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Abstract
The ongoing exploration of the ambiguous boundary between the quantum and
the classical worlds has spurred substantial developments in quantum science and
technology. Recently, the nonclassicality of dynamical processes has been proposed from a
quantum-information-theoretic perspective, in terms of witnessing nonclassical correlations
with Hamiltonian ensemble simulations. To acquire insights into the quantum-dynamical
mechanism of the process nonclassicality, here we propose to investigate the nonclassicality of
the electron spin free-induction-decay process associated with an NV− center. By controlling
the nuclear spin precession dynamics via an external magnetic field and nuclear spin
polarization, it is possible to manipulate the dynamical behavior of the electron spin, showing a
transition between classicality and nonclassicality. We propose an explanation of the
classicality–nonclassicality transition in terms of the nuclear spin precession axis orientation
and dynamics. We have also performed a series of numerical simulations supporting our
findings. Consequently, we can attribute the nonclassical trait of the electron spin dynamics to
the behavior of nuclear spin precession dynamics.

Keywords: nonclassicality, Hamiltonian ensemble, NV center, free induction decay,
nuclear spin polarization, nuclear spin precession

(Some figures may appear in colour only in the online journal)

1. Introduction

Along with the development of quantum theory, the ongoing
exploration of the ambiguous boundary between the quantum
and the classical worlds has attracted extensive interest [1–4].

∗
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Although the intuitive viewpoints, e.g. local realism or com-
mutativity of conjugated observables, are seemingly natural
and valid in the classical world, they may result in contradict-
ing predictions in the quantum realm. Therefore, the failure
of classical strategies attempting to explain an experimental
outcome can be conceived as a convincing evidence of
quantum nature beyond classical intuition, or nonclassicality.
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One of the most famous paradigms is the experimental
violation [5–8] of Bell’s inequality [9], which is derived
under the assumptions of realism and locality. With the
explicit violation of Bell’s inequality, the bipartite correla-
tion demonstrates a genuinely nonclassical nature, i.e. Bell
nonlocality [10], which can never be explained classically
in terms of the local hidden variable model. Following the
same logic, the nonclassicality of a bosonic field is charac-
terized by the Wigner function [11] or the Glauber-Sudarshan
P representation [12–17]. The negativity in these functions
demonstrates nonclassicality with a phase space description.

Additionally, there is another emerging type of nonclassic-
ality considering the nature of quantum dynamical processes.
Considerable efforts have been devoted to approaching this
problem [18–24]. Noteworthily, these approaches focus on
certain nonclassical properties of interest of the quantum sys-
tems and continuously monitor their temporal evolutions as
indicators of dynamical process nonclassicality. Recently, it
has been proposed [25–27] an alternative definition of dynam-
ical process nonclassicality, based on the failure of the clas-
sical strategy to simulate the incoherent dynamical process.
The classical strategy is formulated in terms of a Hamiltonian
ensemble (HE) [28, 29], which was initially devoted to invest-
igating the decoherence induced by a disordered medium or
classical noise [30–33]. The classicality behind the HE would
become clear after looking for additional insights into the
cause of the incoherent dynamics.

Quantum systems inevitably interact with their surrounding
environments [34–37]; meanwhile, complicated correlations
will be established between the systems and their environ-
ments during these interactions. These correlations are typic-
ally fragile and transient, as the quantum systems are subject
to the fluctuations caused by a huge number of environmental
degrees of freedom. As a result, the vanishing of the correl-
ations constitutes one of the main sources of decoherence,
leading to incoherent dynamical processes. Therefore, a nat-
ural way to classify decoherence is based on the properties of
the correlations established during the interactions. However,
such a naive classification is not feasible due to the huge num-
ber of environmental degrees of freedom, rendering the envir-
onments, as well as the established correlations, inaccessible.

On the other hand, it has been shown that the classically cor-
related system–environment correlation results in an incoher-
ent dynamics admitting HE simulations [25]. This implies that
the failure of HE simulations serves as a witness for the estab-
lishment of nonclassical correlations during the interactions.
Such incoherent dynamics violating HE simulations necessar-
ily appeals to nonclassical correlations, rather than reproduced
classically by statistical noise. We therefore proposed to clas-
sify an incoherent dynamical process according to the possib-
ility to simulate the reduced system dynamics with HEs. It
should be stressed that, in this definition, the actual system–
environment correlations are deliberately ignored as they are
inaccessible to the reduced system exclusively; meanwhile, we
attempt to reproduce the incoherent effects on the reduced sys-
tem classically by using HE simulations.

Additionally, this HE-simulation approach can be fur-
ther promoted to a representation of the incoherent dynam-
ics over the frequency domain, referred to as the canon-
ical Hamiltonian ensemble representation (CHER) [26]. This
is reminiscent of the conventional Fourier transform, trans-
forming a temporal sequence into its frequency spectrum.
In contrast, CHER is defined in accordance with the under-
lying algebraic structure of the HE, highlighting its differ-
ence from the conventional one by the non-Abelian algeb-
raic structure [29]. Along with the quasi-distribution of the
CHER, we can define a quantitativemeasure of nonclassicality
[26]. Moreover, we place particular emphasis on the prac-
tical viability, as this approach relies only on the informa-
tion of the reduced system, irrespective of the inaccessible
environment.

Although dynamical process nonclassicality has been
investigated from a quantum-information-theoretic perspect-
ive, its quantum-dynamical mechanism is still not understood.
To acquire insights into the system–environment interactions
giving rise to the classicality-nonclassicality transition, mean-
while underpinning the practical viability of this approach,
we will discuss the CHER of the free-induction-decay (FID)
process of the electron spin associated with a single neg-
atively charged nitrogen-vacancy (NV−) center in diamond.
Due to its unique properties, particularly its long coherence
time even at room temperature [38–42], NV− centers are
a promising candidate for applications in various branches
of quantum technologies, ranging from quantum information
processing [42–47], highly-sensitive nanoscale magnetometry
[48, 49] and electrometry [50, 51], bio-sensing in living cells
[52, 53], emerging quantum materials [54–56], to test bed of
fundamental quantum physics [57]. The primary source of
decoherence of the electron spin comes from the hyperfine
interaction to the nuclear spin bath of carbon isotopes 13C ran-
domly distributed in the diamond lattice. Therefore, several
techniques have been developed for prolonging the coherence
time by engineering the nuclear spin bath, including the iso-
topic purification [40–42] and dynamic nuclear spin polariza-
tion (DNP) [58, 59].

Here we investigate how the nonclassicality of the FID
process is induced by the nuclear spin precession dynam-
ics. Since the external magnetic field and the nuclear spin
polarization are two experimentally controllable mechanisms
manipulating the nuclear spin precession dynamics, we found
that the dynamical behavior of FID and the corresponding
CHER are sensitive to both controllable properties. We have
also observed a transition between classicality and nonclas-
sicality by engineering the nuclear spin bath via the polariz-
ation orientation, particularly the x component of the polariz-
ation. Consequently, we can attribute the nonclassical traits
of the electron spin FID process to the behavior of nuc-
lear spin precession dynamics based on the response to
two controllable properties. Finally, in order to underpin the
experimental viability of our numerical simulation, we also
present an experimental pulse sequence for carrying out the
model.
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Figure 1. Schematic illustration of the ensemble-averaged dynamics under HEs. (a) A HE {(pλ, Ĥλ)}λ consists of a collection of traceless
Hermitian operators Ĥλ ∈ su(n) associated with a probability pλ of occurrence. An initial state ρ(0) will be randomly assigned to a certain
unitary channel Ûλ(t) = exp(−iĤλt) according to pλ, giving rise to an ensemble-averaged dynamics ρ(t) described by equation (1). (b) For
the HE of spectral disorder {(p(ω),ωσ̂z/2)}ω , every unitary operator exp(−iωσ̂zt/2) rotates the qubit state about the z-axis of the Bloch
sphere at a fluctuating angular frequency ω. Hence the qubit is subject to an uncertainty described by the probability distribution p(ω), and
the ensemble-averaged dynamics ρ(t) is a pure dephasing described by equation (2). The incoherent dynamical behavior is determined by
p(ω) via the Fourier transform ϕ(t) =

´
p(ω)exp(−iωt)dω.

2. Theory of dynamical process nonclassicality

2.1. Decoherence under Hamiltonian ensembles

The central role in our approach, modeling an incoher-
ent dynamics, is played by the Hamiltonian ensemble (HE)
{(pλ, Ĥλ)}λ, which consists of a collection of traceless Her-
mitian operators Ĥλ ∈ su(n) associated with a probability pλ
of occurrence (figure 1(a)). The index λ could be very gen-
eral and may be continuous and/or a multi-index. Every mem-
ber Hamiltonian operator Ĥλ acts on the same system Hilbert
space, leading to a unitary time-evolution operator Ûλ(t) =
exp(−iĤλt). Then a HE will randomly assign an initial state
ρ(0) to a certain unitary channel Ûλ(t) according to pλ, giving
rise to an ensemble-averaged dynamics described by

ρ(t) = Et{ρ(0)}=
ˆ
pλÛλ(t)ρ(0)Û

†
λ(t)dλ. (1)

Irrespective of the unitarity of each single channel, the
ensemble-averaged dynamics (1) demonstrates an incoher-
ent behavior due to the averaging procedure over all unitary
realizations [28–30]. For instance, when a single qubit is sub-
ject to spectral disorder with a HE given by {(p(ω),ωσ̂z/2)}ω,
where p(ω) can be any probability distribution function
(figure 1(b)), it undergoes a pure dephasing dynamics
given by

ρ(t) =
ˆ ∞

−∞
p(ω)e−iωσ̂zt/2ρ0 e

iωσ̂zt/2dω

=

[
ρÒ ρ↑↓ϕ(t)

ρ↓↑ϕ
∗(t) ρÓ

]
(2)

with the dephasing factor ϕ(t) =
´
p(ω)exp(−iωt)dω being

the Fourier transform of p(ω).
Interestingly, the heuristic example shown in equation (2)

provides further insights into the role played by HEs. On

the one hand, the probability distribution p(ω) completely
determines the pure dephasing via the Fourier transform in
equation (2). Similar situations occur when one considers the
case of multivariate probability distribution [26, 29]. There-
fore, the probability distribution pλ encapsulated within a HE
can be conceived as a characteristic representation of the inco-
herent dynamics, which is even faithful for the case of pure
dephasing of any dimension [26, 27]. This observation endows
the probability distribution pλ a new interpretation as a repres-
entation function of incoherent dynamics over the frequency
domain, referred to as canonical Hamiltonian ensemble rep-
resentation (CHER).

On the other hand, since every unitary operator
exp(−iωσ̂zt/2) in equation (2) can be interpreted geometric-
ally as a rotation about the z-axis of the Bloch sphere at angular
frequencyω, the pure dephasing is a result of the accumulation
of a random phase, in line with the conventional interpretation
of pure dephasing in the manner of the random phase model
(figure 1(b)). Consequently, the ensemble-averaged dynam-
ics (1) under a HE can be considered as a statistical mixture of
various unitary rotations weighted by pλ. This underpins the
classicality behind the HE.

2.2. Canonical Hamiltonian ensemble representation

Before further exploring the characterization of dynamical
process nonclassicality with CHER, we elucidate how can a
HE be recast into a Fourier transform using the formalism of
group theory. This also strengthens the formal connection of
the CHER to an incoherent dynamics beyond the above empir-
ical observation.

As every member Hamiltonian operator Ĥλ ∈ su(n) is Her-
mitian, it can be expressed as a linear combination

Ĥλ =
n2−1∑
m=1

λmL̂m = λ⃗ · L̂ (3)
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of n2 − 1 traceless Hermitian generators L̂m of su(n).
Therefore, the index λ parameterizing the HE is an (n2 − 1)-
dimensional real vector λ⃗. Here we restrict ourselves to trace-
less member Hamiltonian operators Ĥλ without loss of gener-
ality, because the trace plays no role in the ensemble-averaged
dynamics (1) due to the commutativity [̂I, L̂m] = 0 of the iden-
tity operator Î to all L̂m ∈ su(n).

The commutator is critical for a Lie algebra as it determ-
ines many properties and the algebraic structure to a very large
extent. For example, the generators of su(n) should satisfy
[L̂k, L̂l] = i2cklmL̂m, where the cklm’s are called structure con-
stants, satisfying the relation cklm =−clkm =−cmlk. Addition-
ally, the commutator can be used to induce the adjoint repres-
entation of su(n) of fundamental importance according to

ad : L̂m 7→ L̃m = [L̂m, ]. (4)

Namely, the adjoint representation ad uniquely associates each
generator L̂m to an endomorphism L̃m : u(n)→ u(n) with its
action defined by the commutator as L̃m{L̃k} := [L̂m, L̃k]. Since
each endomorphism L̃m itself is a linear map, it admits a mat-
rix representation of n2 × n2 dimension with elements given
by the structure constants and its action is described by the
ordinary matrix multiplication. Furthermore, according to the
linear combination (3) and the bilinearity of the commutator,
each member Hamiltonian can be associated according to

ad : Ĥλ 7→ H̃λ = [Ĥλ, ] =
n2−1∑
m=1

λmL̃m = λ⃗ · L̃. (5)

Along with the adjoint representation ad, one can show that
the action of each single unitary channel in equation (1) can be
recast into an exponential form with respect to the generators
L̃m as

exp(−iĤλt)ρexp(iĤλt) =
∞∑
j=0

(−it)j

j!
[Ĥλ,ρ]( j)

= exp(−iλ⃗ · L̃t){ρ}, (6)

where the multiple-layer commutator is defined iteratively
according to [Ĥλ,ρ]( j) = [Ĥλ, [Ĥλ,ρ]( j−1)] and [Ĥλ,ρ](0) = ρ.

From the above equations, for a given HE {(pλ, Ĥλ)}λ, we
can recast [26] the right hand side of equation (1) into a Fourier
transform expression from the probability distribution pλ, on
a locally compact group G parameterized by λ= λ⃗ ∈ Rn2−1,

to the dynamical linear map E
(L̂)
t :

E
(L̃)
t =

ˆ
G

pλ exp(−iλL̃t)dλ. (7)

Meanwhile, the action of the incoherent dynamics Et on a
density matrix ρ can be expressed in terms of ordinary mat-
rix multiplication

Et{ρ}⇒ E
(L̂)
t · ρ, (8)

with ρ on the left hand side being an n× n density matrix,
while the one on the right hand side being an n2-dimensional

real vector ρ= {n−1, ρ⃗} in the sense of the linear combination
ρ= n−1̂I+ ρ⃗ · L̂.

In summary, equation (7) associates a probability distribu-
tion pλ within a HE to the incoherent dynamics Et under HE,
i.e.

pλ 7→ E
(L̃)
t , (9)

via the Fourier transform using the formalism of group theory.
This explicitly elucidates that the role of pλ as a characteristic
representation over the frequency domain for Et, referred to as
CHER. Additionally, the particular versatility of CHER lies in
characterizing and quantifying the dynamical process nonclas-
sicality. To do this, we will replace the probability distribution
pλ with the quasi-distribution ℘λ, to incorporate the possib-
ility that ℘λ may contain negative values, which serve as an
indicator of the nonclassical nature in the dynamical process
Et. The emergence of negative values will be clarified in the
following discussion.

2.3. Dynamical process nonclassicality

Upon elucidating how a given HE induces an incoherent
dynamics, we consider a reverse problem of simulating a given
incoherent dynamics with HEs, which servers as the clas-
sical strategy in the characterization of dynamical process
nonclassicality.

As discussed in the Introduction, the incoherent behavior
of an open system dynamics is caused by the destruction of
the correlations established during the system–environment
interaction. However, these correlations are typically not fully
accessible in an experiment; therefore, it is not feasible to
precisely infer whether an incoherent behavior results from
quantum or classical correlations. Whereas, the reduced sys-
tem dynamics is, in principle, fully attainable with the tech-
nique of, e.g. quantum process tomography (QPT) exper-
iments or theoretically solving a master equation [60–62].
Consequently, in our approach, we focus exclusively on
the reduced system dynamics and ignore the obscure actual
system–environment correlations; meanwhile we attempt to
explain the dynamics classically with HE simulations.

The classicality behind the HE simulations can be under-
stood by recalling that [25], if the system and its environment
can at most establish classical correlations, without quantum
discord nor entanglement, during their interactions, then the
reduced system dynamics corresponds to a HE. This means
that, if a given incoherent dynamics admits a HE simulation,
then one cannot tell it apart from a classical model reproducing
exactly the same dynamics relying merely on classical correl-
ations. In other words, the given incoherent behavior can be
explained classically by a statistical mixture of a collection of
unitary channels.

On the contrary, if one fails to construct the simulating HEs,
then the incoherent dynamics should go beyond classical HEs,
showcasing the nonclassicality of the dynamical process. The
nonexistence of simulating HEs can be proven by the neces-
sity to resort to a nonclassical HE accompanied by a negative
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quasi-distribution ℘λ. This renders the CHER ℘λ quite ver-
satile, not only representing the incoherent dynamics but also
characterizing the dynamical process nonclassicality.

The nonclassicality is defined from a quantum-information-
theoretic perspective, i.e. the inference of nonclassical
system–environment correlations. However, a quantum-
dynamical viewpoint providing insights into the origin of
nonclassicality is still obscure. In the following, we will
discuss how to implement our approach with an authen-
tic quantum system. This in turn reveals the mechanism
of system-environment interactions giving rise to nonclas-
sical dynamics and the classicality–nonclassicality transition
caused by the environmental dynamics.

3. Dynamics of NV− centers

3.1. Theoretical model

A single negatively charged nitrogen-vacancy (NV−) center
is a point defect in diamond consisting of a substitutional
nitrogen (N) and a vacancy (V) in an adjacent lattice site
(figure 2(a)). TheC3 rotation axis defines an intrinsic z-axis for
the electron spin. The NV− center has an electron spin S= 1
triplet as its ground state with a zero-field splitting D/2π =
2.87GHz between sublevels mS = 0 and mS =±1. By apply-
ing an external magnetic field B⃗, the degeneracy betweenmS =
±1 can be lifted due to the Zeeman splitting (figure 2(b)). Then
the two different single spin transitions |0〉 ↔ |± 1〉 can be
addressed by selective microwave (MW) excitations. The lat-
tice sites are mostly occupied by the spinless 12C nuclei (light
gray spheres in figure 2(c)), while the electron spin decoher-
ence is caused by the randomly distributed 13C isotopes (dark
gray spheres in figure 2(c)) with nuclear spin J= 1/2. The nat-
ural abundance of 13C is about 1.1%, leading to a spin qubit
relaxation time T1 in the order of milliseconds [63, 64] and a
dephasing time T∗

2 of microseconds [65–67]. The 13C concen-
tration can even be depleted in isotopically purified samples to
prolong the coherence time [40–42].

In the presence of an external magnetic field B⃗, the total
Hamiltonian ĤT = ĤNV + ĤC + ĤI consists of three terms.
The first term describes the free Hamiltonian of the electron
spin associated to the NV− center,

ĤNV = DŜ2z + γeB⃗ · Ŝ, (10)

with D/2π = 2.87GHz being the zero-field splitting and
γe/2π = 2.8025 MHzG−1 the electron gyromagnetic ratio.
The second term describes the nuclear spin bath consisting of
13C isotopes of J= 1/2 indexed by k:

ĤC =
∑
k

γCB⃗ · Ĵ(k), (11)

with γC/2π = 1.0704 kHzG−1 being the gyromagnetic ratio
of the 13C nuclei. Note that we have neglected the dipole–
dipole interaction between 13C nuclei as its effect is much
slower than the electron spin decoherence considered here.
The last term ĤI takes into account the hyperfine coupling

between electron spin and nuclear spin, which in general
includes two contributions; namely, the Fermi contact and the
dipole–dipole interaction. The former is proportional to the
overlap of the electron wavefunction at the position of a nuc-
leus. Since the electron wavefunction is highly localized at the
defect, this effect is negligible for nuclei farther away than 5Å
from theNV− center. In our simulation, we have confirmed the
relevance of the dipole–dipole hyperfine interaction as well
as the negligibility of the Fermi contact by post-selecting a
randomly generated configuration with all 13C nuclei lying
outside this radius of 5Å. Therefore, we consider the dipole-
dipole interaction to the kth nucleus exclusively with

ĤI = Ŝ ·
∑
k

↔
A

(k)
·̂J(k), (12)

where the hyperfine coefficients are given by

A(k)
ij = α(k)

[⃗
ei · e⃗j− 3(⃗e(k) · e⃗i)(⃗e(k) · e⃗j)

]
(13)

with

α(k) =
µ0γeγC

4π|⃗r(k)|3
, (14)

µ0 the magnetic permeability of vacuum, r⃗(k) =
(r(k) sinθ(k) cosϕ(k),r(k) sinθ(k) sinϕ(k),r(k) cosθ(k)) the dis-
placement vector toward the kth nucleus, and e⃗(k) the unit
vector of r⃗(k).

Additionally, since the Ŝz component is responsible for T∗
2 ,

while the Ŝx and Ŝy components are for T1, the experimentally
measured three-order of magnitude difference between T1 and
T∗
2 guarantees a well-approximated pure dephasing of electron

spin dynamics, on the time scale under study [63–67]. There-
fore, it is relevant for us to neglect the terms proportional to Ŝx
and Ŝy in equation (12) and consider only the Ŝz component
phenomenologically. Meanwhile, assuming that an external
magnetic field B⃗= Bz⃗ez is alignedwith the z-axis, then the total
Hamiltonian can be expressed as

ĤT = DŜ2z + γeBzŜz+
∑
k

γCBzĴ
(k)
z + Ŝz

∑
k

A⃗(k)
z · Ĵ(k). (15)

And the three components of the hyperfine coefficients are
explicitly written as

A(k)
zx = α(k)

(
−3cosθ(k) sinθ(k) cosϕ(k)

)
A(k)
zy = α(k)

(
−3cosθ(k) sinθ(k) sinϕ(k)

)
A(k)
zz = α(k)

(
1− 3cos2 θ(k)

) . (16)

Due to the external magnetic field B⃗= Bz⃗ez lifting themS =
±1 degeneracy, now we selectively focus on the single-spin
transition |0〉 ↔ |1〉, forming a logical qubit. With this setup,
the total Hamiltonian (15) is block diagonal in the electron spin
basis in the form of

ĤT =
∑

mS=0,1

|mS〉〈mS| ⊗ ĤmS , (17)

5
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Figure 2. Atomic structure and ground state energy level of an NV− center in a diamond lattice. (a) The atomic structure of an NV− center
in a diamond lattice, which consists of a substitutional nitrogen (N) and a vacancy (V) in an adjacent lattice site. The C3 rotation axis defines
an intrinsic z-axis for the electron spin. (b) The ground state of the electron spin is a spin-1 triplet with a zero-field splitting D between
sublevels mS = 0 and mS =±1. An external magnetic field will further lift the degeneracy between sublevels mS =±1. Then one can
selectively address the two spin transitions |0⟩ ↔ |± 1⟩ with an appropriate MW pulse, forming a logical qubit. (c) The most abundant
species in the diamond lattice is the spinless 12C nucleus (light gray sphere), which do not interact with the electron spin. The primary
source of decoherence comes from the randomly distributed 13C isotopes (dark gray spheres) with nuclear spin J= 1/2. Due to the low
concentration of 13C (1.1% natural abundance), the nuclear dipole-dipole interaction and the electron-nucleus Fermi contact are negligible.

with ĤmS = (m2
SD+mSγeBz)+

∑
k Ω⃗

(k)
mS · Ĵ(k), Ω⃗

(k)
0 = Ω⃗0 =

(0,0,γCBz), and Ω⃗
(k)
1 = (A(k)

zx ,A
(k)
zy ,A

(k)
zz + γCBz). Con-

sequently, the corresponding total unitary time evolution
operator

ÛT(t) = exp(−iĤTt) =
∑

mS=0,1

|mS〉〈mS| ⊗ ÛmS(t), (18)

is also block diagonal in the electron spin basis with condi-
tional evolution operators ÛmS(t) = exp(−iĤmS t).

3.2. Pure dephasing dynamics of electron spin and
nonclassicality

We now focus on the pure dephasing caused by the 13C nuclear
spin bath during the free-induction-decay (FID) process. The
initial state of total system is assumed to be a direct product of
all subsystems

ρT(0) = ρNV(0)⊗
∏
k

ρ(k), (19)

where ρ(k) = [̂I(k) + p⃗(k) · σ̂(k)]/2 is the initial state of the kth
nuclear spin with polarization p⃗(k), and Î(k) and σ̂(k) are the
identity and the Pauli operators, respectively, acting on the
kth nuclear spin Hilbert space. After being optically polar-
ized to |0〉, the initial state of the electron spin is typically
set to a balanced superposition (|0〉+ |1〉)/

√
2 by a π/2 MW

pulse in a conventional FID experiment. Then the electron-
nucleus hyperfine interaction is turned on and the total system
evolves unitarily according to ρT(t) = ÛT(t)ρT(0)Û

†
T(t), while

the electron spin reduced density matrix ρNV(t) = TrCρT(t) is
obtained by tracing over the 13C nuclear spin bath.

The electron spin pure dephasing dynamics is characterized
by the dephasing factor

ϕ(t) = 〈0|ρNV(t)|1〉= ei(D+γeBz)t
∏
k

Tr
[
Û(k)†

1 (t)Û(k)
0 (t)ρ(k)

]
,

(20)

where Û(k)
0 (t) = exp[−i(Ω⃗0 · σ̂(k))t/2] and Û(k)

1 (t) =

exp[−i(Ω⃗(k)
1 · σ̂(k))t/2] gives rise to nuclear spin preces-

sion about the axis u⃗(k) = Ω⃗
(k)
1 /|Ω⃗(k)

1 | in the presence of
the hyperfine field produced by the electron spin. Further
details for the calculation of equation (20) are shown in
appendix.

In view of equation (2), to construct a simulating HE for
the electron spin pure dephasing, each member Hamiltonian
in the ensemble is of the form ωσ̂z/2 and the CHER ℘(ω) is
determined by the inverse Fourier transform

℘(ω) =
1
2π

ˆ ∞

−∞
ϕ(t)eiωtdt. (21)

From equation (21), it is clear that the leading factor exp[i(D+
γeBz)t] on the right hand side of equation (20) merely shifts
℘(ω) by a displacement D+ γeBz, doing nothing to the pro-
file of ℘(ω) nor to the nonclassical signatures. Besides, we are
interested in the effects caused by the nuclear spin bath while
the leading factor is given by the energy space between the
electron |0〉 and |1〉 states. Consequently, for our purpose, we
can neglect the leading factor of equation (20) and explicitly
write down the dephasing factor as

6



J. Phys.: Condens. Matter 34 (2022) 505701 M-C Lin et al

ϕ(t) =
∏
k

[(
cos

Ω0t
2

− ip(k)z sin
Ω0t
2

)
cos

Ω
(k)
1 t
2

+ u(k)z

(
sin

Ω0t
2

+ ip(k)z cos
Ω0t
2

)
sin

Ω
(k)
1 t
2

+ i
(
p(k)x u(k)x + p(k)y u(k)y

)
cos

Ω0t
2

sin
Ω

(k)
1 t
2

+i
(
p(k)x u(k)y − p(k)y u(k)x

)
sin

Ω0t
2

sin
Ω

(k)
1 t
2

]
. (22)

Since the CHER ℘λ is faithful for pure dephasing [26, 27],
we can construct a quantitative measure of nonclassicality in
accordance with the uniqueness of CHER for pure dephasing.
Additionally, it is manifest that the classical CHERs form a
convex set, i.e. the statistical mixture of classical CHERs is
again a classical CHER, therefore an intuitive measure can be
defined as the distance from a nonclassical ℘λ to the classical
set C of the conventional probability distribution pλ, which is
given by [26]

N {Et}= inf
pλ∈C

ˆ
G

1
2
|℘λ − pλ|dλ. (23)

3.3. Nuclear spin polarization and precession

From equation (22), it is manifest that the polarization p⃗(k) and
the precession axis of the nuclear spin, described by u⃗(k), have
significant influences on the electron spin dephasing dynam-
ics. Therefore, it is possible to manipulate the dynamical beha-
vior of the electron spin showing the transition between clas-
sicality and nonclassicality by engineering the nuclear spin
bath.

One of the mature approaches to engineer the bath is the
dynamical nuclear polarization (DNP), which transfers the
electron spin polarization to the surrounding nuclear spins
via hyperfine interaction and the resonance between them.
Several approaches implementing DNP have been developed
[58, 59, 68–76] Among these DNP approaches, the polariza-
tion mechanisms, as well as the resulting performances, differ
from each other. Generically, it is not feasible to polarize the
whole nuclear spin bath; whereas, only a few number of nuc-
lear spins within a polarization area, indicated by the yellow
spherical shadow in figure 3(a), can be directly polarized and
achieve hyperpolarization. The rest of the nuclear spins out-
side the polarization area have a vanishingly low magnitude
of polarization. Therefore, we assume that only the nuclei
within 1 nm from the electron spin possess identical and con-
trollable polarization, i.e. finite p⃗(k) = (|⃗p|sinϑ,0, |⃗p|cosϑ)
(figure 3(b)) for r⃗(k) ⩽ 1 nm; otherwise p⃗= 0. Moreover,
not only the magnitude |⃗p|, but also the orientation ϑ, are
controllable.

The other one critical mechanism manipulating the FID
classicality–nonclassicality transition is caused by the nuclear
spin precession axes, which can be engineered by the external
magnetic filed Bz. This can be understood by observing that
Ω⃗

(k)
1 = A⃗(k)

z + γCBz⃗ez, and |A⃗(k)
z | ∝ |⃗r(k)|−3. At weak fields,

most of the nuclear spin precession axes (green axes in

figure 3(c)) are randomly oriented due to the randomly
distributed 13C positions. Therefore, the electron spin will
experience a highly disordered hyperfine field caused by the
randomly oriented nuclear spin precessions and, consequently,
the nonclassical trait is smeared.

On the other hand, when the external field is increasing,
the Zeeman splitting γCBz⃗ez gradually dominates most of Ω⃗(k)

1 .
Consequently, most of the axes will tilt and finally align
regularly, approaching the z-axis, i.e. u⃗(k) ≈ e⃗z, as shown in
figure 3(d), resulting in a more coherence hyperfine filed on
the electron spin.

4. Numerical simulations

In our numerical simulations, we have generated a configur-
ation of nuclear spins consisting of 520 13C nuclei randomly
distributed over 47 231 lattice points, resulting in the natural
abundance of 1.1%. Additionally, to confirm the relevance
of the dipole-dipole hyperfine interaction in the interaction
Hamiltonian (12), we have also verified that all 13C nuclei
are farther away than 5Å from the electron spin. After build-
ing an appropriately polarized nuclear spin bath, the magnetic
field is set to be parallel to the z-axis at several different
values.

We first show the numerical results of equation (22) in
figure 4 for an unpolarized nuclear spin bath, i.e. |⃗p|= 0
for all nuclear spins, at various values of the magnetic field.
The dynamical behavior of the dephasing factor is shown in
figure 4(a). We can observe that, when the magnetic field
is large enough, the sharp descent at the beginning becomes
gentler, indicating an enhanced T∗

2 time. This is in good agree-
ment with an experimental report [67], wherein a similar
explanation in terms of a competition between A⃗(k)

z and γCBz⃗ez
was proposed for the enhanced T∗

2 . It is also intriguing to note
that there exists a crossover when Bz > 100G, which can be
seen clearer from the profile of CHERs.

Figure 4(b) shows the corresponding CHERs ℘(ω),
obtained from the inverse Fourier transform (21). For the case
of an unpolarized nuclear spin bath, the profiles are symmet-
ric and centered at ω= 0. The symmetry of the profiles can be
understood from the viewpoint that an unpolarized spin is a
mixture of two opposite polarizations of the same magnitude,
leading to two peaks at opposite positions as well as a sym-
metric CHER. In this case the CHERs are positive, indicating
a classical-like dynamical behavior of electron spin.

Additionally, the aforementioned crossover is also clearer
from the wavy profiles when Bz > 100G. The origin of this
crossover can also be explained by the tilt of the precession
axes illustrated in the previous section. At weak fields, the
profile is relatively smooth with less peaks, resulting from the
randomly oriented precession axes. When the field is strong
enough, the precession axes gradually tilt regularly toward the
z-axis. Particularly, when Bz > 100G, even the nuclear spins
within the polarization area, which have dominant impact
on the electron spin, gradually tilt as well. Therefore, peaks
emerge as the hyperfine fields caused by the tilted nuclear
spins possess a consistent orientation, leading to wavy profiles.

7
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Figure 3. Polarization and precession of the nuclear spin bath. (a) DNP transfers electron spin polarization to the surrounding nuclear spins
via the electron-nucleus hyperfine interaction. Only the nuclei within a polarization area (yellow spherical shadow) can be efficiently
polarized via direct polarization transfer, achieving hyperpolarization. Therefore, we assume a polarization area of radius 1 nm and only the
nuclei within this area can be identically polarized in a controllable manner. (b) We assume that the polarized nuclear spins within the
polarization area are aligned in the x–z plane with identical p⃗(k) = (|⃗p|sinϑ,0, |⃗p|cosϑ). We will see that not only the magnitude |⃗p|, but
also the orientation ϑ have significant influence on the electron spin dynamics. (c) At weak fields, the axes of nuclear spin precessions
(green axes) are randomly oriented due to the disordered 13C positions. (d) When the external field is increased, most of the axes are
gradually tilted and finally aligned regularly, approaching the z-axis since Ω⃗(k)

1 ’s are dominated by the external field.

We then proceed to investigate the impact of nuclear spin
polarization on the electron spin dephasing dynamics. Figure 5
shows the results of polarization toward the z-axis, i.e. ϑ= 0,
at magnitudes |⃗p|= 0.5 (upper panels) and 1 (lower panels),
respectively. From the dynamical behavior of the dephasing
factor shown in figures 5(a) and (c), we can observe that
the oscillating tail following the sharp descent at the begin-
ning becomes stronger with increasing polarization magnitude
|⃗p|, resulting in an enhanced T∗

2 time as well. This is also
in line with experimental reports [58, 59] that the polarized

nuclear spin toward the z-axis is capable of quenching the elec-
tron spin decoherence.Meanwhile, the oscillating amplitude is
increasing at strong fields due to the alignment of the tilted
nuclear spin precession axes, as schematically illustrated in
figures 3(c) and (d).

The impact of nuclear spin polarization is even prominent
on the profile of CHER shown in figures 5(b) and (d). In the
presence of finite polarization, the mixture of two opposite
polarizations is no longer balanced, giving rise to a bias in the
profile of the CHER. Moreover, the almost regularly aligned

8
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Figure 4. Dynamics and CHER of the electron spin for an unpolarized nuclear spin bath. (a) The dynamical behavior of dephasing factor
for an unpolarized nuclear spin bath at various values of magnetic field. The sharp descent in the beginning becomes gentle at a large value
of magnetic field, indicating an enhanced T∗

2 time with increasing magnetic field. (b) The CHERs are symmetric since the nuclear spin bath
is unpolarized. The positivity of the CHERs indicates that the electron spin behaves classically in an unpolarized spin bath. Additionally, the
crossover, from a smooth curve to wavy profile, when Bz > 100G is easily observed. This is a result of the alignment of the tilted precession
axes with increasing magnetic field.

Figure 5. Dynamics and CHER of the electron spin for a z-polarized nuclear spin bath. The dynamical behavior (left panels) and the
corresponding CHER (right panels) for the case of polarization toward the z-axis at magnitudes |⃗p|= 0.5 (upper panels (a) and (b)) and 1
(lower panels (c) and (d)), respectively. From the dynamics shown in the left panels, we can observe that the sharp descent at the beginning
is followed by a stronger oscillating tail with increasing polarization magnitude |⃗p|, resulting in an enhanced T∗

2 time. This shows that the
polarized nuclear spin toward the z-axis is capable of quenching the electron spin decoherence. Meanwhile, the oscillating amplitude is
increasing at strong fields, reflecting the almost regular alignment of tilted nuclear spin precession axes. From the CHER shown in the right
panels, the curves are pushed aside due to the polarized nuclear spin bath, leading to biased profiles. Notably, in the presence of both the
hyper-z-polarization and the strong field, the CHERs are positive without revealing a nonclassical trait.
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Figure 6. Nuclear spin precession dynamics. (a) For the case of polarization toward the z-axis, the almost regular alignment of the
tilted nuclear spin precession axes at strong fields renders most of the angles between u⃗(k) and p⃗ very small. Therefore, most of the
precession cones swept through by the nuclear spins are narrow, giving rise to a relatively static hyperfine field on the electron spin.
(b) The polarization toward the x-axis expands the precession cones, giving rise to a dynamic nuclear spin bath. The electron spin will
behave nonclassically under such dynamic hyperfine field.

precession axes at strong fields render specific peaks even
sharper. On the other hand, it is worthwhile to note that, even
if both the hyper-z-polarization and the strong field manipulate
the profile of CHER significantly, those shown in figures 5 are
still positive without revealing a nonclassical trait.

We attribute this classicality to the extent of nuclear spin
precession, which is a result of the alignment of the preces-
sion axes u⃗(k) and the orientation of the polarization p⃗. It has
been illustrated in the previous section that the precession axes
gradually tilt regularly toward the z-axis, i.e. u⃗(k) ≈ e⃗z, with
increasing magnetic field. Then, for the case of polarization
toward the z-axis, the alignment of the precession axes renders
most of the angles between u⃗(k) and p⃗ very small, and, con-
sequently, most of the precession cones swept through by the
nuclear spin are narrow (figure 6(a)). Therefore, the electron
spin will experience a relatively static hyperfine field caused
by the precessionless nuclear spin bath and behave classical-
like. On the other hand, if the polarization is set toward the
x-axis, the nuclear spin precession dynamics will be signi-
ficantly different. As shown in figure 6(b), the large angles
between u⃗(k) and p⃗ will expand the precession cones, giving
rise to a dynamic nuclear spin bath, as well as a dynamic hyper-
fine field experienced by the electron spin. Consequently,
the electron spin will reveal a prominent nonclassical
trait.

To investigate the nonclassicality induced by the aforemen-
tioned nuclear spin precession dynamics, we assume that the
nuclear spins are polarized toward the x-axis, i.e. ϑ= π/2.
The numerical results are shown in figure 7 with magnitudes
|⃗p|= 0.5 (upper panels) and 1 (lower panels), respectively.
The dynamical behavior of the dephasing factor is shown in

figures 7(a) and (c). In contrast to the case of z-polarization, the
effect of prolonging the T∗

2 time by increasing the magnitude
of the x-polarization is negligibly small. Additionally, the
dependence of the oscillating amplitude on the external mag-
netic field is also seemingly nontrivial. On the other hand, it is
heuristic to note that, even if the dynamical behavior is surely
manipulated by the different types of polarization, generally
speaking, the curves for different types of polarization share
substantial similarities. In other words, the response of the
curves to the different types of polarization is not qualitatively
sensitive.

On the contrary, the situation is very different for CHERs.
As shown in figures 7(b) and (d), rather than revealing a bias
by pushing the curves aside caused by the z-polarization, the
asymmetry raised by the x-polarization emerges in a manner
of distortion. This means that the profile of CHER reflects the
difference in the two types of nuclear spin precession dynam-
ics illustrated in figure 6. Additionally, the most exotic prop-
erty of the CHER raised by the x-polarization is the emergence
of negative values, which is enhanced with both increasing Bz
and |⃗p|. This, on the one hand, definitely certifies the nonclas-
sicality of the electron spin pure dephasing dynamics in the
presence of nuclear spin polarization toward the x-axis; on the
other hand, we also showcase the versatility of the CHER as a
probe of nuclear spin bath dynamics.

To quantitatively investigate the nonclassicality, we show
the numerical results of nonclassicality N quantified by
equation (23) in figure 8. We first show the dependence
on the magnitude |⃗p| in figure 8(a), where the polarization
is set toward the x-axis and Bz = 200G. The nonclassic-
ality is increasing with |⃗p|, consistent with what we have
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Figure 7. Dynamics and CHER of the electron spin for an x-polarized nuclear spin bath. The dynamical behavior (left panels) and
the corresponding CHER (right panels) for the case of polarization toward the x-axis at magnitudes |⃗p|= 0.5 (upper panels (a) and (b)) and
1 (lower panels (c) and (d)), respectively. The dynamical behavior shows a different response to the presence of x-polarization. It has
negligibly small effects for prolonging the T∗

2 time. Additionally, the dependence of the oscillating amplitude on the external magnetic field
is nontrivial. On the contrary, the profiles of CHER show a qualitative difference from the case of z-polarization. The asymmetry of the
profiles raised by the x-polarization emerges in a manner of distortion. Additionally, the most exotic property is the emergence of negative
values, which is enhanced when increasing both Bz and |⃗p|. This is the crucial indicator of the nonclassical trait of the electron spin
dynamics caused by the nuclear spin precession dynamics.

Figure 8. Variation of nonclassicality with different parameters. (a) The nonclassicality increases with magnitude |⃗p| of the polarization. In
this plot we have set an x-polarized nuclear spin bath (ϑ= π/2) and Bz = 200G. (b) The nonclassicality increases with the orientation ϑ of
the polarization. Increasing ϑ indicates that the nuclear spin bath is rotated from the z-axis toward the x-axis. In this plot we have assumed a
hyperpolarization |⃗p|= 1 and Bz = 200G. (c) This panel summarizes the overall response of the nonclassicality to the manipulation on the
nuclear spin bath. The two experimentally controllable parameters, Bz and |⃗p|, denote two mechanisms of how we manipulate the nuclear
spin precession dynamics, which in turn induces nonclassicality in the electron spin dephasing dynamics. Therefore, the nonclassicality
increases with Bz and |⃗p|. In this plot we have set an x-polarized nuclear spin bath (ϑ= π/2).

seen from the CHERs in the presence of x-polarized nuclear
spins (figures 7(b) and (d)). Figure 8(b) shows the depend-
ence on the orientation ϑ with |⃗p|= 1 and Bz = 200G. When
ϑ= 0, the nuclear spins are z-polarized and the electron
spin dynamics reveals a classical-like behavior. When the

nuclear spins are gradually rotated toward the x-axis, the
nonclassicality increases due to the mechanism of nuclear
spin precession dynamics illustrated in figure 6(b). Finally, the
overall response of the nonclassicality to the manipulation on
the nuclear spin bath is shown in figure 8(c) with ϑ= π/2.
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Figure 9. The proposed experimental pulse sequence for carrying out the model. After the electron spin initialization to |0⟩ by a 532 nm
green laser, a repeated DNP sequence followed by a RF pulse is used to build a hyperpolarized nuclear spin bath toward the orientation ϑ.
Finally, a variant Ramsey sequence with two alternative final (π/2)x/y MW pulses can gather the signals of the imaginary and real parts of
the dephasing factor ϕ(t), respectively, fulfilling the requirement of QPT.

Both of the two experimentally controllable parameters Bz and
|⃗p| manipulate the nuclear spin precession dynamics, which
in turn induces nonclassicality in the electron spin dephasing
dynamics. Consequently, the nonclassicality increases with Bz
and |⃗p|.

5. Experimental proposal

Finally, in order to underpin the experimental viability of our
numerical simulation, we also propose an experimental pulse
sequence for carrying out the model. We stress that all the
necessary techniques included in this proposal are mature, up
to an appropriate variation.

Figure 9 shows our proposal. The pulse sequence begins
with an electron spin initialization to |0〉 by a 532 nm green
laser. Then the DNP is applied to transfer the electron spin
polarization to the ambient nuclear spins. Several approaches
implementing DNP have been developed [58, 59, 68–76]. A
typical one, operating at a strong field with level anticross-
ing, begins with a (π/2)y MW pulse rotating the electron spin
about the y-axis to the x direction. A following pulse locks
the spin along the x direction for a period, during which the
electron spin polarization will transfer to the ambient nuc-
lear spins. The last step of the DNP sequence is an additional
green laser pulse polarizing the electron spin again. The DNP
sequence will be repeated N times in order to build a hyper-
polarized nuclear spin bath. After that, a radio-frequency (RF)
pulse is applied to manipulate the orientation ϑ. Finally, a
Ramsey pulse sequence, operating at desired fields, is used to
activate the FID process of the electron spin.

Crucially, to implement the CHER theory, one should

experimentally reconstruct the dynamical linear map E
(L̂)
t in

equation (7), which requires a full QPT experiment to gather
necessary information on the qubit dynamics. However, the
conventional Ramsey sequence is clearly insufficient for QPT.
Due to the pure dephasing dynamical behavior of the electron
spin, we propose a variant Ramsey sequence with two altern-
ative final (π/2)x/y MW pulses before the optical readout.
These two readout signals correspond to the imaginary and

real parts of the dephasing factor ϕ(t), respectively, fulfilling
the requirement of QPT.

6. Conclusions

In conclusion, we have analyzed the pure dephasing dynam-
ics and the corresponding CHER with an authentic quantum
system of an NV− center. By engineering the nuclear spin
precession dynamics, on the one hand, we can manipulate the
dynamical behavior of the electron spin showing the transition
between classicality and nonclassicality during the FID pro-
cess; on the other hand, we have also investigated the process
nonclassicality from a new viewpoint of quantum-dynamical
mechanism, rather than the original quantum-information-
theoretic perspective. This reveals not only how the nuclear
spin precession dynamics gives rise to the nonclassical trait
in the electron spin FID process, but also the role played by
the environmental dynamics in the origin of dynamical pro-
cess nonclassicality.

Following the logic of the violation of Bell’s inequality or
the negativity in the phase space representation of a bosonic
field, the nonclassicality characterized by the CHER is based
on the failure of a classical strategy formulated in terms of
HEs, which is shown to be closely related to the nonclassical
correlations between the system and its environment. By fur-
ther recasting the ensemble-averaged dynamics under a HE
into a Fourier transform using the formalism of group the-
ory, the role played by the CHER as a characteristic repres-
entation of a dynamical process over the frequency domain
becomes manifest. Then we can quantitatively define the
dynamical process nonclassicality in view of the negativity in
the CHER.

We have applied the CHER theory to the FID process of
the electron spin associated to an NV− center in the diamond
lattice and discovered how the nonclassicality is induced by
the nuclear spin precession dynamics. There are two experi-
mentally mature approaches engineering the nuclear spin pre-
cession dynamics, i.e. the external magnetic field and the
DNP. The former tends to rotate the precession axes via a
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competition with the randomly oriented hyperfine interaction.
At strong fields, most of the precession axes are regularly
aligned along the z-axis, resulting in amore coherent hyperfine
filed experienced by the electron spin. While the latter trans-
fers electron spin polarization to the surrounding nuclear spins
within a polarization area and establishes hyperpolarization.

Here we have assumed a polarization area of radius 1 nm.
For the case of polarization toward the z-axis at strong fields,
most of the precession cones swept through by the nuclear
spins are narrow, giving rise to a relatively static hyperfine
field on the electron spin. If the nuclear spin polarizations
are rotated toward the x-axis, the precession cones are expan-
ded, giving rise to a dynamic nuclear spin bath. We found that
the electron spin will behave nonclassically under a dynamic
hyperfine field caused by the expanded precession cones.

This can be seen from the numerical simulations. The
increasing magnetic field and z-polarization both can be used
to enhance the T∗

2 time, in good agreement with experimental
reports. While the CHERwill show a crossover from a smooth
curve to wavy profile with increasing field and an asymmetry
with larger polarization magnitude. Additionally, even in the
presence of both the hyper-z-polarization and the strong fields
the CHER is positive, indicating a classical-like electron spin
FID process. On the other hand, in the case of x-polarized nuc-
lear spin bath, the dynamic hyperfine field caused by the nuc-
lear spin precession gives rise to prominent negativity in the
corresponding CHER. However, the x-polarization is not cap-
able of enhancing the T∗

2 time significantly. Consequently, we
conclude that the nonclassicality will be stronger with increas-
ing magnetic field and x-polarization. Finally, we also present
an experimental pulse sequence for carrying out the model.
Our proposal combines several mature techniques, including
optical initialization and readout of electron spin, DNP, FID
and QPT.
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Appendix. Derivation of the electron spin
dephasing factor

Here we show how to obtain the expression for the dephasing
factor (22) from equation (20). We consider the qubit mani-
fold defined by the |0〉 ↔ |1〉 transition. Then the block diag-
onal total Hamiltonian (17) leads to a block diagonal unitary
time evolution operator ÛT(t) = exp(−iĤTt) = |0〉〈0| ⊗ Û0 +
|1〉〈1| ⊗ Û1, where{

Û1 = exp[−i(D+ γeBz)t]
∏

k exp[−i(Ω⃗
(k)
1 · σ̂(k))t/2]

Û0 =
∏

k exp[−i(Ω⃗0 · σ̂(k))t/2]
,

(24)
where Ω⃗

(k)
1 = (A(k)

zx ,A
(k)
zy ,A

(k)
zz + γCBz), and Ω⃗0 = (0,0,γCBz).

Then the electron spin reduced density matrix

ρNV(t) = TrC[ÛT(t)ρT(0)Û
†
T(t)] (25)

is obtained by tracing over the 13C nuclear spin bath from the
total density matrix.

Neglecting the internuclear initial correlations by consider-
ing the initial state ρT(0) = ρNV(0)⊗

∏
k ρ

(k) with the nuclear
spin initial state ρ(k) = [̂I(k) + p⃗(k) · σ̂(k)]/2, then the dephasing
factor

ϕ(t) = 〈0|ρNV(t)|1〉

= exp[i(D+ γeBz)t]
∏
k

Tr
[
Û(k)†

1 (t)Û(k)
0 (t)ρ(k)

]
(26)

is given by a product of the effect of each
single nuclear spin. To calculate ϕ(t), recall that

{
Û(k)

1 (t) = exp[−i(Ω⃗(k)
1 · σ̂(k))t/2] = cos(Ω(k)

1 t/2)̂I(k) − isin(Ω(k)
1 t/2)(⃗u(k) · σ̂(k))

Û(k)
0 (t) = exp[−i(Ω⃗0 · σ̂(k))t/2] = cos(Ω0t/2)̂I(k) − isin(Ω0t/2)(⃗ez · σ̂(k))

. (27)
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Additionally, with the help of the prescription (⃗u · σ̂)(⃗v · σ̂) =
(⃗u · v⃗)̂I+ i(⃗u× v⃗) · σ̂, we have

Û(k)†
1 (t)Û(k)

0 (t)

=

(
cos

Ω0t
2

cos
Ω

(k)
1 t
2

+ sin
Ω0t
2

sin
Ω

(k)
1 t
2

u⃗(k) · e⃗z

)
Î(k)

+ isin
Ω0t
2

sin
Ω

(k)
1 t
2

(⃗u(k) × e⃗z) · σ̂(k)

+ icos
Ω0t
2

sin
Ω

(k)
1 t
2

(⃗u(k) · σ̂(k))

− isin
Ω0t
2

cos
Ω

(k)
1 t
2

(⃗ez · σ̂(k)). (28)

Due to the orthogonality of the identity and the Pauli operators
Trσ̂jσ̂k = 2δjk, the trace taken over the Hilbert space of the kth
nuclear spin is easy to perform. Then we obtain the desired
result:

ϕ(t) = ei(D+γeBz)t
∏
k

[(
cos

Ω0t
2

− ip(k)z sin
Ω0t
2

)
cos

Ω
(k)
1 t
2

+ u(k)z

(
sin

Ω0t
2

+ ip(k)z cos
Ω0t
2

)
sin

Ω
(k)
1 t
2

+ i
(
p(k)x u(k)x + p(k)y u(k)y

)
cos

Ω0t
2

sin
Ω

(k)
1 t
2

+ i
(
p(k)x u(k)y − p(k)y u(k)x

)
sin

Ω0t
2

sin
Ω

(k)
1 t
2

]
. (29)

Finally, neglecting the leading factor leads to equation (22).
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