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Abstract—We study the relation between quasi-normal modes
(QNMs) and transmission resonances (TRs) in one-dimensional
(1D) disordered systems. We show that while each maximum
in the transmission coefficient is always related to a QNM,
the reverse statement is not necessarily correct. There exists an
intermediate state, where only part of the QNMs are localized
and provide a resonant transmission. The rest of QNMs (strange
modes) are not localized and not associated with any anomalies in
the transmission. The ratio of the number of the normal QNMs to
the total number of QNMs is independent of the type of disorder,
and varies slightly in rather wide ranges of the strength of a
single scattering and the length of the random sample.

Wave processes in open systems can be described in terms of
quasi-normal modes (QNMs), which are a generalization of the
notion of normal modes for closed systems, to open structures,
[1]–[9]. The corresponding eigenfrequencies are complex, so
that the imaginary parts characterize the lifetime of the quasi-
normal states. Regarding the transmission of radiation through
random media, it is more appropriate to use an alternative
approach based on transmission resonances.

It is now universally accepted that in open systems each
maximum in the transmission coefficient is associated with
a QNM, so that the resonant frequency is close to the real
part of the corresponding eigenvalue. However, the connection
between QNMs and TRs is not that simple and, despite
extensive research and much recent progress, still needs a better
understanding and justification, at least for disordered systems.

It is instructive to look for insights the 1D limit because
its spectral and transport properties are better understood. It
is well-known [17] that the transmission of a long enough 1D
disordered system is typically exponentially small. At the same
time, there exists a set of frequencies where the transmission
coefficient has local maxima, some of them close to one. Each
resonance is always associated with a QNM determined in a
standard way as a solution with outgoing boundary conditions.
The reverse statement, that each QNM manifests itself as a
transmission resonance, although never has been questioned,
is usually taken as obvious and self-evident, perhaps because
it is always the case in all regular (homogeneous or periodic)

quantum-mechanical and optical open structures.
Here we show, both numerically and analytically, that in

1D disordered systems there exist two types of QNMs: ordi-
nary QNMs, that provide resonance transmission peaks, and
“strange” QNMs unrelated to any anomalies in the transmis-
sion spectrum. These strange modes exist exclusively due to
random scatterings and arise already in the ballistic regime
with weak disorder. The imaginary parts of the strange QNMs
eigenfrequencies vary with increasing disorder in a highly
unusual manner. Indeed, typically, the stronger the disorder
is, the more confined the system becomes, which implies that
the eigenfrequencies should approach the real axis. However,
the imaginary part of a strange mode’s eigenfrequency either
increases from the onset of disorder, or goes down anomalously
slowly. Most surprisingly, up to rather strong disorder, the
average ratio of the density (in the frequency domain) of
strange modes to the total density of QNMs, being independent
of the type of disorder, remains close to the constant

√
2/5 in

wide ranges of the strength of disorder and of the total length
of the system. As the disorder keeps growing, eventually all
strange quasimodes turn normal. Therefore these results can be
interpreted as a manifestation of the existence (in 1D random
systems, at least) of an intermediate regime, at which in any
finite-frequency interval, only a part of the quasimodes are
localized and provide resonant transmission.

We consider a generic 1D system composed of N + 1
scatterers separated by N intervals and attached to two semi-
infinite leads. Two problems are associated with such systems.
The first one is finding solutions ψ(x, t) of the wave equation
satisfying the outgoing boundary conditions. The eigenfunction
solution ψn(x, t) of this problem is the superposition of two
counter-propagating monochromatic waves ψn(x)(±)e−iωnt.
In any jth layer ψ

(±)
n (x) = ψ

(±)
n,j (x) = a

(±)
n,j e

±iknx. The
amplitudes a(±)n,j in adjacent layers are connected by a transfer
matrix. The wave numbers kn are complex-valued and form
the discrete set k(mod)

n = k′n − ik′′n, k′′ > 0, and frequencies
ω
(mod)
n = ckn. The corresponding eigenfunctions are the so-



called QNMs. Note that all distances hereafter are measured
in optical lengths. The second problem is the transmission
of an incident wave through the system. The set of wave
numbers and corresponding fields inside the system for which
the transmission coefficient reaches its local maximum are the
so-called TRs. Evidently these two problems are interrelated.
The goal of this paper is to establish the relation between the
spectra and wave functions of QNMs and TRs.

In what follows, the scatterers and the distances between
them are characterized by the reflection coefficients ri ≡
r0 + δri and lengths di ≡ d0 + δdi, respectively. The random
values δri and δdi are distributed in certain intervals, and
〈δri〉 = 0 and 〈δdi〉 = 0. Here, 〈. . .〉 stands for the value
averaged over the sample. The last condition means that the
total length L of the system is equal to Nd0 and therefore any
random realization with the same N contains the same number
of QNMs.

To explicitly introduce the tunable strength s of disorder, we
replace all reflection coefficients, except for those at the left,
rL, and right, rR, edges of the system by sri, and assume that
the coefficients ri are homogeneously distributed in the interval
(−1, 1). This notation enables keeping track of the evolution of
the QNM eigenvalues k(mod)

n and of the resonant wave vectors
k(res) when the disorder increases from zero (s = 0) while
the reflection coefficients rL and rR at the semitransparent
boundaries remain constant.

When s = 0, (i.e., no disorder) the real and imaginary parts
of the QNM eigenvalues k(mod)

n are

k′n =
1

2L
·
{
π + 2πn, when rLrR > 0,

2πn, when rLrR < 0,
(1)

k′′n = − 1

2L
ln |rLrR|. (2)

The wave intensity, defined as In,j = |ψ(+)
n,j |2 + |ψ(−)

n,j |2 is
distributed along the system as In(xj) ∝ cosh[2k′′(xj − x∗)],
where x∗ = L[1 − ln(|rR/rL|)/ ln(|rRrL|)]/2. When |rL| =
|rR|, the minimum of the intensity is located at the centre of
the system, and in an asymmetric case shifts to the boundary
with a higher reflection coefficient.

When s = 0 the wave numbers k(res)n of the transmission
resonances coincide with the real parts k′n given by Eq. (1).
Thus, in the homogeneous resonator, there is a one-to-one
correspondence between QNMs and TRs. The same correlation
exists also in periodic systems (periodic sets ri and di) [19].

The question now is whether this relationship survives in the
disordered system, when s 6= 0. There is strong evidence that
for every resonance there is a corresponding QNM. However,
as we show below, the reverse statement is not valid: there are
certain QNMs which cannot be associated with any resonance.

Figure 1 shows the evolution of the eigennumbers kmod
n

in the complex plane (k′, k′′) as s grows. Initially, when
s = 0, all eigenumbers are equidistantly located on the line
k′′ = const, in agreement with Eqs. (1, 2). As soon as disorder
arises (s 6= 0) and increases, the eigenvalues separate into
two essentially different types. Indeed, with s increasing, the
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Fig. 1. Motion of the QNMs eigenvalues, k(mod)
n = k′n− ik′′n, as the degree

s of disorder grows. Red asterisks mark the initial positions with no disorder
(s = 0). Red open circles and blue solid circles show the positions of the
QNMs eigenvalues at s = 0.1 and s = 0.2, respectively.
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Fig. 2. Spatial distribution of the intensity I(j) of QNMs #5 (solid curves)
and #6 (dotted curves) for different values of the disorder strength s. The
dashed black curve corresponds to a homogeneous resonator (s = 0, rL =
−rR = 0.005). The resonance intensity distribution for s = 0.3 is shown by
circles.

points #1-3,5,7,8,10,12,13 in Fig. 1 move towards the real
axis (k′′i decrease) with approximately the same “velocity”
(ordinary QNMs). The rest of the points (strange QNMs) either
shift down substantially more slowly (#0,6,9) or, even more
surprisingly, move away from the real axis (points 4 and 11).
The latest modes are highly unusual because disorder makes
them more leaky. This is quite the opposite to the hitherto
observed and well understood increase of the lifetime of the
eigenstates due to multiple scattering.

The difference between the ordinary and strange QNMs goes
beyond the evolution of the eigenvalues and manifests itself
also in the the spatial distribution of the QNM intensity inside
the system. The spatial distributions along the system of the
intensities I5,j and I6,j of QNMs #5 and 6 are presented
in Fig 2, for different values of s. Note that the difference
between the imaginary parts k′′ of the eigenvectors 5 and 6
increases as s increases (see Fig. 1). Despite the fact that
the initial (s = 0) distributions are identical, even small
disorder (s = 0.05) deforms the distributions I5,j and I6,j
in very different ways. The distribution I5,j |s=0.05 is similar
to I5,j |s=0, but has a much less pronounced minimum. By
analogy with a homogeneous resonator, this can be interpreted
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Fig. 3. Dependencies kres(s) (thick blue solid circles) and k′(s) (thin open
red circles). QNMs are numbered as in Fig. 2. It is seen that for ordinary
QNMs, kres(s) and k′(s) practically coincide, whereas there are no resonances
associated with strange QNMs (#0,4,6,9,11).

as the growth of the effective reflection coefficients rL and rR,
which agrees well with the statement that the wave lifetime
increases when disorder becomes stronger. For larger s, I5,j
tends to manifest the behaviour typical for QNM in the
localized regime. In contrast, the intensity evolution of QNM
#6 is similar to that in the homogeneous resonator, whose
right wall becomes more transparent. QNMs #4 and 11 also
demonstrate the same behaviour, but the effective transparency
of one of the “walls” increases much faster when the degree
of disorder s grows.

We also consider the propagation of a monochromatic wave
through the same system. When s = 0, the number of
resonances Nres is equal to the number of QNMs, Nmod, and
all k(res)n coincide with the real parts k′n of QNMs. When
disorder is introduced, s 6= 0, each k(res)n remains close to the
k′n of the corresponding ordinary QNM: k(res)n (s) ' k′n(s).
The spatial intensity distributions of QNM #5 and of the
corresponding TR are also similar, up to small details (see
Fig. 2).

However, the transmission resonances whose frequencies at
s = 0 are equal to the real parts of the eigenvalues of the
strange QNMs, disappear when the mean value of the reflection
coefficients s 〈ri〉 becomes of the order of rL,R. Figure 3
demonstrates this behavior.

Thus, any TR has its partner among QNMs, but the reverse
is not true: there are strange QNMs that are not associated with
any maxima in the transmission, as it is shown in Fig. 4, and
therefore do not have co-partners between resonances. In other
words, in a given wave number interval ∆k, the statistically-
averaged number of TRs, Nres, is smaller than the statistically-
averaged number of QNMs, Nmod = ∆kL/π, and does not
depend on the degree of disorder. This fact was noticed in the
numerical calculations in [16].

Surprisingly, when s → 0, the ratio Nres/Nmod is a
universal constant

√
2/5, independent of the type of disorder,

and remains practically independent on the degree of disorder
and the length L of the system in a rather broad range of these
parameters.
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Fig. 4. Transmission spectrum T (k) at s = 0.15. The black dashed (red
solid) vertical lines indicate the k′n values of ordinary (strange) QNMs.
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Fig. 5. Normalized ratio
√

5/2Nres/Nmod versus the degree of disorder s
for systems of various lengths L = Nd0 (N is the number of layers).

Figure 5 shows the ratio Nres/Nmod as a function of s,
statistically averaged over 104 random realizations and nor-
malized by

√
2/5, for various lengths L in the case rL,R = 0.

It is important to note that the localization length (measured
in numbers of layers) Nloc ∝ s−2, and this is less than 20 for
s = 0.3. This means that Nres/Nmod '

√
2/5 even when the

system dimension exceeds considerably the localization length.
Figure 3 shows that the difference betweens Nres and Nmod

appears when s is very small so that Nloc � N , and remains
practically unchanged even when s is rather large so that
Nloc � N . This means that the origin of this phenomenon
is not specifically related to localization and can be studied
when s is arbitrarily small.

To calculate the average number of TRs in the limit s� 1,
we use the single-scattering approximation and write the total
reflection coefficient r(k) of the whole system as:

r(k) = ΣN
n=1rne

2ikxn , (3)

where xn is the coordinate of the n-th scatterer. The values
kmax, where the transmission coefficient, T (k) = 1− |r(k)|2,
has local maxima, are defined as the zeros of the function
f(k) ≡ d|r(k)|2/dk = 2Re [r(k)dr∗(k)/dk]:

f(kmax) = 4ImΣN
n=1ΣN

m=1rnrmxme
2ikmax(xn−xm) = 0. (4)

Assuming first that δdi = 0, then f(k) becomes

f(k) ∝ ΣN
l=1 sin (2kld0)

{
ΣN−l

n=1rn+lrnl

+ΣN
n=lrn−lrnl

}
≡ ΣN

l=1 sin (2kld0) al. (5)



Eq. (5) is the trigonometric sum ΣN
l=1al sin (νlk) with “fre-

quencies” νl = 2ld0 and random coefficients al. The statistics
of the zeroes of random polynomials have been studied in [18],
where it is shown that the statistically-averaged number of real
roots Nroot of the sum of this type at a certain interval ∆k is

Nroot =
∆k

π

√
Σν2l σ

2
l

Σσ2
l

, (6)

where σ2
l = Var(al) is the variance of the coefficients aL =

ΣN−l
n=1rn+lrnl + ΣN

n=lrn−lrnl. When N � 1,

Var(al) ' 2(N − l)l2σ4
0 , (7)

where σ2
0 = Var(r). The sums in Eq. (6) can be calculated

using Eq. (7), which yields [20]:

Nroot =
2∆kNd0

π

√
2

5
= 2

∆kL

π

√
2

5
, (8)

where L = Nd0. Since the number of minima of the reflection
coefficient is equal to the number of TRs, Nres = Nroot/2,
and the number Nmod of QNMs in the same interval ∆k is
Nres = ∆kL/π, from Eq. 8 it follows that

Nres/Nmod =
√

2/5 (9)

This analytically-calculated relation agrees perfectly with the
results of numerical calculations performed without assuming
any periodicity of the scatterers. To calculate this ratio for more
general situations, when the distances between the scatterers
are also random (δdi 6= 0), the frequencies ν = 2ldd in Eq. (5)
should be replaced by ν = 2|xm − xm±l|. Since the main
contribution to the sums in Eq. (6) is given by the terms with
large l ∼ N , the mean value of |xm−xm±l| can be replaced by
ld0, in the case of a homogeneous distribution of the distances
dn along the system. This ultimately leads to the same result
Eq. (9).

In summary, it is well known that there is a one-to-one
correspondence between the QNMs of a regular open system
and its transmission resonances: each QNM is unambiguously
associated with a TR, and vice versa. In this paper, we show
that in 1D random structures, this reciprocity is broken: any
weak disorder mutates part of the eigenstates so that the
corresponding resonances in the transmission disappear and
the density of TR becomes smaller than the total density of
states. It is significant that while the strange modes do not
show up in the amplitude of the transmission coefficient, in
the phase of the transmitted field they manifest themselves
in just the same way as the ordinary modes do. When the
disorder is weak (but strong enough to localize the ordinary
modes), the ratio of the number of TRs to the total number
of QNMs in a frequency interval ∆ω →∞ is independent of
the type of disorder and anomalously weakly deviates from a
universal constant,

√
2/5, when the strength of disorder and

the length of the random sample increase. If the strength s
of disorder grows, ultimately all strange quasimodes become
ordinary. This means that in 1D random systems there exists

an intermediate, so far unknown regime, at which in any finite-
frequency interval, only a part of the quasimodes are localized
and provide resonant transmission.

ACKNOWLEDGMENT

We gratefully acknowledge stimulating discussion with K.
Bliokh. We specially thank M. Dennis who drew our attention
to the paper [18].

This research is partially supported by the RIKEN iTHES
Project, MURI Center for Dynamic Magneto-Optics, and a
Grant-in-Aid for Scientific Research (S).

REFERENCES

[1] F. Cakoni, H. Haddar (Editors), Inverse Problems vol. 29, Topical Issue,
Oct. 2013.

[2] E.S.C. Ching, P.T. Leung, A. Maassen van den Brink, W.M. Suen, S.S.
Tong, and K. Young, “Quasinormal-mode expansion for waves in open
systems”, Rev. Mod. Phys., vol. 70, pp. 1545-1554, Oct. 1998.

[3] J. Wang and A. Genack, “Transport through modes in random media”,
Nature, vol. 471, pp. 345-348, Oct. 2011.

[4] N.Hatano and G. Ordonez, “Time-reversal symmetric resolution of unity
without background integrals in open quantum systems ”, J. Math. Phys.,
vol. 55, pp. 122106(1-40), Dec. 2014.

[5] Wonjun Choi, Q-Han Park, and Wonshik Choi, “Perfect transmission
through Anderson localized systems mediated by a cluster of localized
modes”, Opt. Exp., vol. 20, pp. 20721-20729, Aug. 2012.

[6] C. Sauvan, J.P. Hugonin, I.S. Maksymov, and P. Lalanne, “Theory of
the Spontaneous Optical Emission of Nanosize Photonic and Plasmon
Resonators”, Phys. Rev. Lett., vol. 110, pp. 237401(1-5), June 2013.

[7] C. Vanneste and P. Sebbah, “Complexity of two-dimensional quasimodes
at the transition from weak scattering to Anderson localization”, Phys.
Rev. A vol. 79, pp. 041802(R) (1-4), Apr. 2009.

[8] F.A. Pinheiro, M. Rusek, A. Orlowski, and B. van Tiggelen, “Probing
Anderson localization of light via decay rate statistics”, Phys. Rev. E, vol.
69, pp. 026605(1-4), Feb. 2004.

[9] P. Sebbah, B. Hu, J. Klosner, and A. Genack, “Extended Quasimodes
within Nominally Localized Random Waveguides”, Phys. Rev. Lett., vol.
96, pp. 183902(1-4) May 2006.

[10] O. Dorokhov, “Localization and transmission coefficient for two coupled
metal chains with disorder”, Solid State Com., vol. 44, pp. 915-919, Nov.
1982.

[11] X. Cheng, C. Tian, and A. Genack, “Transmission eigenvalues in random
media with surface reflection”, Phys. Rev. B, vol. 88, pp. 094202(1-7),
Sept. 2013.

[12] Z. Shi, M. Davy, J. Wang, and A. Genack, “Focusing through random
media in space and time: a transmission matrix approach”, Opt. Lett., vol.
38, pp. 2714-2716, July 2013.

[13] K. Bliokh, Y. Bliokh, V. Freilikher, S. Savel’ev, and Franko Nori,
“Unusual resonators: Plasmonics, metamaterials, and random media”, Rev.
Mod. Phys., vol. 80, pp. 1201-1213, Oct. 2008.

[14] K. Bliokh, Y. Bliokh, V. Freilikher, and Franko Nori, “Anderson Local-
ization of Light in Layered Dielectric Structures”, in Optical properties of
photonic structures: interplay of order and disorder, ed. by. M. Limonov
and R. De La Rue, (CRC Press) p.57 - 86 (2012).

[15] A. Goetschy and A. Stone, “Filtering Random Matrices: The Effect of
Incomplete Channel Control in Multiple Scattering”, Phys. Rev. Lett., vol.
111, pp. 063901(1-5), Aug. 2013.

[16] Y. Bliokh, E. Chaikina, N. Lizárraga, E. Mendez, V. Freilikher, and
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