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1. Introduction

The capture and confinement of passive colloidal particles 
inside designated areas has been the focus of recent invest­
igations aimed at new protocols for smart drug delivery and 
targeted cancer therapy [1, 2]. More generally, the study of 
active self­propelled particles, also called artificial micro­
swimmers, has come to the forefront of biomedical research 
during the last decade [3–7]. Active particle systems mainly 
relate to assemblies of either microorganisms, like bacteria 
[8–12], or artificial self­phoretic colloids, epitomized by the 
so­called Janus particles [13–17]. Recent advances in the 
fabrication of active microswimmers suggest new techniques 
to control diffusion and transport of passive particles in con­
fined geometries. For instance, pumping of passive species by 
active Janus particles has been demonstrated in asymmetric 
ratchet channels [18]. Extensive numerical simulations show 
that in such channels active Janus particles get rectified even 
in the presence of passive particles and, most remarkably, a 
tiny fraction of them is capable of dragging along most of the 

passive species, an effect called ‘autonomous pumping’ [18]. 
Recently, persistent dragging of passive colloidal clusters by 
a single active Janus microswimmer has been observed exper­
imentally even in smooth channels [19].

There have been experimental and theoretical efforts to 
describe the dynamics of colloidal particles immersed in an 
active fluid. Most of the reported work addressed the diffu­
sion of colloids in swimming suspensions [20–23] or a pas­
sive tracer in a bacteria bath [24–27]. Other studies focused on 
turbulence in binary mixtures of active and passive particles 
[28, 29] and the effective interactions between them [30, 31]. 
While the literature on such binary systems grew drastically 
in recent years, some basic questions concerning their equilib­
rium and non­equilibrium statistics remained unaswered.

Recently, the experiments of Koumakis and coworkers 
[2] demonstrated the targeted delivery of passive colloids 
by swimming bacteria. These authors designed specific 3D 
microstructures to serve as targeted area, where bacteria effi­
ciently store the colloidal particles. Inspired by these observa­
tions, we simulated a model binary mixture of active Janus 
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swimmers and passive particles suspended in a confined 
geometry, like a channel dotted with potential traps. For 
simplicity, the traps were represented by truncated parabolic 
potential wells, which closely mimic, for instance, the binding 
action of actual optical tweezers. We studied the interaction of 
active and passive species with the purpose of controlling col­
loidal clustering and transport by means of active microswim­
mers. In particular, we are interested in devising methods for 
delivering to and removing passive colloids from a targeted 
area by fine­tuning the concentration and the self­propulsion 
parameters of the active microswimmers.

The present paper is organized as follows. Our model and 
numerical approach are outlined in section 2. The accumula­
tion of particles of mono­species systems within a parabolic 
trap is reported in section 3.1. Next, in section 3.2 we inves­
tigate how effectively the active particles push the passive 
particles inside the trap. The diffusion of the active particles 
through trap arrays is simulated in section 3.3. Finally, in sec­
tion 3.4 we explore the possibility of using active microswim­
mers to empty the traps from the passive particles stored there. 
A few concluding remarks are drawn in the final section 4.

2. Model and simulation

In our simulations, Na active (or self­propelled) particles and 
Np passive (or regular colloidal) particles move in a two­
dimensional (2D) L × L box with a parabolic potential well 
of radius rD at its center. Periodic boundary conditions are 
imposed on the box sides. We model both active and passive 
particles as soft disks of equal radius, rd, interacting pairwise 
through a repulsive short­range force. As reported in [18, 32], 
a particle of coordinates ri = (xi, yi) is subject to an over­
damped dynamics with Langevin equation (LE)

∂ri

∂t
= v0ν̂ i + µ(

∑
j�=i

Fij + F p
i ) + ηT

i (t), (1)

where the self­propulsion speed, v0, is positive only for the 
active particles, while the mobility, μ, is the same for all 
constituents of the mixture. Here, Fij is the repulsive interac­
tion between particles i and j, with j �= i denoting particles 
of either species. The particle repulsion force is defined as 
Fij = καijr̂ij, if αij = d − rij > 0 and Fij = 0, otherwise. 
Here, d  =  2rd denotes the particle’ diameter, αij measures 
the overlap between particles i and j, rij being the distance 
between their centers, and, finally, κ is a pair­independent 
stiffness constant. The attractive force exerted by the trap on 
particle i is F p

i = −Ari, if ri < rD and F p
i = 0, otherwise. 

This corresponds to modeling the trap as a truncated harmonic 
potential well of strength A and radius rD [33]. The unit vector 
ν̂ i = (cos θi, sin θi) represents the direction of the self­pro­
pulsion velocity of the active particle of index i, the random 
direction of which, θi(t), is modeled as a Wiener process,

∂θi

∂t
= ηi(t), (2)

driven by the Gaussian, zero mean­valued, local noise, ηi(t), 
with autocorrelation function

〈ηi(t)ηj(t′)〉 = 2Drδijδ(t − t′). (3)

Note that the rotational diffusion coefficient, Dr, coincides 
with the reciprocal of the persistence time, τr = 1/Dr , of the 
exponentially time­correlated Brownian motion executed by a 
purely active particle [18]. However, here we also consider the 
effects of thermal fluctuations, represented in equation (1) by 
the additive Gaussian noise ηT

i (t), with correlation functions,

〈ηT
iα(t)〉 = 0, 〈ηT

iα(t)η
T
jβ(t

′)〉 = 2DTδijδαβδ(t − t′), (4)

where the indices α = 1, 2 and β = 1, 2 denote the Cartesian 
coordinates x and y, respectively, and DT is the thermal diffu­
sion coefficient of the suspension.

Figure 1. (a) Number of trapped particles, N(t), versus total number 
of particles, N, for one­species suspensions of passive (squares 
and triangle) or active particles with v0 = 1.0 (circles). Panels 
(b)–(e) are snapshots of different systems: (b) N  =  Na  =  600; (c) 
N  =  Na  =  2000; (d) N  =  Np  =  2000; (e) N  =  Np  =  7000. The 
circles at the center of the simulation box delimit the parabolic trap. 
If not specified otherwise, the remaining simulation parameters 
are L  =  100, rD  =  15, d  =  1, A  =  0.1, κ = 10, µ = 1, Dr  =  0.005, 
DT = 0.001 and te = 6 · 104. The data set represented by triangles 
in (a) have been obtained for D�

T = 50DT and simulation time 
t�e = te/3.
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Furthermore, in order to work with dimensionless quanti­
ties, we adopted the particle diameter, d, as the unit of length 
and the trap relaxation time, (µκ)−1, as the unit of time. Fixed 
model parameters used in the simulation analysis presented 
next are L  =  100, rD  =  15, d  =  1, A  =  0.1, κ = 10, µ = 1, 
Dr  =  0.005, and DT = 0.001. The integration scheme of the 
model LE’s is the same as in [18] with total running time 
te = 6 × 104 and integration time­step �t = 0.001. In all runs 
the mixture was initially prepared by generating a uniform 
random distribution for the positions of the particles and the 
orientations of the active ones.

In order to emphasize the control action exerted by the 
active particles on the dynamics of the mixture overall, we 
kept the levels of the angular, Dr, and thermal noise, DT, rela­
tively low. Of course, we ran extensive preliminary numerical 
tests for a variety of model parameters; the simulation results 
illustrated below are meant to serve as a proof of concept. For 
the same reason and to avoid unnecessary complications, we 
neglected hydrodynamic effects, which are known to con­
tribute to the colloidal pair interaction, especially in 2D [34–
36]. Finally, we mention that a similar model, also involving 
truncated parabolic traps, has already been investigated to 
study the statistics of a single species of trapped active Janus 
particles in the long­time (‘thermodynamic’) limit [33].

3. Simulation results

The system under consideration has two distinct relaxation 
timescales, one for the active dynamics, τa, and one, τp, asso­
ciated with the thermal fluctuations. Both times depend on 
the trap parameters. The active Brownian motion outside the 
traps is characterized by the diffusion constant Ds = v2

0/2Dr, 
which, in our simulation, is much larger than the thermal dif­
fusion DT. Accordingly, τp turns out to be orders of magni­
tude larger than τa. Under experimental conditions, e.g. in 
biological systems, τa is typically of the order of seconds or 
minutes, while τp can be easily set of the order of hours, days, 
or even longer. This means that in our discussion τp will be 
regarded as infinitely long. Therefore, we simulated the relax­
ation dynamics of the binary mixture only up to long­lived 
quasi­stationary states; that is, states that are stationary on the 
time scale τa. The asymptotic time relaxation toward thermal 
equilibrium can be numerically investigated only at higher 
mixture’s temperatures, i.e. for values of DT corresponding 
to numerically accessible (shorter) relaxation times of the 
trapped passive particles, τp.

3.1. Trapping of a single species

In this section we consider suspensions of only active or pas­
sive particles in the presence of a trap. In figure 1(a) we plot 
the number of particles sitting in the trap, N(t) versus the total 
number of particles of either sort, N, active (red circles) or pas­
sive (black squares). We stress that the temperature was taken 
quite low, such that thermal diffusion is weak, DT = 0.001, 
and the condition τp � τa holds. Accordingly, as anticipated 
above, these results and all system snapshots displayed in 

panels (b)–(e) of figure 1 have been obtained after simulation 
times, te, obeying the condition τa < te < τp.

As apparent in figure 1(a), for Na  <  1000 all active particles 
enter the trap, which results in the linear branch of the curve 
N(t)

a  versus Na with slope equal to one. For Na  >  1000, the 
N(t)

a  curve develops a sub­linear behavior which finally levels 
off for asymptotically large Na. In contrast, on the same time­
scale passive particles are uniformly distributed in the box and 
only a small fraction of them enters the trap. In other words, 
the spatial diffusion for active particles, figures 1(b) and (c), is 
much faster than for passive particles, figures 1(d) and (e). The 
sort of ‘halo’ surrounding the traps in figures 1(d) and (e) is 
due to the slow thermal diffusion of the uniformly distributed 
passive particles, which over the run time length, te, fall inside 
the trap, thus generating a circular depletion region around it.

These distinct relaxation transient properties play a crucial 
role in the dynamics of binary mixtures discussed in the forth­
coming sections. In order to access the asymptotic behaviour, 
i.e. the thermodynamic equilibrium limit, one should consid­
erably increase either the simulation time or the temperature. 

In figure 1(a) we plot, as an example, the curve N(t)
p  versus Np 

for a much larger thermal diffusion, D�
T = 50DT, but using 

a shorter simulation time, t�e = te/3. Under such conditions, 
the passive particle suspension behaves similarly to the active 
suspension described above, namely, exhibits a linear growing 
branch corresponding to the trapping of all passive particles 
for Np  <  3000 and an asymptotic saturation for much larger 
Np. However, as an interesting difference, one notices that 
here the horizontal asymptote is relatively higher and sets 
in immediately around Np  =  3000, that is after the trap has 
been filled up. This is an obvious effect of the self­propulsion 
mechanism, which eventually hinders the containment of the 
active particles inside the trap.

3.2. Trapping of passive particles assisted  
by Janus microswimmers

We inject now an increasing number of Janus particles, Na, 
into a suspension containing a fixed number of passive par­
ticles, Np  =  1000. In figure 2(a) we plot the number of trapped 

passive particles, N(t)
p , versus Na, for increasing values of the 

self­propulsion speed of the active microswimmers. The 
number of Janus particles trapped at the same time, N(t), is 
displayed in figure 2(b) for comparison.

A few properties of the mixture transient dynamics are 
apparent. First of all, trapping of passive particles is clearly 
expedited by the presence of active particles and grows more 
efficient upon increasing the concentration of the active comp­
onent in the mixture.

More interesting is the dependence of the curves N(t)
p  

versus Na of figure 2(a) on the speed of the active Janus swim­

mers, v0. N(t)
p  first grows linearly (and slowly) with Na up 

to certain critical value, N�
a , and then bends upward toward 

its saturation value, Np � 1000. Such a sudden jump in the 
curves’ profile shifts towards lower Na with increasing v0, 
until the linear branch disappears altogether for v0 > 1.5. All 
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curves in figure 2(a) exhibit a small bump at about Na  =  600, 
which gets more prominent as N�

a  approaches zero. The 
origin of these bumps is related with the formation of shells 
of active particles inside the trap (see snapshots in figure  3 
for Na  =  500 and 600). For Na � 600, the filling of the trap 
with active particles is proportional to Na (with slope close 
to 1 for v0 up to 1.3, see figure 2(b)). Such ‘quasi­stationary’ 
shells encage passive particles inside the trap. The number of 
active particles in the shells saturates at about N(t)

a ≈ 600, 
as shown by the curves of figure 2(b) for v0 = 1.3–1.5. The 
observed bumps in figure 2(a) correspond to these plateaus. 
Their appearance means that additional active particles do not 
contribute to the active shells surrounding the passive parti­
cles in the trap. These additional active particles thus freely 
move in and out of the trap, which eases the escape of the 
passive particles.

Moreover, one notices that for v0 = 2.0 and Na ≈ 600 
about 95% of the passive particles become trapped, whereas 

in the absence of active swimmers only slightly more than 
20% of them are found in the trap. This validates our starting 
idea of using active swimmers to control the dynamics of pas­
sive colloids: active swimmers do efficiently help trap pas­
sive particles; they can be employed to clear up a working 
area from undesired stray particles by storing them in targeted 
areas, represented here by traps.

Simultaneously, as illustrated in figure  2(b), the number 
of dynamically trapped active particles, N(t)

a , also increases 
with their total number, Na. However, the dependence of the 
curves N(t)

a  versus Na on v0 is opposite to that observed for 
the passive mixture fraction: At a fixed concentration of Janus 
microswimmers, N(t)

a  markedly decreases with increasing v0. 
Therefore, the simulation data of figure 2(b) indicate that for 
the system parameters yielding the maximum trapping of the 
passive particles, i.e. Na  =  600 and v0 = 2.0, only about 15% 
to the active swimmers sit inside the trap.

The findings of figures 1 and 2 can be summarized as fol­
lows. A small fraction of active swimmers of relatively high 
self­propulsion speed (‘hot’ swimmers) added to a suspen­
sion of passive particles can drastically change the diffusive 
dynamics of the mixture overall. In particular, they can be used 
to confine the passive particles inside a designated storing area 
with efficiency that can be thus enhanced by a factor of up to 
four, or even larger.

Examples of the spatial distribution of active (red) and pas­
sive (black) particles in the simulation box at low temperature, 
DT = 0.001, are presented in figure 3. The snapshots of panels 
(a) and (c) illustrate situations when the trap apparently con­
tains all active particles and only a small fraction of the pas­
sive ones. This occurrence is typical for low self­propulsion 
speeds; here, v0 = 1.0. ‘Heating up’ the system by raising 

Figure 2. (a) Number of trapped passive particles in the trap N(t)
p  

versus total active particle number, Na, for Np  =  1000 and different 
v0 (see legend). (b) The corresponding number of active particles, 
N(t)

a , trapped at the same time. Note that the simulation data are 
represented by symbols, while the smooth interpolating curves are 
just a guide to the eyes. If not indicated otherwise, all simulation 
parameters are as in figure 1.

Figure 3. (a)–(d) Snapshots of the spatial configuration of a 
mixture with Np  =  1000 (a) Na  =  500, v0 = 1.0; (b) Na  =  500, 
v0 = 2.0; (c) Na  =  600, v0 = 1.0; and (d) Na  =  2000, v0 = 1.0. All 
remaining simulation parameters are as in figure 1. The circles at 
the center of the simulation box delimit the parabolic trap.
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v0 from 1.0 up to 2.0 sharply changes the quasi­stationary 
mixture configuration: The initially ‘sleeping’ active Janus 
swimmers leave the trap and ‘heat up’ the passive comp­
onent of the suspension. Under the stirring action of the Janus 
microswimmers, the passive particles then edge toward and 
eventually fall inside the trap in larger numbers, as shown in 
figure 3(b). On the contrary, the microswimmers themselves, 
due to their high motility, can easily escape from the trap. A 
simple force­balance argument yields the depinning condi­
tion v0 > ArD, i.e. v0 > 1.5 for the simulation parameters of 
figure 3. Of course, active particles can populate the area out­
side the trap also for lower self­propulsion speeds, but only at 
much higher concentrations, like in figure 3(d).

We recall that the above mechanism is a transient effect that 
works only for τa � τp. In our simulations such condition was 
ensured by taking a very small thermal diffusion, DT = 0.001, 
and a long simulation time, te = 6 · 104, so that L2 � 4DTte. 
At high temperatures, when the spatial diffusion induced by 
thermal fluctuations becomes appreciable, see figure  1(a), 
the above condition breaks down and the dynamical behav­
iour of active and passive species becomes indistinguishable 
(not shown). The latter occurrence represents an equilibrium 
condition clearly expected in the asymptotic time limit, but of 
lesser usage for practical applications.

3.3. Mean square displacement

The diffusive properties of the mixture constituents are char­
acterized by their mean square displacement (MSD) defined 
as 〈∆r2(t)〉 = 〈[r(t)− r(0)]2(t)〉. To analyze the diffusion of 
the active fraction, in figure 4 we plotted the MSD of the active 
Janus particles taken at t  =  te, 〈∆r2(t = te)〉 ≡ 〈∆r2(v0)〉, 
versus v0 for different concentrations, Na, and a fixed number 
of passive particles, Np  =  1000. The ensemble average 
(respectively over Na  =  10,200,500,600 and 1000 active par­
ticles) was further averaged over five independent simulation 
runs to obtain the rather smooth curves displayed in figure 4.

For relatively low concentrations, Na  <  600, active Janus 
microswimmers with v0 < ArD are strongly confined by 
the trap, so that for v0 = 1.0–1.2 we obtained 〈∆r2〉 � 0. 

Figure 4. Mean square displacement, 〈∆r2〉 for t  =  te, of active 
particles as a function of v0, for systems with Np  =  1000 and 
varying Na (see legends). Error bars are larger than the symbols 
only for Na  =  10 and v0 > 1.5. Interpolating curves are a guide to 
the eye. All remaining simulation parameters are as in figure 1.

Figure 5. (a) Number of passive particles in the trap, N(t)
p  versus 

total active particle number, Na, for Np  =  2000 and different v0 (see 
legend). (b) Detrapping of passive particles (initially all placed in 
the trap): N(t)

p  versus v0 for Np  =  2000 and different Na (see legend). 
(c) The number of active swimmers in the trap corresponding to 
(a). All the remaining simulation parameters are as in figure 1. 
Interpolating curves are a guide to the eye.
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Increasing the self­propulsion speed across the range 1.4–1.6 
causes a quite abrupt MSD jump, which we relate to the 
escape, or depinning of the Janus particles from the trap. 
Finally, for even higher self­propulsion speeds, v0 = 1.6–2.0, 
the MSD appears to linearly increase with v0. We explain this 
effect by invoking the high rate of collisions between active 
and passive particles occurring outside the trap. In contrast to 
the above picture, at high active swimmer concentrations, e.g. 
Na  =  1000, the MSD depinning jump tends to disappear. In 
this regime, the almost linear dependence of the MSD on v0 
is related to the observation that, due to their large concentra­
tion, the number of microswimmers diffusing outside the trap 
is appreciable even at low v0 and surely increases with it. Vice 
versa, the depinning step of the MSD curves becomes sharper 
and sharper as Na is lowered. Note that in figure 4 the step for 
Na  =  10 occurs at v0 = 1.5, as predicted.

3.4. Detrapping of passive particles assisted  
by Janus microswimmers

In section 3.2 we showed how active Janus particles can help 
store a large amount of passive particles in the trap. That result 
was achieved by injecting a small fraction of strongly self­
propelled (or ‘hot’) Janus swimmers in the passive suspension. 
This technique, in turn, raises a naturally related question that 
is especially meaningful in view of future applications: How 
can we remove the passive particles from the trap after they 
have accumulated there? 

One simple method is suggested by inspecting the snap­
shots of the mixture configuration shown in figures 3(a) and 
(c): one can ‘cool down’ the active component of the mixture, 
that is slow down the active Janus swimmers. To analyze this 
process in detail, we first calculated the number of trapped 

passive particles, N(t)
p , versus the number of active particles, 

Na, assuming that the former were initially distributed at 
random in space. The results are shown in figure 5(a) for dif­
ferent values of v0. In contrast, to model detrapping all passive 
particles were initially placed inside the trap. As discussed at 

the top of section 3, the number of trapped passive particles, 

N(t)
p , clearly depends on the initial conditions. Indeed, the 

detrapping rate of initially trapped passive particles will be 
lower than of randomly distributed passive particles. This hys­
teretic behavior is due to the fact that the simulation time, te, 
is much larger (shorter) than the relaxation time of the active 

(passive) particles. Therefore, all observables, like N(t)
p , cal­

culated over the run time te are independent of the initial con­
figurations of the active particles, but do depend, in general, 
on the initial distribution of the passive particles. Therefore, 

we chose three initial values of N(t)
p  (resulting from the prep­

aration procedure of figure 5(a), respectively, for Na  =  1000, 
1500 and 2000) and then simulated the two species mixture 
by decreasing v0 stepwise from the initial value 2.0 down to 
0.1. Finally, figure 5(c) shows the number of trapped active 
swimmers corresponding to the situation shown in panel (a).

One notices immediately that N(t)
p  in 5(a) exhibits a nonmono­

tonic dependence on Na, which is consistent with the numerical 

data of figure  2(a). More remarkably, however, in figure  5(b) 

N(t)
p  decreases monotonically with lowering v0 from 2.0 down 

to around 0.5. A minimum trap occupancy is achieved for values 
of v0 that grow lower as Na is raised. Therefore, by ‘cooling 
down’ the active mixture component, we can actually extract a 
substanti al fraction of passive particles stored in the trap.

4. Conclusions

We have investigated the diffusive dynamics of a binary sus­
pension of active Janus swimmers and passive colloidal par­
ticles in the presence of a local confining potential (trap). We 
have demonstrated the possibility of spatially manipulating 
the passive particles by means of the active swimmers with 
particular attention to their storing in and extraction from the 
trap. The former task was performed by injecting in the system 
a small fraction of active Janus swimmers with high self­
propulsion speed (‘hot’ swimmers). The latter task, instead, 
was achieved by ‘cooling down’ the active component of the 
mixture. In real experiments the speed of the self­propelled 
motion can be easily controlled, for instance, by regulating 
the intensity of the light illuminating the Janus microswim­
mers (thermo­phoresis) or the fuel concentration in the solu­
tion (chemo­phoresis).
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