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ABSTRACT
We investigate the one- and two-dimensional diffusion limited reactions A + A→ 0 and A + B→ 0 with A active Janus particles and B passive
particles in thermal equilibrium. We show that by increasing the self-propulsion time of the A particles, the reactant densities decay faster, at
least for time transients of potential interest for chemical applications, e.g., to develop smart drug delivery protocols. Asymptotic and transient
density decays obey power laws with exponents that depend on the actual annihilation reaction and its dimensionality.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5081125

I. INTRODUCTION

Artificial microswimmers are active particles capable of
autonomous propulsion.1–3 Their propulsion mechanism, which is
often presented as a biomimetic counterpart of cellular motility,4 is
a stationary nonequilibrium process triggered by the particles them-
selves. Owing to a built-in functional asymmetry,5–8 they harvest
kinetic energy from their environment, for instance, by inducing
local (electric,6 thermal,9 or chemical10) gradients in the suspension
medium (self-phoresis). The simplest class of artificial swimmers
investigated in the literature is the so-called Janus particles (JP),
mostly spherical colloidal particles with two differently coated hemi-
spheres or “faces.” A different face functionalization determines a
peculiar dipolar symmetry, which makes the axial propulsion of
these particles possible.11–13

Among the prominent applications of artificial microswimmers
is their pharmaceutical usage6 to control chemical reactions, either
as motile catalysts or reactant carriers, in the context of recently
proposed smart drug delivery systems.14 Since self-propelled parti-
cles undergo persistent Brownian motion with finite correlation time
(also termed active Brownian motion), one expects that the chemi-
cal processes they initiate are governed in time and space by their

“diffusive” properties. Indeed, a single molecular reaction takes place
only after the involved active agent has diffused close to a reactant
molecule, while the reaction itself is assumed to occur instanta-
neously. We refer to this class of processes as active diffusion limited
reactions (DLR) or active DLR for brevity.

Diffusion limited reactions in low dimensions and in numer-
ous constrained geometries exhibit anomalous behavior, in the sense
that their kinetics is not governed by the classical macroscopic laws
of mass action but rather by the nonequilibrium dynamics of the
reactants.15–21 For instance, in the bimolecular DLR, A + B → 0, if
the initial densities of the A and B reactants are the same, in an infi-
nite volume of Euclidean dimensions d ≤ 4, these densities decay
“asymptotically” with time t−α, with α = d/4.18,19 This result is in
apparent contrast with the exponent α = 1 predicted by the classical
rate law. Another paradigmatic DLR that exhibits anomalous kinet-
ics is the bimolecular reaction A + A→ 0, where the reactant density
decays with time also according to a power law but with exponent
α = d/2.

An exponent smaller than that predicted by the classical mass
law, α < 1, is generally attributed to the formation of persistent
spatio-temporal structures in the reactant distributions.22,23 Fol-
lowing this interpretation, one may expect that introducing some

J. Chem. Phys. 150, 154902 (2019); doi: 10.1063/1.5081125 150, 154902-1

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/1.5081125
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5081125
https://crossmark.crossref.org/dialog/?doi=10.1063/1.5081125&domain=aip.scitation.org&date_stamp=2019-April-15
https://doi.org/10.1063/1.5081125
https://orcid.org/0000-0001-9558-6021
https://orcid.org/0000-0001-9240-6793
https://orcid.org/0000-0003-3682-7432
mailto:yunyunli@tongji.edu.cn
https://doi.org/10.1063/1.5081125


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

mixing mechanism may suppress such “transient” structures and,
therefore, increase the decay exponent α.

As argued in Ref. 22, inertia in the reactant diffusive dynam-
ics provides an analytically and numerically manageable example of
such a mixing mechanism. Indeed, on decreasing the viscous con-
stant of the A and B particles, the exponent α increases from its
known diffusive value up to substantially larger values peculiar to the
ballistic regime. Here, by inertia we mean that each diffusing parti-
cle retains memory of its past trajectory for a time of the order of
the reciprocal of its viscous constant. Recalling that an active parti-
cle undergoes persistent Brownian motion with correlation time that
depends on its self-propulsion mechanism,24 one is led to think that
DLRs involving active particles are characterized by α exponents also
depending on their self-propulsion parameters. That would make α
easier to tune, in view of practical applications, whereas the same
result could be hardly achieved by manipulating the particle viscous
constant.

The content of this paper is organized as follows. In Sec. II, we
introduce the stochastic equations for diffusing active and passive
particles in d = 1 (1D) and d = 2 dimensions (2D).

Active particles are modeled as JPs with constant axial speed
and randomly fluctuating orientation. We then limit our study to the
two archetypal bimolecular DLRs mentioned above, A + A→ 0 and
A + B→ 0, avoiding all unnecessary complications widely discussed
in the DLR literature. In Sec. III, we summarize the results of Ref. 22
for both A and B passive particles, with particular attention to the
effects of inertia on the time decay of the particle densities. In Sec. IV,
we investigate the same reactions except that now the A particles are
active and the B particles are passive. In both Secs. III and IV, we
consider 1D and 2D particle mixtures, separately. In Sec. V, we ana-
lyze in some details the spatial distributions of the A and B particles
for the A + B→ 0 reactions of Sec. IV and show how self-propelling
A particles do exert a mixing action on the A-B mixture. Finally,
in Sec. VI, we comment on the potential applications of active
DRL’s.

II. MODEL
In the present work, we numerically simulated mixtures of nA

A-particles and nB B-particles with nA = nB. The mixtures were con-
fined to a segment of length L for d = 1 and a square of area L2 for
d = 2. Accordingly, the reactant densities were ρA ,B = nA ,B/Ld, with
total mixture density ρA+B = ρA + ρB. The active particles consid-
ered here are two-dimensional JPs, that is, two-faced disks of (small)
radius r0, corresponding to (low) packing fractions, � = 2r0ρA+B for
d = 1 and � = πr2

0ρA+B for d = 2. We have already modeled the JP
dynamics in Refs. 25–27; here, our simulation code was modified to
account for possible inertial effects in the spirit of Ref. 22.

The free dynamics of a single diffusing particle of unit mass
(m =1) obeys the Langevin equations28,29

ẍ = −γẋ + γv0 cos θ + ξx(t),
ÿ = −γẏ + γv0 sin θ + ξy(t),

θ̇ = ξθ(t),
(1)

where the particle center of mass, r, is confined to the plane
(x, y), subject to an isotropic viscous damping with constant γ and

equilibrium thermal fluctuations represented by the Gaussian noises
ξi(t), with ⟨ξi(t)⟩ = 0 and ⟨ξi(t)ξj(0)⟩ = 2γkTδijδ(t) for i = x, y.
As shown in Fig. 1(a), active JPs propel themselves with constant
speed v0 and orientation θ with respect to the x axis. Of course,
when simulating a passive particle, one sets v0 = 0. 1D mixtures
were confined to the x axis so that the Langevin equation for y
was ignored. The fluctuations of the propulsion velocity are mod-
eled by the Gaussian noise ξθ(t), with ⟨ξθ(t)⟩ = 0 and ⟨ξθ(t)ξθ(0)⟩
= 2Drδ(t), where τr = 1/Dr is the correlation time of the ensuing
persistent Brownian motion (Dr quantifying the angular diffusion
of v0). In the case of active particles, for asymptotically large times,
t ≫ τr , 1/γ, self-propulsion contributes an additional amount of
Ds = v2

0/2Dr to the thermal diffusivity, D0 = kT/γ. Passive par-
ticles are subject to thermal diffusivity only. We treated all noise
sources in Eq. (1) as independently tunable, although, strictly speak-
ing, thermal and orientational fluctuations may be statistically cor-
related (see, e.g., Ref. 30). More importantly, the propulsion and
fluctuation parameters used in our simulations are experimentally
accessible, as apparent on expressing times in seconds and lengths in
microns.30

When simulating a confined particle mixture, one has to specify
the collisional processes as well: (i) Non-annihilating particle colli-
sions were assumed to be elastic. Note that, in 1D, particles of the
same species are non-passing and thus tend to form local single files
of reduced diffusivity;16,32 (ii) collisions against the walls of the con-
tainer are always elastic; under this condition, walls can be replaced
by periodic boundary conditions;25 (iii) in a first approximation, the
short-range interactions among active and/or passive particles and
the hydrodynamics of self-propulsion are neglected.

FIG. 1. (a) Two dimensional active JP model (see text). The dynamical and the
self-propulsion velocities are represented by distinct vectors. [(b)–(d)] Snapshots
of a 2D A-B mixture at three different times in a 100 × 100 sampling region. The
simulation box with side L = 1000 contained nA = 5× 104 active A particles (JP, red)
and nB = 5 × 104 passive B particles (black, circle size not to scale). All particles
are disks of radius r0 = 0.05 to ensure a very low initial box packing fraction. Upon
collision, the A-B pairs annihilate, A + B→ 0, while all other collisions are elastic.
Reflecting and periodic conditions at the box boundaries return the same decay
law.

J. Chem. Phys. 150, 154902 (2019); doi: 10.1063/1.5081125 150, 154902-2

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

The stochastic differential equation (1) was numerically inte-
grated by means of a standard Mil’shtein scheme.31 To avoid bias-
ing the simulation outcome with unwanted spatial structures, we
imposed random initial conditions, that is, uniform spatial distri-
butions, Gaussian velocity distributions with temperature T, and
uniform angular distributions of the vector v0 for active particles. All
stochastic averages were taken over not less that 1000 realizations of
each mixture annihilation.

We discuss now the characteristic time scales of the active DLRs
under investigation. The diffusive dynamics of Eq. (1) introduces
four rates: two are related to thermal relaxation (the viscous damp-
ing constant, γ, and the diffusive rate, kT/γl2) and two more are
associated with the self-propulsion mechanism of the active par-
ticles (the reciprocal of the persistence time or angular rate, Dr ,
and the reciprocal of the free self-propulsion time, v0/l). Here,
l denotes an appropriate mixture length scale, the most obvious
choice being l = ρ−1/d, where ρ denotes a reactant density, and
l ≫ r0. To make contact with the active JPs used in real experi-
ments,30 we assumed low Reynolds numbers, that is, large γ, γ/Dr
≫ 1, and long observation times, γt ≫ 1. Moreover, due to the
strong advective character of self-motility, we restricted our analysis
to high Péclet numbers, Per = γr0v0/kT≫ 1. Finally, the bimolecular
chemical reactions investigated here are actually governed by active
diffusion only under the additional condition Ds ≫ D0, that is, for
γv2

0/DrkT ≫ 1.
The diffusion controlled annihilation of the mixture reactants

occurs within the time interval (t0, t∞), where (i) t0 is the average
time two neighboring reactant molecules take to collide. For a pair
of passive particles, t0 is of the order of l2/D0, i.e., the reciprocal of
the diffusive rate, kT/γl2, introduced above. Of course, for pair col-
lisions involving an active particle, it is shorter, being proportional
to l2/Ds; (ii) t∞ marks the end of the process, after all reactant pairs
have disappeared. This time t∞ depends on the initial reactant den-
sity and restricts our ability to numerically assess the transient nature
in the mixture decay dynamics.

III. THE ROLE OF INERTIA
We first report our simulation results for the bimolecular DLRs,

A + A→ 0 and A + B→ 0, in the absence of self-propulsion, v0 = 0 (A
and B particles are both passive, though chemically distinct15,16), but
over a large range of γ bridging the underdamped and overdamped
limits. We briefly revise the results of Ref. 22 proving that inertia
actually exerts a mixing action on the mixture by quickly suppress-
ing emerging spatio-temporal structures and thus speeding up the
time decay of the reactant densities. In panels (a) and (b) of Fig. 2,
we illustrate the ρ(t) time decay, respectively, for A + A → 0 and
A + B→ 0 in 1D; the ρ(t) curves for the corresponding 2D reactions
are displayed in panels (c) and (d).

For large γ, we recover the diffusive behavior anticipated in
Sec. I: The time decay of ρ(t) follows an asymptotic power law,
ρ(t) ∼ t−α, with α = d/2 for A + A → 0 [(a) and (c)] and α = d/4
for A + B→ 0 [(b) and (d)].

At very small γ, we correctly reproduce the faster decay law, ρ(t)
∼ t−β, with β ≥ α, first reported in Ref. 22. For the A + B → 0 reac-
tion, a simple generalization22 of the fluctuating density argument
of Ref. 19 suggests that β = 2α, namely, β = d/2. We confirm the

FIG. 2. Time decay of the A particle density ρ(t) = ρA(t) for [(a) and (c)] A + A
→ 0, [(b) and (d)] A + B → 0, [(a) and (b)] d = 1, and [(c) and (d)] d = 2. Here,
γ varies from 0.003 up to 30 (see legends). A and B particles are both passive
with v0 = 0. All curves seem to decay with power laws ρ(t) ∼ t−α (high γ, diffusive
limit) and ρ(t) ∼ t−β (low γ, ballistic limit). The fitted exponents are also reported
in the legends. The curve for γ = 30 in (d) approaches the expected decay slope
only for larger t (not shown for graphical reasons). While the t−α decay seems to
set in asymptotically, the t−β decay is compatible with a transient effect extending
beyond the accessible observation time, t > t∞. Simulation parameters: (a) nA
= 3× 104, L = 106; (b) nA = nB = 1.5× 104, L = 106; (c) nA = 3× 104, L = 103; (d)
nA = nB = 1.5× 104, L = 103. Other simulation parameters: r0 = 0.05, kT = 0.2,
m = 1; all lengths are expressed in arbitrary units.

estimate of β, at least within the numerically accessible time inter-
val (t0, t∞). Of course, we cannot rule out the possibility that
such a faster decay is a transient effect only, with β eventually
approaching α at even larger times, t≫ t∞. Verifying this hypothesis
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would require simulating much larger mixtures, which lies beyond
our present computational capabilities.

In 2D, the A + A → 0 reaction is known16 to obey the classical
mass law, with d = 2 as its critical dimension, in both dynamical
limits. The numerical results of Fig. 2(c) validate this prediction, that
is, β = 1.

Regarding the ballistic regime of the A + A → 0 reaction in
1D, there is no consensus on the value of β (see Ref. 22 for a
detailed discussion). The proposed estimates range between 2/3 and
0.805, whereas numerical simulations for a noiseless mixture yields
β = 0.79. For the lowest γ values considered here, Fig. 2(a), a best fit
returned β = 0.7.

The most important conclusion of this section is that “the
Langevin dynamics of Eq. (1) bridges the ballistic and diffusive decay
regimes with γ acting as an effective control parameter.”

IV. THE ROLE OF ACTIVE DIFFUSION
In Fig. 3, we illustrate simulation results for the active DLRs

A + A→ 0, panels (a) and (c), and A + B→ 0, panels (b) and (d). The
main conclusions of our numerical investigation can be summarized
as follows:

(i) Similar to inertia in Sec. III, the persistent Brownian motion
of the active A particles suppresses the retarding effects of
spatio-temporal fluctuations in the mixture configuration.
Indeed, a general feature of all panels of Fig. 3 is the fast
time decay of ρ(t) for small Dr (large τr). This applies also
for large γ, where we know from Fig. 2 that inertia effects are
negligible.

(ii) The faster decays of ρ(t) at low Dr , quantified by the β expo-
nent, are transient effects. Indeed, almost all curves plotted
in Fig. 3 hint at approaching the corresponding diffusive
decay law, t−α, already for t < t∞. [Exceptions are mentioned
in item (iv).] This is not surprising because, as anticipated
in Sec. II, for t ≫ τr active Brownian motion is indistin-
guishable from a regular Brownian motion with enhanced
diffusivity, D0 + Ds. At sufficiently low reactant density,
that is, for large spatial separation of the reactant pairs, the
self-propulsion memory of the pair constituents becomes
negligible.

(iii) Persistence effects in the self-propulsion mechanism imply
that, at high Péclet numbers, the motion of the A particles
is ballistic for time interval of the order of τr . This reflects
in the values of the β exponents of panels (c) and (d), which
coincide with those of the corresponding panels (c) and (d)
of Fig. 2. Stated otherwise, in 2D for long self-propulsion
times of the A particles, the decay of both DLRs starts out
ballistically.

(iv) Deviations from the general picture of items (ii) and (iii)
appear at low γ and Dr due to the interplay of inertia and
persistent activation effects. In that dynamical regime, t∞
was not large enough to assess the asymptotic decay of the
mixture density. We notice that, for practical applications,
such a regime is of lesser interest as active JPs operate at low
Reynolds numbers.

On inspecting Figs. 3(a) and 3(b), it becomes apparent that
in 1D the β exponents are larger than their counterparts in Fig. 2,
namely, larger than predicted for the ballistic regime of Sec. III. This

FIG. 3. Time decay of the A particle density ρ(t) = ρA(t) for [(a) and (c)] A + A→ 0,
[(b) and (d)] A + B → 0, [(a) and (b)] d = 1, and [(c) and (d)] d = 2 and different
γ. Here, A are active particles with v0 = 1 and different angular rates, Dr (see
legend); B are passive particles. The exponents α and β of the diffusive (large
Dr ) and transient ballistic (low Dr ) time decays are written next to the dashed and
solid lines, respectively; α and β do not change by halving or doubling the mixture
packing fraction. Simulation parameters: (a) nA = 3× 104, L = 106; (b) nA = nB
= 5× 104, L = 106; (c) nA = 3× 104, L = 103; (d) nA = nB = 5× 104, L = 103.
Other simulation parameters: r0 = 0.05, kT = 0.2, m = 1; all length are expressed
in arbitrary units. Legends in (a)–(c) apply to all four panels.

effect is due to having constrained a persistent Brownian motion
along a line.

For the A + A → 0 reaction, we propose the following simple
interpretation. Being confined to the x axis, the active A particles
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move either right (R) or left (L) with velocities ±v̄0. Their average
1D speed is smaller that v0. Assuming uniform unconstrained angu-
lar fluctuations (no wall effects), like in Eq. (1), v̄0 = (2/π)v0. The
distribution of the R (L) oriented particles is uniformly randomized
as an effect of direction switches occurring with rate Dr . Only R-L
pairs annihilate (instantaneously) upon collision. In this approxima-
tion, the 1D active A + A → 0 reaction reduces to the dichotomic
A + B → 0 reaction of Refs. 23, 33, and 34, with A and B repre-
senting, respectively, the R and L oriented active JPs. Due to the
symmetric dynamics of the system and its initial conditions, ρL(0)
= ρR(0), the reactant density is predicted to decay asymptotically
like

ρα(t) ∼ [ρ(0)/(πv0t)]1/2.

The exponent of this power law, α = 1/2, coincides with the diffusive
decay exponent predicted for the A + A→ 0 reaction in a 1D mixture
of passive A particles.

However, as noticed in Ref. 23, the mechanisms responsi-
ble for these two asymptotic decay laws are different. Indeed, at
shorter times, t ∼ τr , the decay process is sensitive to the veloc-
ity switching mechanism so that the onset of density fluctuations
along the line starts playing a role. Close to equilibrium, it is rea-
sonable to assume18,19 particle number fluctuations of the order of
(ρ(0)v0τr)1/2. (We remind that we agreed to treat the R and L par-
ticles of the same A mixture as different species.) In the presence
of such an R and L density unbalance, one predicts33,34 a faster ρ(t)
decay law, ρβ(t) = κ(t)ρα(t), with

κ(t) = (τr/2t) exp(−t/τr).

In conclusion, we expect a fast transient decay at short times
with β = 3/2, which is consistent with the data of Fig. 3(a). Note that
the above argument applies best for large γ (no inertia effects) and
Dr ≪ γ (strong orientation memory).

To explain the transient density decay of the A-B mixture in
Fig. 3(b), we had recourse to a qualitative scaling argument. Note
that an A-B mixture consists of two interacting fractions: the station-
ary self-propelling A particles and the thermally diffusive B particles;
a problem not much investigated, not even in 1D. Let us consider the
mixture transient dynamics and ask ourselves the following ques-
tion: How many A-B pairs do survive along the distance, ls(t) = v0t,
covered by a self-propelling A particle during the initial time interval
t, with t ≤ τr? A qualitative answer is

ρ(t) ∼ ρ(0)[xAA(t)/ls(t)],

where xAA(t) is the ever expanding pair distance16

xAA(t) ∼ t3/8.

As a result, ρ(t) decays with time according to a power law with
exponent β = 5/8, in fairly good agreement with the data of Fig. 3(b).

V. REACTANT SPATIAL DISTRIBUTIONS
The remarkable difference between the time decay of the 1D

and 2D mixtures is mostly of topological nature. In 1D, diffus-
ing particles collide only with their nearest-neighbors (nonpassing
dynamics). This implies that fluctuations of the reactant concen-
tration tend to be long-lived. Such a dimensional constraint was

implicitly accounted for in our interpretation of the data of Figs. 3(a)
and 3(b). Active DLRs in 2D are more interesting because, first, they
are easier to investigate experimentally and, second, the spatial mix-
ing action of the active reactants is not limited by the dimensional
constraint mentioned above.

In order to elucidate the mixing action of active particles in an
annihilating mixture, we characterized the reactants’ spatial distri-
bution by measuring the pair distances rAA for A + A → 0 and rAA
and rAB for A + B → 0. We defined the pair distances rAA and rAB
as the distance between any tagged A particle and the closest A or B
particle, respectively. Distributions of r ≡ rAA for the 2D mixtures of
Fig. 3 at different times, P(r, t), are displayed in Fig. 4.

In sharp contrast with the case of all-passive mixtures,22,23

no distinguishable pattern formation emerged during the decay
transients (see also the graphic rendering of Fig. 1). We remind
that both A-A and A-B mixtures where prepared by initially dis-
tributing all their constituents at random inside the simulation box
(Poissonian spatial distribution35). A direct computation showed
that at t = 0 ⟨rAA⟩ = (1/2ρA)1/2 for the A-A mixture, while
for the A-B mixture ⟨rAA⟩ = (1/2ρA)1/2 and ⟨rAB⟩ = ⟨rAA⟩/2.
We remind that in our figures ρ(t) is a shorthanded notation for
ρA at time t, namely, either the total instantaneous particle den-
sity of the A-A mixture or just half the total density of the A-B
mixture.

As suggested by the initial pair distance averages, in Figs. 4(c)
and 4(d), we rescaled r as

r → r/l(t), with l(t) = [1/ρ(t)]1/2.

For low angular rates, Dr , P(r, t) peaks at r/l(t) ≃ 0.4 and, more
remarkably, there is no appreciable change in the distribution pro-
files up to large times. In particular, we verified that the initial
relations between the averages ⟨rAA⟩ and ⟨rAB⟩ and the density
ρ keep holding as the decay process progresses independently of
the damping regime. We remind that for 2D mixtures of pas-
sive particles one would expect latticelike and clusterlike struc-
tures, respectively, in the diffusive (large γ)22 and ballistic limit
(low γ).23

For the sake of comparison, we used the approach of Ref. 35 to
calculate analytically P(r, t) for d = 2 and r0 ≪ l(0). Our result,

P(r, t) = 2r
l̄2(t) exp(− r2

l̄2(t)), (2)

with l̄(t) = [πρ(t)]−1/2, reproduces quite closely the numerical dis-
tributions of Figs. 4(c) and 4(d)—small deviations are attributable to
the finite particle size. Not surprisingly, in 1D, our curves for P(r, t)
are well approximated by Erlang distributions (not shown).16

We interpret these results as strong evidence that the A parti-
cles remain quite uniformly distributed in the simulation box during
the entire transient of the annihilation process. A similar behav-
ior was detected also for the time dependent distributions of rAB
(not shown), which led us to conclude that active particles act like
effective mixture stirrers.

Finally, another interesting feature of the mixtures’ spatial con-
figurations emerges by comparing Figs. 4(a) and 4(b), where the
distances r have now been rescaled by the fixed preparation length,
l(0). At large t, the P(r, t) maxima appear to move to higher r val-
ues as the reactants annihilate, with speed proportional to ρ(0). Note
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FIG. 4. Distribution of r ≡ rAA at different times for A + A→ 0 [(a) and (c)] and A + B
→ 0 [(b) and (d)] in 2D. Here, A are active particles with v0 = 1 and Dr = 0.01 and
B are passive particles. The rescaling length l is a function of time, l(t) = [1/ρ(t)]1/2,
with ρ(t) = ρA(t). Upon using the time dependent rescaling length l(t), all three data
sets of (a) and (b) collapse on a unique curve, respectively, in (c) and (d). The
dashed curves in (c) and (d) represent the relevant theoretical predictions, Eq. (2).
Simulation parameters: [(a) and (c)] nA = 105 and [(b) and (d)] nA = nB = 5× 104.
Moreover, L = 103, r0 = 0.05, kT = 0.2, m = 1, γ = 0.1 [(a)–(c)] and 10 (d), with all
lengths given in arbitrary units. Legends in (a)–(d) apply to all four panels.

that in Fig. 4(a) the initial value of ρA is twice than in Fig. 4(b). The
two active DLRs are actually controlled by a diffusive mechanism,
as to be expected for Drt ≫ 1. In fact, the r.m.s. of the reactant pair
separation appears to grow with time proportional to the product of
the reactant densities.

VI. CONCLUSIONS
In this paper, we investigated the role of active diffusive parti-

cles in the broad context of the so-called diffusion limited chemical
reactions. We restricted our presentation to the archetypal reactions
of pair annihilation, A + A → 0 and A + B → 0, in one and two
dimensions. Moreover, we considered the simplest realization of an
artificial microswimmer consisting of an active Janus particle. Most
of our results are based on simulation data and phenomenological
arguments.

Despite all the simplifications listed above, we gathered evi-
dence of the capability of artificial microswimmers to accelerate the
chemical kinetics they assist, either as catalysts or reactant carriers.
Such a capability grows prominently in low dimensional or strongly
constrained geometries. In particular, we proved that self-propellers
have a mixing or stirring effect on the configurational fluctuations
occurring in the reactant mixture, which speeds up the annihilation
processes.

From a more fundamental point of view, we highlighted the
role of memory effects in the diffusive mechanism controlling this
class of chemical reactions. Such effects, scarcely addressed in the
specialized literature,36 become now experimentally accessible by
making use of active microparticles or nanoparticles since these dif-
fuse with correlation times governed by the same external mecha-
nisms also regulating their motility.

ACKNOWLEDGMENTS
We thank RIKEN’s RICC for computational resources. Y. Li is

supported by the NSF China under Grant No. 11875201. P.K.G. is
supported by SERB Start-up Research Grant (Young Scientist) No.
YSS/2014/000853 and UGC-BSR Start-Up Grant No. F.30-92/2015.
T.D. thanks UGC, New Delhi, India, for support through a Junior
Research Fellowship. F.N. is supported in part by the MURI Cen-
ter for Dynamic Magneto-Optics via the Air Force Office of Scien-
tific Research (AFOSR) (Grant No. FA9550-14-1-0040), the Army
Research Office (ARO) (Grant No. W911NF-18-1-0358), the Asian
Office of Aerospace Research and Development (AOARD) (Grant
No. FA2386-18-1-4045), the Japan Science and Technology Agency
(JST) (Q-LEAP program, ImPACT program, and CREST Grant
No. JPMJCR1676), the Japan Society for the Promotion of Science
(JSPS) (JSPS-RFBR Grant No. 17-52-50023 and JSPS-FWO Grant
No. VS.059.18N), the RIKEN-AIST Challenge Research Fund, and
the John Templeton Foundation.

REFERENCES
1F. Schweitzer, Brownian Agents and Active Particles (Springer, Berlin, 2003).
2Janus Particle Synthesis, Self-Assembly and Applications, edited by S. Jiang and
S. Granick (RSC Publishing, Cambridge, 2012).
3A. Walther and A. H. E. Müller, “Janus particles: Synthesis, self-assembly,
physical properties, and applications,” Chem. Rev. 113, 5194 (2013).
4M. J. McBride, “Bacteria gliding motility: Multiple mechanisms for cell move-
ment over surfaces,” Annu. Rev. Microbiol. 55, 49 (2001); H. C. Berg, E. Coli in
Motion (Springer, New York, 2013).
5J. Elgeti, R. G. Winkler, and G. Gompper, “Physics of microswimmers, single
particle motion and collective behavior: A review,” Rep. Prog. Phys. 78, 056601
(2015).
6S. Sengupta, M. E. Ibele, and A. Sen, “Fantastic voyage: Designing self-powered
nanorobots,” Angew. Chem., Int. Ed. 51, 8434 (2012).

J. Chem. Phys. 150, 154902 (2019); doi: 10.1063/1.5081125 150, 154902-6

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1021/cr300089t
https://doi.org/10.1146/annurev.micro.55.1.49
https://doi.org/10.1088/0034-4885/78/5/056601
https://doi.org/10.1002/anie.201202044


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

7X. Wang et al., “Visible light actuated efficient exclusion between plasmonic
Ag/AgCl micromotors and passive beads,” Small 14, 1802537 (2018).
8X. Wang et al., “High-motility visible light-driven Ag/AgCl Janus micromotors,”
Small 14, 1803613 (2018).
9H. R. Jiang, N. Yoshinaga, and M. Sano, “Active motion of a Janus particle by self-
thermophoresis in a defocused laser beam,” Phys. Rev. Lett. 105, 268302 (2010).
10Y. Hong, N. M. K. Blackman, N. D. Kopp, A. Sen, and D. Velegol, “Chemotaxis
of nonbiological colloidal rods,” Phys. Rev. Lett. 99, 178103 (2007).
11J. P. Hernandez-Ortiz, C. G. Stoltz, and M. D. Graham, “Transport and collec-
tive dynamics in suspensions of confined swimming particles,” Phys. Rev. Lett. 95,
204501 (2005).
12R. Golestanian, T. B. Liverpool, and A. Ajdari, “Designing phoretic micro- and
nano-swimmers,” New J. Phys. 9, 126 (2007).
13R. Golestanian, T. B. Liverpool, and A. Ajdari, “Propulsion of a molecular
machine by asymmetric distribution of reaction products,” Phys. Rev. Lett. 94,
220801 (2005).
14Smart Drug Delivery System, edited by A. D. Sezer (IntechOpen, 2016).
15E. Kotomin and V. Kuzovkov, Modern Aspects of Diffusion-Controlled Reactions
(Elsevier, Amsterdam, 1996).
16D. ben-Avraham and S. Havlin, Diffusion and Reactions in Fractals and Disor-
dered Systems (Cambridge University Press, Cambridge, 2000).
17A. Blumen, J. Klafter, and G. Zumofen, in Optical Spectroscopy of Glasses, edited
by I. Zschokke (Reidel, Dordrecht, 1986).
18A. A. Ovchinnikov and Y. B. Zeldovich, “Role of density fluctuations in
bimolecular reaction kinetics,” Chem. Phys. 28, 215 (1978).
19D. Toussaint and F. Wilczek, “Particle-antiparticle annihilation in diffusive
motion,” J. Chem. Phys. 78, 2642 (1983).
20D. C. Torney and H. M. McConnell, “Diffusion-limited reactions in one
dimension,” J. Chem. Phys. 87, 1941 (1983).
21K. Kang and S. Redner, “Fluctuation-dominated kinetics in diffusion-controlled
reactions,” Phys. Rev. A 32, 435 (1985).
22A. H. Romero, A. M. Lacasta, J. M. Sancho, and K. Lindenberg, “Numerical
study of A + A → 0 and A + B → 0 reactions with inertia,” J. Chem. Phys. 127,
174506 (2007).

23W. S. Sheu and S. C. Wang, “Effects of velocity relaxation on the anomalous
kinetics of a one-dimensional A + A → 0 reaction,” Phys. Rev. E 78, 046101
(2008).
24P. K. Ghosh, Y. Li, G. Marchegiani, and F. Marchesoni, “Communication:
Memory effects and active Brownian diffusion,” J. Chem. Phys. 143, 211101
(2015).
25P. K. Ghosh, V. R. Misko, F. Marchesoni, and F. Nori, “Self-propelled Janus
particles in a ratchet: Numerical simulations,” Phys. Rev. Lett. 110, 268301
(2013).
26Y. Li, P. K. Ghosh, F. Marchesoni, and B. Li, “Manipulating chiral microswim-
mers in a channel,” Phys. Rev. E 90, 062301 (2014).
27D. Debnath, P. K. Ghosh, Y. Li, F. Marchesoni, and B. Li, “Diffusion of eccentric
microswimmers,” Soft Matter 12, 2017 (2016).
28I. Berdakin, Y. Jeyaram, V. V. Moshchalkov, L. Venken, S. Dierckx, S. J. Vander-
leyden, A. V. Silhanek, C. A. Condat, and V. I. Marconi, “Influence of swimming
strategy on microorganism separation by asymmetric obstacles,” Phys. Rev. E 87,
052702 (2013).
29P. K. Ghosh, P. Hanggi, F. Marchesoni, and F. Nori, “Giant negative mobility of
Janus particles in a corrugated channel,” Phys. Rev. E 89, 062115 (2014).
30G. Volpe, I. Buttinoni, D. Vogt, H.-J. Kümmerer, and C. Bechinger,
“Microswimmers in patterned environments,” Soft Matter 7, 8810 (2011).
31P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential
Equations (Springer, 1992).
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