a Taylor series: arcsin (φ) = φ+ φ3
/

6 + · · · for |φ| � 1; then, the
displacement d caused by air pressure can be analytically estimated as

d = L
(
τ −

√
τ2 − 1

)/
2, (S4)

where τ =
[
πr2E

/
(3Tair)

] 1/3
. Accordingly, the strain of the taper can be rewritten as

ε = arcsin (φ)
/
φ− 1 ≈ φ2

/
6. (S5)

From this equation, we find the strain, i.e., the elastic force, is positively associated with the distance between the
fiber and the surface of the rotating resonator:

∂F
∂h

= πr2E

(
∂ε

∂d

)
=

16πr2EL2d
(
L2 − 4d2

)
3 (L2 + 4d2)

3 > 0. (S6)

Therefore, if any perturbation causes the gap to be larger than the stable-equilibrium distance, the elastic force will
be stronger.

The “self-adjustment” behavior can be understood from the responses of air pressure and elastic force to the
variation of the gap induced by a perturbation. As shown in Fig. S1(b), the air pressure is reduced dramatically when
the fiber is far away from the resonator. Meanwhile, the elastic force becomes larger due to the stronger deformation,
which indicates that the fiber can be dragged back to the original position; thus we can maintain the separation
between the spinning devices and the couplers, which is essential for critical coupling [S1].

Moreover, to realize the fast spinning resonator experimentally, it requires the microtoroid cavity to be perfectly
circular to maintain a stable taper-resonator coupling. While the experimental toolbox and the fabrication methods of
microresonators, in principle silica based whispering-gallery-mode microresonators in the form of toroid or sphere are
mature. The resonators can be fabricated with almost atomically small surface roughness and close-to perfect shape
via surface tension or polishing techniques. Thus, the impact of the resonator shape is negligible and the coupling
with the waveguide can be maintained stably.

Herein, we choose experimentally accessible parameters [S1, S2]: E = 75 GPa, r = 544 nm and L = 5 µm. As
presented in Fig. S1(c), the deformation is extremely small (d/L < 0.37% and ε < 3.625× 10−5 ), thereby our ap-
proximation is physically reasonable.
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2. Intermolecular forces

The intermolecular forces between the taper and the spinning resonator, including Casimir and van der Waals
forces, can be described as [S1]:

Tint = rR

(
− A

6πh3
+

B
45πh9

− π2c~
240h4

)
, (S7)

where B is a constant [S3], and A is the Hamaker constant, which can be calculated from the following equation [S4]:

A =
3ε

(1)
− ε

(2)
− kBT

4ε
(1)
+ ε

(2)
+

+
ν
[
n
(1)
− n

(2)
−

]2
n
(1)
+ n

(2)
+

[
n
(1)
+ + n

(2)
+

] , (S8)

with ν = 3
√

2~νe
/

16 , ε
(j)
± = εj ± ε0, n

(j)
± =

√
n2j ± n20, and j = 1, 2. Moreover, ε0 (n0), ε1 (n1) and ε2 (n2) represent

the dielectric constant (the refractive index) of air, taper and spinning resonator, respectively; νe is a constant, kB is
the Boltzmann constant, and T is the temperature of the system [S4].

In previous studies, it has been shown that the intermolecular forces begin to attract the flyer towards the rotor
when the gap between them is reduced to less than 10 nm, and to strongly repel them when the gap is narrowed
further, normally to below 300 fm [S5]. In our system, the fiber-resonator separation is set to be 20 nm, thus we
can safely omit the effects of Casimir and van der Waals forces. The experiment [S1] also shows some other factors,
such as lubricant compressibility, tapered-fiber stiffness, and wrap angle of the fiber, may affect resonator–waveguide
coupling. However, the effects induced by these factors are confirmed to be negligible in the experiment.

3. Air friction

The air drag torque on the rotational resonator is given by [S6]:

Mair = 1.336ΩP0R
4

√
2πm0

kBT0
∝ Ω, (S9)

where P0 is the air pressure, m0 = 4.6× 10−26 kg is the mass of the air molecule, and T0 is the temperature of the
surrounding air molecules. We note that Eq. (S9) is originally applied to a single spinning sphere. However, we can use
it here since the surface of the microtoroid resonator can also be regarded as a flat plane within the film-lubricated
region, as presented in Sec. S1 A 1. Moreover, the rotation speed used in our numerical simulations is below kHz
level, which is comparatively small. For this reason, we can neglect rotation-induced heating on the air molecules,
and assume T0 = T = 300 K and P0 = 1.013 bar. In our approximations, the maximum value of air drag torque is
Mair = 4.947× 10−12 N ·m, which indicates air friction can be safely ignored in our system.

4. Stability analysis

The condition of τ ≥ 1 in Eq. (S4) yields the first limit of angular velocity:

Ω0 =
%πr2E

18.57µR 5/2
, (S10)

where

% =

[∫ r

0

(
h−

√
r2 − x2 + r

)−3/2
dx

]−1
. (S11)

Also, the approximation condition d� L gives another limit (d/L = 1%):

Ω1 =
%πr2E

υµR 5/2
< Ω0, (S12)
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where υ = 2.905× 105. Furthermore, the tiny displacement d should be smaller than the taper-resonator separation
h, thus provides the third limit:

Ω2 =
%πr2ΛE

18.57µR 5/2
, (S13)

with Λ =
[
4Lh

/(
L2 + 4h2

)]3
. Finally, we consider the elastic limit of the material for the taper (σ = Υ):

Ω3 =
%πr2Υ

3.095µR 5/2

√
6Υ

E
, (S14)

where Υ is typically 9 GPa for silica [S7]. From the analyses made above, the mechanical limit of the spinning
frequency can be given by:

Ωmax = min {Ω1,Ω2,Ω3} . (S15)

When operating at taper-resonator separations near 20 nm [S1], we find Ω1 = 13.9 kHz, Ω2 = 893.6 Hz, and Ω3 =
133.3 MHz, thereby the maximum value of angular velocity can be up to 893.6 Hz. This indicates that the local
deformation of the taper dominates the stability of our system and it is reasonable to set Ω = 600 Hz in the main
text.

B. Dissipative coupling between the counterpropagating modes

The other condition for realizing anti-PT symmetry is the dissipative coupling between the clockwise (CW) and
counterclockwise (CCW) modes. According to a recent experiment on optical gyroscope [S8], the dissipative coupling
can originate from the dissipative scattering induced by the fiber or any other dissipative scattering elements in the
resonator. As given in Ref. [S8], in a standing-wave basis, the loss induced by the coupling of the fiber and the
resonator can be expressed as

Hf =
(
a†1 a†2

)( −iγa1 0
0 −iγa2

)(
a1
a2

)
= −iγa1a†1a1 − iγa2a

†
2a2, (S16)

where γa1,a2 are the losses induced by the fiber for the two optical modes. Transforming this Hamiltonian in the

traveling-mode basis with a1,2 = (acw ± accw) /
√

2, we can get

Hf = −i (γa1 + γa2) a†cwacw/2− i (γa1 + γa2) a†ccwaccw/2

+ i (γa2 − γa1) a†cwaccw/2 + i (γa2 − γa1) a†ccwacw/2. (S17)

Rewrite it in a matrix form

Hf =
(
a†cw a†ccw

)( −iγ iκ
iκ −iγ

)(
acw
accw

)
, (S18)

where γ = (γa1 + γa2) /2, κ = (γa2 − γa1) /2, and κ is the effective dissipative coupling strength induced by the fiber.
This dissipative coupling plays a crucial role in the realization of anti-PT symmetry in our scheme.

C. Nanoparticle sensing

In previous experiments [S9, S10], nanoparticles falling onto the stationary resonator randomly were detected and
counted. These nanoparticles can be deposited on the surface of the resonator via a nozzle [S9]. The complex optical
mode coupling induced by a single particle, related to the overlap between the particle and the mode volume of the
resonator, can be expressed as [S9]

γs =
2π2α2f2 (r)ωc

3λ3Vc
, gs = −αf

2 (r)ωc

2Vc
, (S19)

where r is the particle position, Vc is the mode volume of the resonator, f (r) is the normalized mode distribution
function, and λ is the wavelength of the light. Here, α is the particle polarizability, which depends on the size
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and refractive index of the particle. This complex modal coupling could induce mode splitting in the transmission
spectrum which can be used to estimate the size of the nanoparticle in the detection process.

In our scheme based on a spinning resonator, we consider that the scatterers fall onto and stay on the surface of the
resonator, rotating with it, similar to the particles on a stationary ring cavity [S9, S10]. A nanoparticle can be detected
in such a system only when the splitting is resolved in the transmission spectrum, which requires γs/gs < 1 [S9]. While
in our scheme, the locations of the scatterers may be changed with the fast spinning of the resonator, thus affect the
mode volume and the overlap of the particles, leading to the change in the values of γs and gs according to Eq. (S19).
But the ratio γs/gs = −4π2α/(3λ3) will not be changed. Thus, we take the fixed value of γs/gs ∼ 0.05 in the numerical
simulations of the perturbated system as in the experiments [S10, S11]. In experiments, the particle may fall through
the mode volume of the resonator and not stay on the surface, resulting in a limited interaction time with the field,
However, regardless of whether this time is very short or long, the resonator will feel and respond to it by exhibiting
mode splitting [S12].

In this work, we compare in detail the different mode-splitting features for these two cases: the case with the scatter
falling onto the anti-PT resonator and the other case with the scatterer falling onto the Hermitian spinning (HS)
resonator [S1, S13]. We define the signal enhancement factor to evaluate the performance of these two sensors and
show that the sensitivity is always enhanced by the anti-PT sensor (see Sec. S3). For both of the two sensors, if the
particle is not stationary on the mode volume (particle diffuses on the surface) then we will observe that mode splitting
will change. A particle located in a high intensity field in the mode volume will lead to a larger mode splitting than
the same particle located in a low intensity field. If the particle is detached from the resonator due to spinning or any
other reasons, then mode splitting will return back to the case when there is no particle. However, Sagnac effect and
dissipative coupling themselves are not affected by the particle position. Thus the symmetry-broken enhancement
in sensitivity originating from the interplay between Sagnac effect and dissipative coupling will not be affected by
the position of the particle. We can conclude that the location of the particle will not change the fact that anti-PT
sensor performs better than HS sensor. In addition, HS sensor performs better than a stationary-resonator sensor,
i.e., diabolic point sensor, which has been revealed in Ref. [S13].

S2. DERIVATION OF THE EFFECTIVE ANTI-PT -SYMMETRIC HAMILTONIAN

We will compare the anti-PT -symmetric Hamiltonian with the PT -symmetric one in this section, and present the
detailed derivation of the anti-PT -symmetric Hamiltonian of the spinning resonator system. As proposed in Ref. [S14],
non-Hermitian Hamiltonian can have entirely real eigenvalues if it is symmetric under combined PT operations. As
its counterpart, the anti-PT -symmetric Hamiltonian, which was first proposed in Ref. [S15], follows {PT , H} = 0
mathematically. We express the two-mode Hamiltonian possessing PT symmetry and anti-PT symmetry in the
matrix form as

H =
(
a†1 a†2

)
M

(
a1
a2

)
. (S20)

A PT -symmetric Hamiltonian is usually in a form of

MPT =

(
ω κ
κ∗ ω∗

)
, (S21)

TABLE S1. The summary of the coupled two-mode PT -symmetric and anti-PT -symmetric system. ∆1 and ∆2 are the
detunings of the two optical modes. γ1 and γ2 are the optical loss or gain. κ1 and κ2 are the coupling strengths between the
optical modes.

Symmetry Detuning Coupling Strength Gain/Loss

k1

k2

g1 g2PT : ∆1 = ∆2 κ∗
1 = κ2 γ1 = −γ2

k1

k2

g1 g2Anti-PT : ∆1 = −∆2 κ∗
1 = −κ2 γ1 = γ2
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where ω is the complex frequency and κ is the complex coupling. Under the combined PT operations, it is invariant,
i.e., [PT , H] = 0. An anti-PT -symmetric Hamiltonian is usually in the form of

MAPT =

(
ω κ
−κ∗ −ω∗

)
. (S22)

which will be mapped to its opposite under the combined PT operations, i.e., {PT , H} = 0. We can see by multiplying
i, the PT -symmetric Hamiltonian can become anti-PT symmetric mathematically.

In Tab. S1, taking a two-mode coupled optical system as an example, we summarize the conditions that need
to be satisfied in PT -symmetric and anti-PT -symmetric systems. For PT -symmetric systems, one of the optical
modes should be active with gain while the other mode has to be passive with equal loss. For the anti-PT -symmetric
Hamiltonian, the opposite detunings and the anti-Hermitian coupling should be met at the same time. Different from
PT symmetry, the realization of anti-PT symmetry is independent on sophisticated gain-loss balance structure, see
Fig. S2(a). The anti-PT symmetric system can be passive (with loss) [S16] or active (with gain) [S17].

In the following part, we will show how to construct the Hamiltonian in the form as shown in Eq. (S22). Inspired
by the recent experiment on nonreciprocal light transmission with a spinning resonator [S1], we propose a scheme
to realize anti-PT symmetry via a single linear optical resonator, which can support two counterpropagating modes,
i.e., the CW and CCW modes. The Hamiltonian for such a system can be expressed as (~ = 1):

H0 = (ωc − iγc)
(
a†cwacw + a†ccwaccw

)
+ iκ

(
a†cwaccw + a†ccwacw

)
, (S23)

where ωc = c/λ is the resonant frequency of the optical mode with λ (c) being the wavelength (speed) of light,
γc = (γ0 + γex) /2 is the total cavity loss, γ0 ≡ ωc/Q is the intrinsic loss of the cavity mode, γex is the loss induced
by the coupling between the fiber and the resonator, κ is the dissipative coupling strength between the CW and the
CCW modes, and acw(accw) and a†cw(a†ccw) represent the annihilation and creation operators of the CW (CCW) cavity
mode. This resonator is bidirectionally driven by two pumps with the same frequency ωd. The driving terms can be
expressed as

Hdr = iεd
(
a†cwe

−iωdt − acweiωdt
)

+ iεd
(
a†ccwe

−iωdt − accweiωdt
)
, (S24)

where εd =
√
γexPd/~ωd is the driving amplitude and Pd denotes the input power. Rewriting the Hamiltonian in the

rotating frame with

U = exp
[
−iωd

(
a†cwacw + a†ccwaccw

)
t
]
, (S25)

we can derive the transformed Hamiltonian as

H ′ = i
dU†

dt
U + U†HU, (S26)

where

H = H0 +Hdr. (S27)

Then we get the transformed Hamiltonian as

H ′ = (∆c − iγc)
(
a†cwacw + a†ccwaccw

)
+ iκ

(
a†cwaccw + a†ccwacw

)
+ iεd

(
a†cw − acw

)
+ iεd

(
a†ccw − accw

)
, (S28)

with driving detuning ∆c = ωc − ωd.
If this resonator rotates in the CCW direction at a speed of Ω (in unit of Hz) [S1], the Sagnac effect will result in

two opposite frequency shifts in the CW and CCW modes [S21], i.e.,

∆sag = ±nRΩωc

c

(
1− 1

n2
− λ

n

dn

dλ

)
. (S29)

TABLE S2. Experimentally feasible parameters used for numerical simulations [S1, S8, S18–S20]. Here λ is the wavelength of
the light, Q is the quality factor of the resonator, n is the refractive index of the resonator, R is the radius of the resonator, κ
is the dissipative coupling, Pd is the pump power, and γex is the coupling loss.

λ Q n R κ Pd γex

1550 nm ∼ 1× 1011 1.44 50µm 8 kHz 5µW γ0/2
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Hereafter, we replace n2 with n to denote the refractive index of the resonator just for convenience. The dispersion term
dn/dλ, characterizing the relativistic origin of the Sagnac effect, is relatively small in typical materials (∼ 1%) [S1].
Then the Hamiltonian becomes:

H ′ = (∆+ − iγc) a†cwacw + (∆− − iγc) a†ccwaccw + iκ
(
a†cwaccw + a†ccwacw

)
+ iεd

(
a†cw − acw

)
+ iεd

(
a†ccw − accw

)
, (S30)

with the detunings ∆± = ∆c ±∆sag.
By setting ∆c = 0, the matrix form of the Hamiltonian without the driving terms becomes:

H0 =
(
a†cw a†ccw

)
M

(
acw
accw

)
, (S31)

where

M =

(
∆sag − iγc iκ

iκ −∆sag − iγc

)
. (S32)

Obviously, this Hamiltonian is anti-PT symmetric under the combined PT operations:{
PT , H0

}
= 0. (S33)

So far we have constructed the anti-PT -symmetric Hamiltonian using the opposite frequency shifts induced by
mechanical rotation and the dissipative coupling induced by taper scattering. We will examine the non-Hermitian
degeneracy known as exceptional point (EP) in this system by solving the following equation (I2 is the identity 2× 2
matrix)

|M − ωI2| = 0, (S34)

i.e., ∣∣∣∣ ∆sag − iγc − ω iκ
iκ −∆sag − iγc − ω

∣∣∣∣ = 0. (S35)

Then the eigenfrequencies of the anti-PT -symmetric system can be obtained as:

ω± = −iγc ±
√

∆2
sag − κ2. (S36)

The experimentally accessible parameters are listed in Tab. S2. We note that Q has been improved to 1012 in
experiment [S19], and the rotation speed Ω, which is lower than 1 kHz in numerical simulations, is also experimentally
feasible [S1].
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As shown in Fig. S2(b), the term under the square root in Eq. (S36) is negative when ∆sag < κ, leading to the
difference of linewidth and enabling the system to enter the anti-PT -symmetric (anti-PTS) phase. When increasing
the rotation speed until ∆sag > κ, the term under the square root becomes positive, thus frequency difference occurs
and the system is in anti-PT -symmetry-broken (anti-PTB) phase. When ∆sag = κ, the two eigenfrequencies coalesce
and the system is exactly at the EP. In Fig. S2(c), we plot the eigenfrequencies as a function of the rotation speed
Ω. Based on Eq. (S36), we fix the coupling strength at κ = 8 kHz, and obtain the rotation rate at EP with the
aid of Eq. (S29): ΩEP ≈ 333 Hz. In Fig. S2(c), when the rotation speed is below a critical value, i.e., Ω < ΩEP,
anti-PT -symmetric phase appears with purely imaginary splitting. When Ω = ΩEP, the coalescence occurs, and we
can observe the broken phase of anti-PT symmetry with purely real splitting at Ω > ΩEP.

S3. NONRECIPROCAL LIGHT TRANSMISSION AND ULTRASENSITIVE NANOPARTICLE
SENSING

A. Symmetry-broken nonreciprocity

We consider a probe light of frequency ωp to be incident from the left port of the system. The Hamiltonian can be
expressed as

H ′ =
(
∆′+ − iγc

)
a†cwacw +

(
∆′− − iγc

)
a†ccwaccw + iκ

(
a†cwaccw + a†ccwacw

)
+ iεp

(
a†cw − acw

)
, (S37)

where ∆′± = ∆p±∆sag with ∆p = ωc−ωp being the probe detuning, Pp denotes the probe power, and εp =
√
γexPp/~ωp

represents the amplitude of the probe light whose probe frequency is ωp. The equations of motion can be derived as

ȧcw = −i (δp + ∆sag) acw + κaccw + εp,

ȧccw = −i (δp −∆sag) accw + κacw, (S38)

with δp = ∆p − iγc. In the strong-driving regime, we can get the steady-state solutions by making ȧcw = 0 and
ȧccw = 0:

acw =
−i (δp −∆sag) εp

(δp + ∆sag) (δp −∆sag) + κ2
. (S39)

Applying the input-output relation [S22]

aoutcw = aincw −
√
γexacw, (S40)
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different Ω in the anti-PT -symmetric phase and (b) symmetry-broken phase. (c) Isolation ratios of Hermitian spinning (HS)
resonator (left panel) [S1] and anti-PT system (right panel) versus Ω and ∆p. The gray dashed curves show the frequency
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the transmission rate can be obtained as:

TAPT
cw =

∣∣∣∣1− γexacw
εp

∣∣∣∣2 =

∣∣∣∣1 +
iγex (δp −∆sag)

(δp + ∆sag) (δp −∆sag) + κ2

∣∣∣∣2 , (S41)

where the superscript APT denotes anti-PT -symmetric system. Similarly, when the probe is incident from the right,
the solutions can be derived as

accw =
−i (δp + ∆sag) εp

(δp + ∆sag) (δp −∆sag) + κ2
. (S42)

According to the input-output relation

aoutccw = ainccw −
√
γexaccw, (S43)

the transmission rate can be given by

TAPT
ccw =

∣∣∣∣1− γexaccw
εp

∣∣∣∣2 =

∣∣∣∣1 +
iγex (δp + ∆sag)

(δp + ∆sag) (δp −∆sag) + κ2

∣∣∣∣2 . (S44)

For comparison, we consider the light transmission in an HS system with single mode [S1]. The steady-state
solutions with the probe light incident from the left and right are

acw =
−iεp

δp + ∆sag
, accw =

−iεp
δp −∆sag

, (S45)

respectively. Likewise, the corresponding transmissions are

THS
cw =

∣∣∣∣1 +
iγex

δp + ∆sag

∣∣∣∣2 , THS
ccw =

∣∣∣∣1 +
iγex

δp −∆sag

∣∣∣∣2 . (S46)

In Fig. S3, the normalized transmission rate T s
cw,ccw/max [T s

cw,ccw], is plotted as a function of the probe detuning
∆p at different rotation speed, where s denotes the anti-PT (APT) system or the HS system. For the HS system,
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starting from the stationary case (Ω = 0), the countercirculating modes overlap, owing to their expected degeneracy.
As predicted by Eq. (S29), increasing the mechanical rotation frequency Ω results in a linear opposing frequency shift
for the countercirculating modes, i.e., nonreciprocal light transmission [S1]. For the anti-PT -symmetric system, as
shown in Fig. S3(b), there is no splitting in the transmission spectra in the symmetry-unbroken phase (Ω < ΩEP),
and nonreciprocal light transmission is unclear compared with the HS system, although the rotation speed has been
increased over 200 Hz. This is owing to the fact that the rotation-induced Sagnac shift is smaller than the dissipative
coupling and the transmission in two opposite directions is not greatly separated from each other [see Eqs. (S41)
and (S44)]. Meanwhile, there is no dissipative coupling in HS system, thus the nonreciprocal transmission is only
dependent on the Sagnac shift, as shown in Eq. (S46). The mode splittings for CW and CCW modes appear in the
symmetry-broken phase (Ω > ΩEP) by increasing the rotation speed, and the nonreciprocity becomes stronger than
that in HS system.

To further confirm this picture, we study the isolation of this anti-PT system. And different from the main text,
here we use the isolation ratio defined as IAPT = 10log10

(
TAPT
cw /TAPT

ccw

)
, and we find that the isolation ratio in

symmetry-broken phase is much larger than that in anti-PT -symmetric phase, as shown in Figs. S4(a) and S4(b).
For comparison, the isolation ratio of HS resonator IHS = 10log10

(
THS
cw /T

HS
ccw

)
and the maxima of the isolation

η ≡ max [I] for ∆p ∈ [−15, 15] kHz with respect to Ω are revealed in Figs. S4(c) and S4(d), respectively. In HS
system, the isolation becomes larger by increasing Ω due to the splitting of the counterpropagating modes induced
by the Sagnac frequency shift; but it will be limited to 9.5 dB because of the fixed linewidths of the two modes [S1].
In contrast, the dissipative coupling combined with the Sagnac frequency shift can alter the linewidths and extrema
of the transmission spectrum, thus the isolation rate can be improved to 61.8 dB in symmetry-broken phase. This
is consistent with the results obtained in the main text. This anti-PT -symmetry-broken enhanced nonreciprocity is
related to the interplay between the linear synthetic angular momentum and dissipative backscattering. Different
from the nonreciprocity reported in the PT -symmetric systems [S23, S24], which relies on the nonlinear process, the
nonreciprocal light transmission in this system is free of nonlinearity or gain-loss balanced structure.

B. Anti-PT sensor

Apart from one-way control of transmission rates, in the following, we would like to present the potential of the
anti-PT -symmetric system for detection of nanoparticles [S9, S11, S13], which is highly desirable for widespread
applications in, e.g., medical diagnosis and environmental monitoring [S9, S25, S26].

The Hamiltonian of this anti-PT -symmetric system modified by nanoparticles can be expressed in a matrix form
as [S9, S13, S27]:

MN =

(
∆sag + δN iκ+ C−N
iκ+ C+

N −∆sag + δN

)
, (S47)

with

gN =

N∑
i=1

gs,i, γN =

N∑
i=1

γs,i, C±N =

N∑
i=1

(gs,i − iγs,i) exp (±i2mβi) , (i = 1, 2, 3, ..., N), (S48)

where δN = gN − i (γc + γN ), N is the total particle number, m is the azimuthal mode number, βi is the angular
position of the i-th nanoparticle, and gs,i (γs,i) is the coupling strength (the loss rate) induced by the i-th nanoparticle.
According to |MN − ωI2| = 0, the eigenfrequencies of this perturbed system can be given by:

ω±N = δN ±
√

∆2
sag +

(
iκ+ C−N

) (
iκ+ C+

N

)
. (S49)

The corresponding frequency difference is

∆ωAPT
N = ω+

N − ω
−
N = 2

√
∆2

sag + (iκ+ C−N )(iκ+ C+
N ). (S50)

To explore EP assisted sensitive sensing, we compare the anti-PT sensor with HS sensor [S13]. In the presence of
perturbations, the eigenfrequencies for HS sensor can be written as

ω±N = δN ±
√

∆2
sag + C−NC

+
N , (S51)
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experiments [S10, S11]. The other parameters used here are the same as those in Fig. S2.

thus yield the frequency difference as follows:

∆ωHS
N = 2

√
∆2

sag + C−NC
+
N . (S52)

It should be noted that the coupling between CW and CCW modes in HS sensor is only induced by nanoparticles.
By setting N = 1, we consider the simplest case that only a single nanoparticle is deposited on the resonator with

g1 = gs,1 and γ1 = γs,1. In this case, angular position β1 is set to be 0, leading to C+
1 = C−1 = gs,1 − iγs,1 = g1 − iγ1.

Here we have restricted our discussion to J = g1 − iγ1 for convenience, then the perturbed eigenfrequencies can be
described as

ω±1 = J − iγc ±
√

∆2
sag − (κ− iJ)2, (S53)

with the corresponding frequency difference:

∆ωAPT
1 = ω+

1 − ω
−
1 = 2

√
∆2

sag − (κ− iJ)2. (S54)

Likewise, we can write perturbed frequencies and their difference for HS sensor as follows:

ω±1 = J − iγc ±
√

∆2
sag + J2, ∆ωHS

1 = 2
√

∆2
sag + J2. (S55)

In Fig. S5(a), the logarithmic behaviour of the real part of the complex frequency splitting is shown to highlight
the sensitivity enhancement of anti-PT sensor. For the same minuscule perturbation, anti-PT sensor at EP performs
better than HS sensor, which shows no strong dependence on perturbation. However, their behaviours are similar
for large disturbance. This can be explained with the perturbation theory. The complex frequency splitting at EP
(∆sag = κ) is expected to approximately follow

∆ωAPT
1 = 2

√
2iκJ1/2, (S56)

when J is much smaller than κ, indicating that perturbations experience an enhancement of the form J1/2. For larger
J , the slope of the splitting will be slightly larger than 1/2, because in this case Eq. (S54) cannot be simplified to
Eq. (S56), and the higher order terms should be taken into consideration:

∆ωAPT
1 = 2

√
2iκJ1/2 − i

√
2iκ

2κ
J3/2 + · · ·. (S57)

For HS sensor, the complex frequency splitting

∆ωHS
1 = 2∆sag +

J2

∆sag
− J4

4∆3
sag

+ · · ·, (S58)
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is proportional to the square of the perturbation J2 at least. Thus, HS sensor will not show strong dependence on
small perturbation.

A signal enhancement factor defined as

ξ =

∣∣∣∣∂∆ωAPT
1

∂g1

∣∣∣∣ =

∣∣∣∣∣∣2 (κ− γ1 − ig1) (γ1/g1 + i)√
∆2

sag − (κ− γ1 − ig1)
2

∣∣∣∣∣∣ , (S59)

is introduced to intuitively evaluate the performance of anti-PT sensor. Similarly, the signal enhancement factor for
HS sensor can be given by

ξ =

∣∣∣∣∂∆ωHS
1

∂g1

∣∣∣∣ =

∣∣∣∣∣∣2 (−γ1 − ig1) (γ1/g1 + i)√
∆2

sag + (−iγ1 + g1)
2

∣∣∣∣∣∣ . (S60)

The dependence of signal enhancement factor ξ on perturbations is shown in Fig. S5(b), from which we can see in
the vicinity of EP, larger sensitivity can be obtained for smaller perturbations in anti-PT sensor. While in HS sensor,
the signal enhancement factor is small for minuscule perturbations. When the perturbation J is much larger than κ,
as aforementioned, the signal enhancement factor of these two sensors will be roughly equal (∼ 2, as illustrated in
the figure) for the fact that the higher order terms in Eqs. (S57) and (S58) cannot be neglected. One of the potential
applications of this anti-PT -symmetric system, i.e., anti-PT based sensing and its enhancement to the sensitivity are
carefully confirmed, which could open a new path towards engineering compacted ultrasensitive sensors for detections
of nanoscale objects.

Alternatively, we can evaluate the performance of these two sensors from the optical fields in one of the counterprop-
agating modes, e.g., the CW mode. The effective Hamiltonian of the anti-PT -symmetric system with nanoparticles
can be written as

HN =
(
∆′+ + δN

)
a†cwacw +

(
∆′− + δN

)
a†ccwaccw+

(
iκ+ C−N

)
a†cwaccw +

(
iκ+ C+

N

)
a†ccwacw + iεp

(
a†cw − acw

)
. (S61)

The equations of motion can be derived as

ȧcw = −i
(
∆′+ + δN

)
acw − i

(
iκ+ C−N

)
accw + εp,

ȧccw = −i
(
∆′− + δN

)
accw − i

(
iκ+ C+

N

)
acw. (S62)

The steady-state solutions can be obtained by making ȧcw = 0 and ȧccw = 0, i.e.,

0 = −i
(
∆′+ + δN

)
acw − i

(
iκ+ C−N

)
accw + εp,

0 = −i
(
∆′− + δN

)
accw − i

(
iκ+ C+

N

)
acw. (S63)

Finally, we get

acw =
−i
(
∆′− + δN

)
εp(

∆′+ + δN
) (

∆′− + δN
)
−
(
iκ+ C−N

) (
iκ+ C+

N

) . (S64)

Here we consider only one single nanoparticle is deposited on the resonator (N = 1), then the steady-state solution
becomes

acw =
−i
(
∆′− + δ1

)
εp(

∆′+ + δ1
) (

∆′− + δ1
)
− (iκ+ g1 − iγ1)

2 . (S65)

Applying the input-output relation in Eq. (S40), we can get the transmission rate as

TAPT
1 =

∣∣∣∣1− γexacw
εp

∣∣∣∣2 . (S66)

For HS sensor, the steady-state solution is

acw =
−i
(
∆′− + δ1

)
εp(

∆′+ + δ1
) (

∆′− + δ1
)
− (g1 − iγ1)

2 . (S67)
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FIG. S6. Anti-PT sensor compared with standard sensor. (a,b) The evolution of the eigenfrequencies in the complex plane
with the perturbation g1 varying from 0 to 1 kHz. (a) shows the complex evolution corresponding to anti-PT sensor originally
at EP. (b) shows the case of standard sensor. The perturbation increases along the arrow direction. The rotation speed
is fixed corresponding to the EP (ΩEP ≈ 333 Hz) of the system without nanoparticle. γ1/g1 is set to be 0.05 as in the
experiments [S10, S11]. (c) The frequency splitting of anti-PT sensor in the presence of multiparticles. The circles represent
anti-PT sensor while the diamonds represent the standard sensor. The other parameters used here are the same as those in
Fig. S2.

The corresponding transmission is

THS
1 =

∣∣∣∣1− γexacw
εp

∣∣∣∣2 . (S68)

To compare the performance of the these two sensors, we introduce an enhancement factor

χ = VAPT/VHS, (S69)

with the relative variation ratio defined as VAPT = TAPT
1 /TAPT

0 and VHS = THS
1 /THS

0 . Here TAPT
0 (THS

0 ) is the
transmission for anti-PT (HS) sensor without nanoparticle (i.e., g1 = 0 and γ1 = 0). The probe detuning is chosen
to be ∆p = Re [ω−] (see the main text).

Finally, we show that this anti-PT sensor still performs better than standard sensor system with diabolic point
(DP). The perturbed eigenfrequencies and frequency splitting for standard sensor are

ω±N = δN ±
√
C−NC

+
N , ∆ωD

N = 2
√
C−NC

+
N . (S70)

For N = 1, the perturbed eigenfrequencies become ω+
1 = −iγc + 2J and ω−1 = −iγc, and the frequency splitting is

∆ωD
1 = 2J .

Figures S6(a) and S6(b) show the evolution of the eigenfrequencies corresponding to anti-PT sensor and standard
sensor in the complex plane with g1 varying from 0 to 1 kHz. The width of the shadow regions shown in Figs. S6(a) and
S6(b) indicates the frequency splittings Re [∆ωs

1] induced by the same perturbation for these two sensors. Evidently,
anti-PT sensor undergoes more splitting than the standard sensor. This is still true for multiparticle detection, as
shown in Fig. S6(c). The values of gs,i, βi, and γs,i are random in this figure. The azimuthal mode number is set to
be m = 4 [S10].
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