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Version 0:
Reviewer comments:
Reviewer #1

(Remarks to the Author)

The manuscript presents a theoretical investigation into the interplay of nonlinearity and non-Hermiticity in topological
systems, focusing on achieving fully delocalized and reconfigurable topological modes (TMs). The results are interesting,
with implications for designing compact and reconfigurable topological devices. The manuscript is generally well-structured.
However, before the manuscript can be considered for publication, | recommend the authors address the following points:

1. The spectral localizer used in this work follows a real-space approach extended to non-Hermitian systems. However, prior
works adopt slightly different forms. The authors should clearly compare and clarify the distinctions between the spectral
localizer employed in this work and those used in Refs. [69] and [71].

2. Equation (9) appears to have an error in the definition of the similarity transformation operator S. The second term may not
be a direct product. Please revise and clarify.

3. The authors adopt an intensity-dependent Kerr-type nonlinearity that modifies the intercell coupling coefficients. While this
is an interesting and powerful theoretical model, it is important to address whether such coupling-dependent nonlinearity can
be realized in experiments. Can the authors provide a realistic implementation scheme, where nonlinear modulation of the
coupling strength (rather than the on-site potential) is feasible?

4. In Fig. 5(a), the on-site loss terms for different lattice sites are not clearly distinguished. For example, it is difficult to
visually identify the sites with differing ka and kb. | suggest the authors improve the graphical presentation by using different
arrow styles, marker sizes.

5. In the 2D stacked model, the stacking appears to preserve trivial topology along y. It would strengthen the paper to briefly
discuss whether it is possible to engineer a similar SSH-type configuration along the y-direction and whether extended TMs
with nontrivial topology in both directions can be realized. This may provide new insights into higher-dimensional
generalizations.

In conclusion, this is a promising work that significantly contributes to the study of nonlinear and non-Hermitian topological
systems. | recommend acceptance after revision, provided the authors give satisfactory responses to the points above.

Reviewer #2

(Remarks to the Author)

In their manuscript “Versatile Control of Nonlinear Topological States in Non-Hermitian Systems,” Cai et al present a
theoretical and numerical analysis of the interplay between non-Hermitian behaviors that yield the skin effect, localized
Hermitian non-linearities, and material topology in a 1D system. They show that it's possible to develop robust systems and
input intensities with completely delocalized nonlinear modes, as well as modes whose spatial profiles can be tailored to
specific applications. Moreover, as these effects are the result of nonlinearities, they can be dynamically tailored after a
device is fabricated. A key strength of this study is its use of the spectral localizer framework, which allows the authors to
rigorously demonstrate that the modes they find are, in fact, topological, and can be connected to a provably integer-valued
invariant. Overall, | believe that a suitably revised version of this manuscript could be publishable in Comm Phys.

First, there are a pair of papers by Fulga and co-authors that | believe are highly relevant to the authors’ study, as these prior
works consider, both theoretically and experimentally the application of the spectral localizer framework to systems
exhibiting the non-Hermitian skin effect.



In particular, see

--H.Liuand . C. Fulga, Phys. Rev. B 108, 035107 (2023).

-- K. Ochkan, R. Chaturvedi, V. Kénye, L. Veyrat, R. Giraud, D. Mailly, A. Cavanna, U. Gennser, E. M. Hankiewicz, B.
Biichner, J. van den Brink, J. Dufouleur, and I. C. Fulga, Nat. Phys. 20, 395 (2024).

--N. Chadha, A. G. Moghaddam, J. van den Brink, and C. Fulga, Phys. Rev. B 109, 035425 (2024).

On line 232, the authors state that nonlinear effects are inherently local. | think this is overly broad. This is generally true in
photonics, but I'm not sure this is true in all coupled spin systems, for example. (And, there are even some photonic systems
that can emulate such non-local interactions, such as those systems mimicking Ising models.)

On line 275, the authors discuss how the topological zero modes they find are robust against disorder. | would urge the
authors to be a bit more specific about exactly what is robust. In Fig. 4g, the index change at x=60 is robust because the
local gap mu is non-zero and large on both sides of the index shift. In Fig. 4i, the index change near x=1 is similarly
protected, due to the bump in mu for slightly larger x. For Fig. 4h, the situation is, | think, more subtle — you know that the
index has to shift somewhere in the range of x \in [3,57], but where it shifts isn’t protected. But, the entire range of \mu ~ 0
corresponds to a single delocalized state that is still protected from moving into the x > 60 region of the system. All of this
need to be clarified — a single, simple remark about topological protection | don’t believe does justice to these varied
phenomena.

On lines 317-319, the authors state that their method enables the creation of arbitrary extended waveforms. But, this method
requires significant overhead in terms of needing both nonlinearities and non-Hermiticity. It seems like one could create a
similar arbitrary extended waveform by simply adding on-site perturbations to a lattice until a single state had the desired
shape. This would require similar lattice tuning. The authors should discuss the advantages of their proposed method over
this naive solution.

On lines 400-404, | do not find this contrast to be obvious. E.g., Figs. 6e3 and 6e4 look very similar to me. | do believe an
analysis of a 2D system is important for the manuscript, but I'm not sure | yet see the value in the current 2D system the
authors are studying.

Version 1:

Reviewer comments:

Reviewer #1

(Remarks to the Author)

The authors have addressed all my comments point by point, and | am satisfied with their responses. | recommend
acceptance.

Reviewer #2

(Remarks to the Author)

| greatly appreciate the authors' detailed responses to my questions and comments. Overall, | believe this manuscript can
proceed to publication at Comm Phys.

But, there is one minor correction I'd encourage the authors to make: In Eq. 5, the equality condition corresponds to a
“perfect” perturbation driving the smallest singular value of L exactly to 0. Thus, exactly at this point, the system's local

topological invariant (eg Eq. 4) is undefined, and so it's not clear if any zero mode is topological under such a perturbation. |
would strongly recommend that the authors alter Eq. 5 to be strictly less than.



Open Access This Peer Review File is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were
made.

In cases where reviewers are anonymous, credit should be given to '"Anonymous Referee' and the source.

The images or other third party material in this Peer Review File are included in the article’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons
license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

To view a copy of this license, visit hitps:/creativecommons.org/licenses/by/4.0/



List of main changes

(The main changes in the additional manuscript are highlighted in red font solely for the reviewer’s

convenience)

1.  We have revised the equation (9) in the original manuscript. Now, it is equation (12) in the

revised manuscript.

2. The discussion of a possible experimental setup has been added to the revised Supplementary

Information.

3. We have revised the 2D model in the original manuscript, and the discussion in the section
Delocalization of TZMs in a 2D non-Hermitian nonlinear lattice has been completely rewritten

in the revised manuscript.

4. More details about robustness, including equation (5), are added in the main text in the

revised manuscript.

5. Some references are added. Some equations are shown explicitly.



Response to the Reviewer #1

We sincerely thank Reviewer #1 for the thorough and constructive review, as well
as for the positive evaluation of our work and the recommendation for acceptance
after revision. We greatly appreciate the insightful comments, which have helped us
improve the clarity and quality of the manuscript. We have carefully addressed all
points raised, and our detailed responses are provided below.

Comment 1:

The manuscript presents a theoretical investigation into the interplay of nonlinearity and non-
Hermiticity in topological systems, focusing on achieving fully delocalized and reconfigurable
topological modes (TMs). The results are interesting, with implications for designing compact
and reconfigurable topological devices. The manuscript is generally well-structured.

Our reply :

We sincerely thank the Reviewer for their thoughtful and encouraging feedback. We greatly
appreciate the recognition that “the results are interesting, with implications for designing compact

and reconfigurable topological devices,” and that “the manuscript is generally well-structured.”

In response to the Reviewer’s comments, we have carefully revised the manuscript to enhance the
clarity of the underlying physical concepts and improve the overall presentation. The key revisions
are clearly marked in red in the updated version.

Comment 2:

The spectral localizer used in this work follows a real-space approach extended to non-Hermitian
systems. However, prior works adopt slightly different forms. The authors should clearly compare
and clarify the distinctions between the spectral localizer employed in this work and those used in
Refs. [69] and [71].

Our reply :

We thank the Reviewer for raising this important point regarding the spectral localizer. The
spectral localizer offers a key advantage in that it incorporates the system’s spatial configuration,
enabling a real-space description of material topology. This makes it particularly suitable for
capturing the local nature of nonlinear effects. The applied spectral localizer is the same as that in
Ref. [71], which was used for a 1D Hermitian system. In contrast, the formula in Ref. [69] was
applied to a 2D system.

The detailed demonstration is as follows:
(1). In our work, to apply the spectral localizer to a one-dimensional (1D) non-Hermitian
system, we first map the non-Hermitian Hamiltonian # to a Hermitian one 7—25 via a similarity



transformation S, such that Hg = SHS !, with corresponding eigenvectors related by |1E> =9 [1).
This allows us to leverage the information from the Hermitian Hamiltonian Hg and its eigenmodes
|QZ> to characterize the topological properties of the non-Hermitian nonlinear system.

(2). The nonlinear spectral localizer is a composite operator that incorporates the system’s
Hamiltonian Hs accounting for its current occupations |w> and position operators X, using a
nontrivial Clifford representation. The 1D nonlinear spectral localizer is explicitly written as

ng(x,@)(f(, Hg) =

0 n(X — 1) —i(Hs — @I)) (1)

(n(ff —aI) +i(Hs — @T) 0

which is consistent with the 1D formulation used in Reference [71], but differs from the
2D formulation presented in Reference [69], owing to the dimensional and symmetry distinctions
between the models.

(3). Furthermore, when the system respects chiral symmetry, i.e., HIl = —THs (We have
corrected the typo in the Methods section), the spectral localizer LC(X,7:[S) in Eq. (R1) can be

further written in a reduced form as
ECE({E,(D) (X7 7:[5) = U(X - J}I)ﬁ + 7‘13 - Z@ﬁ, (R‘2>
which matches the form employed in Equation (1) in Reference [71].

We have revised the main text accordingly and now present this chiral-symmetric form in Eq. (R2)
as Equation (3) in the revised manuscript, to clarify the connection and eliminate any potential

confusion.

Comment 3:

Equation (9) appears to have an error in the definition of the similarity transformation operator
S. The second term may not be a direct product. Please revise and clarify.

Our reply :

We thank the reviewer for pointing it out. We apologize for the mistakes and typos in the definition
of the similarity transformation operator S , and we have corrected this confusion according to your
suggestion in the revised manuscript. Below, we provide the revised version of Equation (9) in the

original manuscript (Now, it is Equation (12) in the revised manuscript).

The similarity transformation operator S should be written as

A | DY Oan
S = + , R3
( OLZN) ( RLQN) (R3)

where I is identity matrix, and Ry _on is diagonal matrix, with dimensions L — 2N, whose diagonal

L—1 L—1 L*l
elements are {1,7,r, 7% -+ 772 N7l p7 =N o =N
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FIG. R1. (a) Experimental circuit realization of nonreciprocal hopping between two neighbor nodes via
the negative impedance converters through current inversion (INIC), which consists of capacitor, resistor
and operational amplifier. (b) Experimental circuit realization of nonlinear hopping, which consists of

two shut LC resonators, a linear capacitor C, and a nonlinear capacitor Cnr..

Comment 4:

The authors adopt an intensity-dependent Kerr-type nonlinearity that modifies the intercell
coupling coefficients. While this is an interesting and powerful theoretical model, it is important
to address whether such coupling-dependent nonlinearity can be realized in experiments. Can the
authors provide a realistic implementation scheme, where nonlinear modulation of the coupling

strength (rather than the on-site potential) is feasible?

Our reply :

We sincerely thank the Reviewer for this insightful comment. We fully agree that addressing
the experimental feasibility of coupling-dependent nonlinearity is essential for connecting our
theoretical developments with physical implementation.

In the revised supplementary information, we added the possible experimental setup, as shown

below:

The non-Hermitian nonlinear lattices considered in this work can be feasibly implemented
across a variety of experimental platforms, including photonic systems [PhysRevA.100.063830SM,
Sone2025SM] and electronic circuits [Hadad2018SM, arXiv:2403.10590SM, arXiv:2505.09179SM].
Here, we focus on an electronic circuit platform that allows for both tunable nonreciprocal
hopping [Helbig2020SM, Guo2024SM, 2025SM| and controllable nonlinearity [Hadad2018SM,
arXiv:2403.10590SM, arXiv:2505.09179SM]. In particular, the key ingredients of our model, i.e.,
nonreciprocal hopping and amplitude-dependent nonlinear hopping, can be effectively realized
within this platform. In the following, we provide a detailed description of the circuit
implementation of each hopping mechanism.

(i) The nonreciprocal hopping between neighboring nodes is implemented using negative impedance
converter (INIC) circuits, which introduce direction-dependent current inversion [Helbig2020SM,
2025SM], as illustrated in Fig. R1(a). In this configuration, each pair of adjacent nodes is connected
via a capacitor C; and an INIC. The INIC efficiently introduces an asymmetric capacitive coupling,
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exhibiting an equivalent capacitance of £Cy depending on the direction of signal flow.

(ii) The nonlinear hopping between neighboring nodes is realized by utilizing an nonlinear capacitor
[Hadad2018SM], as shown in Fig. R1(b). Specifically, we consider an interaction between two
resonators coupled via a linear capacitor Cp, and an nonlinear capacitor Cyr,. Following the

derivation [Hadad2018SM], the dynamics of the system can be modeled using coupled-mode

equations:
-day
—J— = woar + [k + v([Ve, = Veu|)]az, (R4)
~dag
i = ot + [k (Ve — Veuar, (R5)

where wy is the resonance frequency, and the couplings consist of a linear term x = Cp,/(Cy + Cs)
and a nonlinear term v(V) = Cxu(|Ve, — Vioo|)/(Cy + C3), which depends on the voltage
difference across the nonlinear capacitor. This structure allows the coupling strength to be
modulated dynamically by the local voltage amplitude, thus realizing an effective nonlinear hopping
mechanism. Note that different forms of amplitude-dependent nonlinear coupling between two
nodes have also been realized in circuit platforms [arXiv:2403.10590SM,arXiv:2505.09179SM]. In
addition, amplitude-dependent coupling can be implemented in optical systems using nonlinear
fibers [PhysRevA.100.063830SM,Sone2025SM]|, where the coupling strength varies with the light
intensity.

[PhysRevA.100.063830SM] A. Bisianov, M. Wimmer, U. Peschel, and O. A. Egorov, “Stability of
topologically protected edge states in nonlinear fiber loops,” Phys. Rev. A 100, 063830 (2019).

[Sone2025SM] K. Sone, M. Ezawa, Z. Gong, T. Sawada, N. Yoshioka, and T. Sagawa, “Transition
from the topological to the chaotic in the nonlinear Su-Schrieffer-Heeger model,” Nat. Commun.

16, 422 (2025).

[Hadad2018SM] Y. Hadad, J. C. Soric, A. B. Khanikaev, and A. Alu, “Self-induced topological
protection in nonlinear circuit arrays,” Nat. Electron. 1, 178 (2018).

[arXiv:2403.10590SM| M. Padlewski H. Lissek P. Delplace R. Fleury X. Guo, L. Jezequel, “Practical
realization of chiral nonlinearity for strong topological protection,” arXiv:2403.10590 (2024).

[arXiv:2505.09179SM] J. Wu, R.-C. Shen, L. Zhang, F. Chen, B. Wang, H. Chen, Y. Yang,
and H. Xue, “Nonlinearity-induced reversal of electromagnetic non-Hermitian skin effect,”
arXiv:2505.09179 (2024).

[Helbig2020SM]| T. Helbig, T. Hofmann, S. Imhof, M. Abdelghany, T. Kiessling, L. W. Molenkamp,
C. H. Lee, A. Szameit, M. Greiter, and R. Thomale, “Generalized bulk—boundary correspondence
in non-Hermitian topolectrical circuits,” Nat. Phys. 16, 74 (2020).

[Guo2024SM] C.-X. Guo, L. Su, Y. Wang, L. Li, J.e Wang, X. Ruan, Y. Du, D. Zheng, S. Chen,
and H. Hu, “Scale-tailored localization and its observation in non-Hermitian electrical circuits,”
Nat. Commun. 15, 9120 (2024).



[2025SM] T. Liu W. Ju H. Wang, J. Liu, “Observation of impurity-induced scale-free localization
in a disordered non-Hermitian electrical circuit,” Front. Phys. 20, 14203 (2025).

Comment 5:

In Fig. 5(a), the on-site loss terms for different lattice sites are not clearly distinguished. For
example, it is difficult to visually identify the sites with differing s, and k. I suggest the authors
improve the graphical presentation by using different arrow styles, marker sizes.

Our reply :

We thank the Reviewer for this helpful suggestion. In the revised manuscript, we have improved
the graphical presentation in Fig. 5(a) by using arrows of different lengths and colors to more
clearly distinguish the on-site loss terms: shorter blue arrows represent k,, while longer red arrows

represent ;. We hope that this revision clarifies the figure and enhances its overall readability.

Comment 6:

In the 2D stacked model, the stacking appears to preserve trivial topology along y. It would
strengthen the paper to briefly discuss whether it is possible to engineer a similar SSH-type
configuration along the y-direction and whether extended TMs with nontrivial topology in both
directions can be realized. This may provide new insights into higher-dimensional generalizations.

Our reply :

We appreciate the insightful comment and suggestion regarding the 2D model. Indeed, in the
original 2D model, the stacking of 1D topological chains primarily results in trivial topology along
the y axis. Interestingly, in an SSH-type configuration along the y direction, we find that extended
TZMs with nontrivial topology can emerge along both directions. We provide further discussion
on this point below.

We can extend the 1D non-Hermitian nonlinear model to two dimensions (2D) by stacking 1D
topological interface chains along the y direction, as shown in Fig. R2(a). The blue dashed box
marks a unit cell containing four sublattices, with odd and even indices j distinguishing sites along
y. Hopping amplitudes along the y direction are both nonlinear and site-dependent, where dashed

purple lines indicate hopping terms with negative signs. The nonlinear intracell coupling is given
by

wig = o+ (|migl* + [mijl?), J € odd, (R6)
where 7; ; € {a;;,b; ;} represents the state amplitudes of the two sites linked by the corresponding

nonlinear coupling, and the intercell coupling, characterized by strength v, is linear.

Along the z direction, for each chain, the intercell couplings, ¢; ; and J; ;, are nonlinear and given

2,7
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FIG. R2. Delocalization of TZMs in a 2D non-Hermitian nonlinear lattice. (a) Schematic
of a 2D non-Hermitian nonlinear interface model, formed by stacking 1D topological interface chains
with staggered nonlinear hopping along the y direction. Each unit cell, indicated by a blue dashed
box, contains four sublatties. The nonlinear intracell hopping, along the y direction, is given by u;; =

uo +y1(|m5,5
by the corresponding nonlinear coupling. Dashed purple lines indicate hopping terms with negative signs

2 |nij1l?) (5 € odd), where n; ; € {a; ;,b; ;} are the state amplitudes of the two sites linked

along the y direction. (b) w versus I for 1 = 0, where red dots mark TZMs. The corresponding spatial
distributions |, ,| (z and y labels lattice site along the x and y directions) of the TZMs for different I
are shown in (cl-c3). (d) |1y | for 71 = 0.01, where the TZMs exhibit fully extended spatial distributions
at I = 50%. Other parameters used are J = 1.5, fi,j = 5\” =15, a=p8=005 7=t =25 N =6,
0=12up=0.2,v9=04, L, =21 and L, = 21.

by

tij = tij+alla) + |bioi ), (R7)

Nij = Nij + Bllais|* + [biig])- (R8)

In the absence of both nonlinearity and non-Hermiticity, the system reduces to an interface
model based on the Benalcazar-Bernevig-Hughes (BBH) lattice [Benalcazar2017]. The BBH model
exhibits a higher-order topological phase characterized by the emergence of topological zero modes
(TZMs) localized at the corners. In the linear Hermitian case, the corresponding 2D interface
model supports TZMs localized at the ends of the interface.

When the nonlinearity along the z direction is introduced with v; = 0, the 2D non-Hermitian
nonlinear interface model supports TZMs, as indicated by the red dots in Fig. R2(b). Owing to
the strong NHSE, these TZMs are localized from the interface toward the right-bottom corner for
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weak nonlinearity at I = 5? [see Fig. R2(c1)]. As the nonlinear intensity increases to I = 202,
the TZMs become more extended and predominantly occupy the bottom edge [see Fig. R2(c2)].
When the nonlinearity is further strengthened to I = 502, the modes do not spread across the
entire lattice but instead become localized again [see Fig. R2(c3)]. In contrast, when nonlinearity
is also introduced along the y direction with 7, = 0.01, the TZMs extend over the entire 2D lattice
at I = 50% [see Fig. R2(d)]. Notably, this extended phase emerges without the need to satisfy the
constraint § = 9, = 5\13 — J. These results demonstrate how the interplay between nonlinearity
and non-Hermiticity enables flexible control of topological mode localization in 2D lattices.

The above model and discussion have replaced the original model in the revised manuscript.

[Benalcazar2017] W. A. Benalcazar, B. A. Bernevig and T. L. Hughes, Quantized electric multipole
insulators, Science 357, 61 (2017).

Comment 7:

In conclusion, this is a promising work that significantly contributes to the study of nonlinear and
non-Hermitian topological systems. I recommend acceptance after revision, provided the authors
give satisfactory responses to the points above.

Our reply :

We thank the Reviewer for the positive evaluation and for recommending our paper for publication

after revision.



Response to the Reviewer #2

We sincerely thank Reviewer #2 for the detailed and constructive review, as well as
for the positive evaluation of our work. We appreciate the Reviewer’s comments and
their belief that a suitably revised version of the manuscript could be publishable
in Communications Physics. We have carefully considered all the feedback and have
addressed each point thoroughly. Our detailed responses are provided below.

Comment 1:

In their manuscript “Versatile Control of Nonlinear Topological States in Non-Hermitian Systems,”
Cai et al present a theoretical and numerical analysis of the interplay between non-Hermitian
behaviors that yield the skin effect, localized Hermitian non-linearities, and material topology in
a 1D system. They show that it’s possible to develop robust systems and input intensities with
completely delocalized nonlinear modes, as well as modes whose spatial profiles can be tailored
to specific applications. Moreover, as these effects are the result of nonlinearities, they can be
dynamically tailored after a device is fabricated. A key strength of this study is its use of the
spectral localizer framework, which allows the authors to rigorously demonstrate that the modes
they find are, in fact, topological, and can be connected to a provably integer-valued invariant.
Overall, I believe that a suitably revised version of this manuscript could be publishable in Comm
Phys.

Our reply :

We sincerely thank the Reviewer for their thoughtful and encouraging feedback, as well as for

recommending publication after suitable revision.

In response to the Reviewer’s comments, we have carefully revised the manuscript to improve the
clarity of the underlying physical concepts and enhance the overall presentation. The key changes
are clearly highlighted in red in the updated version.

Comment 2:

First, there are a pair of papers by Fulga and co-authors that I believe are highly relevant to the
authors’ study, as these prior works consider, both theoretically and experimentally the application

of the spectral localizer framework to systems exhibiting the non-Hermitian skin effect.

In particular, see

— H. Liu and I. C. Fulga, Phys. Rev. B 108, 035107 (2023).

— K. Ochkan, R. Chaturvedi, V. Kénye, L. Veyrat, R. Giraud, D. Mailly, A. Cavanna, U. Gennser,
E. M. Hankiewicz, B. Biichner, J. van den Brink, J. Dufouleur, and I. C. Fulga, Nat. Phys. 20,
395 (2024).



— N. Chadha, A. G. Moghaddam, J. van den Brink, and C. Fulga, Phys. Rev. B 109, 035425
(2024).

Our reply :

We thank the Reviewer for bringing the works by Fulga and co-authors to our attention. These
papers are indeed highly relevant, as they explore both theoretical and experimental applications
of the spectral localizer framework to systems exhibiting the non-Hermitian skin effect. We have
carefully reviewed these references and now cite them appropriately in the revised manuscript.

Comment 3:

On line 232, the authors state that nonlinear effects are inherently local. I think this is overly broad.
This is generally true in photonics, but I'm not sure this is true in all coupled spin systems, for
example. (And, there are even some photonic systems that can emulate such non-local interactions,

such as those systems mimicking Ising models.)

Our reply :

We thank the Reviewer for pointing this out. We apologize for the unclear wording in our original
statement. We did not mean to suggest that all nonlinear effects are local. Rather, we intended to
convey that the nonlinear effects in our model are local because the nonlinear hopping is restricted
to nearest neighbors. This locality breaks translational symmetry, which in turn invalidates the
general definition of topological invariants as used in linear systems. To clarify this point, we have
revised the statement to: “nonlinear effects in our model are inherently local.”

Comment 4:

On line 275, the authors discuss how the topological zero modes they find are robust against
disorder. I would urge the authors to be a bit more specific about exactly what is robust. In Fig.
4g. the index change at x = 60 is robust because the local gap p is non-zero and large on both
sides of the index shift. In Fig. 4i, the index change near x = 1 is similarly protected, due to the
bump in mu for slightly larger x. For Fig. 4h, the situation is, I think, more subtle — you know
that the index has to shift somewhere in the range of x € [3,57], but where it shifts isn’t protected.
But, the entire range of 1 ~ 0 corresponds to a single delocalized state that is still protected from
moving into the x > 60 region of the system. All of this need to be clarified — a single, simple

remark about topological protection I don’t believe does justice to these varied phenomena.

Our reply :

We sincerely thank the Reviewer for this insightful comment. We apologize that our original
description of the robustness of the TZMs, in the main text, was overly simplified, and the
statement is unclear. Let us provide more detailed explanations below.
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(1). About the disorder robustness

The statement that “the TZM is robust against disorder” means that a stable TZM, protected by
the band gap, exists as long as the disorder strength applied to the model remains smaller than the
band gap, even when strong nonlinearity is present. The nonlinearity does not break down the

topological protection of TZMs.

(a) The local band gap is given by the smallest value e = ‘amin(ig)‘ of the spectral localizer at
¢ = (z,w). If pc sufficient close to zero, an approximately localized state exists. Conversely, a
large value indicates that the system dose not support such a state. This framework allows us to
rigorously assess the topological protection of the TZMs. Specifically, the robustness of a TZM
can be guaranteed as long as any perturbation to the system remains below the local band gap.
This condition is expressed by:

|atts )| < e (R9)

where HA?—A[S(W)H is the largest singular value of AHg(W) = Hs(W) — Hg, with Hg(W) =
Hs+ WoHs representing the perturbed nonlinear Hamiltonian with perturbation strength W, and
P = max|ye] is the maximum value of i within the topological region. When this condition is
satisfied, a stable TZM, protected by the band gap, exists as long as the disorder strength applied

to the model remains smaller than the band gap, even when strong nonlinearity is present.

(b) Based on the above discussion, a stable TZM exists as long as the disorder strength applied to
the model remains smaller than the band gap. In Sec. V(B) of SI, we provide details on statement
“the TZM is robust against disorder”. The following is the discussion on robust against disorder
of arbitrarily-designed wavefunction profiles in Sec. V(B) of the SI, as shown below

To demonstrate the robustness of arbitrarily-designed wavefunction profiles for the TZMs across
the entire lattice under the influence of disorder, we introduce random perturbations to the hopping
energies. The hopping energies are modified as t; — £;(1+W,), and S\j — ;\j(l—H/j), where WW; and
V; are independent random variables uniformly distributed over the range [—1//2, W/2|. Here,

a (b)
@,
=0 250
L)(} leURUoLleL
-6k -8
1 60 x 120 1

FIG. R3. Spatial distributions [¢,| of the TZMs for wavefunction profiles with (a) flat, (b) square,
(c) isosceles triangle, and (d) cosine shapes, subject to random disorder applied to the hopping energies
t; — t;(1+W,;) and A; — \j(1+V;). The blue lines indicate the state distributions without perturbation,
while the red circles depict the distributions in the presence of disorder. Other parameters used are
J=156=10,W=02,a=0=0.057=t;=25 N =31 and L =121.
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W quantifies the disorder strength, providing a controlled parameter to evaluate the stability and

resilience of the wavefunction profiles against spatially distributed random disorder.

Figure R3 illustrates the spatial distributions [¢,| of the TZMs for wavefunction profiles with
shapes (a) flat, (b) square, (c) isosceles triangle, and (d) cosine, both in the absence of disorder
(blue lines) and in the presence of disorder (red circles). The disordered state distributions show
negligible deviations from the unperturbed ones, highlighting the remarkable robustness of the
designed TZMs against disorder due to their topological nature.

In the revised manuscript, we have provided additional details, including Eq. (5), on the disorder
robustness, and we now explicitly direct the reader to the more detailed discussion in the

Supplementary Information.

(2). Spectral localizer at different nonlinear intensity in Fig. 4

Figure 4(g), 4(h), and 4(i) represent the local topological invariant C; and the local band gap /i
at different nonlinear intensities, from weak to strong, illustrating the transition of TZMs from
localized to extended states. The topological nature is determined by whether an integer-valued
change of the local topological invariant C; is achieved. As shown in Fig. 4(g), 4(h), and 4(i),
the change of C¢ is indeed 1, indicating that the system remains in the topological regime despite
strong nonlinearity. Consequently, these TZMs are topologically protected and robust against
disorder, meaning that a stable TZM persists as long as the disorder strength remains smaller
than the maximum value of the local band gap .. In addition, if p is sufficiently close to zero, an
approximately localized state exists. Therefore, the regions where the local band gap ¢ is closest
to zero differ for each intensity, signifying the emergence of extended TZMs at strong nonlinearity.
It should be emphasized that topological protection is a global property of the system, rather than
a purely local one. As the nonlinearity increases, the band gap remains open, and the in-gap zero

modes stay topologically protected within our considered parameter regimes.

Comment 5:

On lines 317-319, the authors state that their method enables the creation of arbitrary extended
waveforms. But, this method requires significant overhead in terms of needing both nonlinearities
and non-Hermiticity. It seems like one could create a similar arbitrary extended waveform by
simply adding on-site perturbations to a lattice until a single state had the desired shape. This
would require similar lattice tuning. The authors should discuss the advantages of their proposed

method over this naive solution.

Our reply :
We thank the Reviewer for this comment.

While it is true that on-site perturbations can slightly modify the spatial profiles of lattice
eigenstates, such modifications alone cannot, in general, produce arbitrary extended waveforms
with the precise control and programmability achieved by our method.
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The inherent localization of topological states in Hermitian linear systems (without
nonlinearity and non-Hermiticity) prohibits this from happening: Topological in-gap
states are typically localized at the boundaries or interface and remain robust against weak
symmetry-protected perturbations, without the emergence of extended wavefunctions in the
absence of nonlinearity or non-Hermiticity. Weak perturbations, protected by the topology and
band gap, cannot delocalize these states; they merely shift the energy or slightly modify the
localized profile, while the states remain bound to the boundary or interface. Such perturbations
cannot transform the states into extended bulk-like waveforms. Strong perturbations, on the
other hand, destroy the topological in-gap states altogether. Therefore, it is not possible to
achieve extended wavefunction profiles for topological boundary states by simply adding on-site
perturbations. We emphasize that our focus is on the versatile control of originally localized
topological in-gap states by utilizing nonlinearity and non-Hermiticity. In contrast, controlling an
originally extended and continuum bulk state is relatively trivial.

The unique advantage of our approach arises from the synergistic combination of non-Hermiticity
and nonlinearity. Non-Hermiticity enables a critical transition where TZMs become extended
through the competition between topological edge localization and non-Hermitian skin-mode
localization. However, this extension alone does not allow arbitrary waveform control because
it is tied to the specific conditions at the critical point. Nonlinearity plays a complementary
and essential role by enabling amplitude-dependent, self-consistent shaping of the wavefunction.
Together, these ingredients enable robust, dynamically stable, and fully programmable extended
states of TZMs across the entire lattice—something that cannot be achieved through linear
Hermitian perturbations alone.

Comment 6:

On lines 400-404, I do not find this contrast to be obvious. E.g., Figs. 6e3 and 6e4 look very
similar to me. I do believe an analysis of a 2D system is important for the manuscript, but I'm

not sure I yet see the value in the current 2D system the authors are studying.

Our reply :

We appreciate the insightful comment and suggestion regarding the 2D model. Indeed, in the
original 2D model, the stacking of 1D topological chains primarily results in trivial topology along
the y axis. Interestingly, in an SSH-type configuration along the y direction, we find that extended
TZMs with nontrivial topology can emerge along both directions. We provide further discussion
on this point below.

We can extend the 1D non-Hermitian nonlinear model to two dimensions (2D) by stacking 1D
topological interface chains along the y direction, as shown in Fig. R2(a). The blue dashed box
marks a unit cell containing four sublattices, with odd and even indices j distinguishing sites along
y. Hopping amplitudes along the y direction are both nonlinear and site-dependent, where dashed

purple lines indicate hopping terms with negative signs. The nonlinear intracell coupling is given
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FIG. R4. Delocalization of TZMs in a 2D non-Hermitian nonlinear lattice. (a) Schematic
of a 2D non-Hermitian nonlinear interface model, formed by stacking 1D topological interface chains
with staggered nonlinear hopping along the y direction. Each unit cell, indicated by a blue dashed
box, contains four sublatties. The nonlinear intracell hopping, along the y direction, is given by u;; =

uo +y1(|m5,5
by the corresponding nonlinear coupling. Dashed purple lines indicate hopping terms with negative signs

2 |nij1l?) (5 € odd), where n; ; € {a; ;,b; ;} are the state amplitudes of the two sites linked

along the y direction. (b) w versus I for 1 = 0, where red dots mark TZMs. The corresponding spatial
distributions |, ,| (z and y labels lattice site along the x and y directions) of the TZMs for different I
are shown in (cl-c3). (d) |1y | for 71 = 0.01, where the TZMs exhibit fully extended spatial distributions
at I = 50%. Other parameters used are J = 1.5, fi,j = 5\” =15, a=p8=005 7=t =25 N =6,
0=12up=0.2,v9=04, L, =21 and L, = 21.

by
wig = o +71(|mi ) + [migaal®), J € odd, (R10)

where 7, ; € {a;;,b; ;} represents the state amplitudes of the two sites linked by the corresponding
nonlinear coupling, and the intercell coupling, characterized by strength v, is linear.

Along the z direction, for each chain, the intercell couplings, ¢; ; and J; ;, are nonlinear and given
by

g 2 2
tig = tij +a(lai;|” +[bi-14]7), (R11)

Nij = Nij + Blai | + |bimiy]?). (R12)

In the absence of both nonlinearity and non-Hermiticity, the system reduces to an interface
model based on the Benalcazar-Bernevig-Hughes (BBH) lattice [Benalcazar2017]. The BBH model
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exhibits a higher-order topological phase characterized by the emergence of topological zero modes
(TZMs) localized at the corners. In the linear Hermitian case, the corresponding 2D interface

model supports TZMs localized at the ends of the interface.

When the nonlinearity along the z direction is introduced with v; = 0, the 2D non-Hermitian
nonlinear interface model supports TZMs, as indicated by the red dots in Fig. R4(b). Owing to
the strong NHSE, these TZMs are localized from the interface toward the right-bottom corner for
weak nonlinearity at I = 5? [see Fig. R4(c1)]. As the nonlinear intensity increases to I = 20
the TZMs become more extended and predominantly occupy the bottom edge [see Fig. R4(c2)].
When the nonlinearity is further strengthened to I = 50%, the modes do not spread across the
entire lattice but instead become localized again [see Fig. R4(c3)]. In contrast, when nonlinearity
is also introduced along the y direction with 7, = 0.01, the TZMs extend over the entire 2D lattice
at [ =502 [see Fig. R4(d)]. Notably, this extended phase emerges without the need to satisfy the
constraint ¢ = 0. = 5\” — J. These results demonstrate how the interplay between nonlinearity
and non-Hermiticity enables flexible control of topological mode localization in 2D lattices.

The above model and discussion have replaced the original model in the revised manuscript.

[Benalcazar2017] W. A. Benalcazar, B. A. Bernevig and T. L. Hughes, Quantized electric multipole
insulators, Science 357, 61 (2017).
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1.

List of main changes
We have revised the equation (5) as

Jsm| <
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Response to the Reviewer #1

Comment 1:

The authors have addressed all my comments point by point, and I am satisfied with their
responses. I recommend acceptance.

Our reply :

We sincerely thank the Reviewer for the recommendation.



Response to the Reviewer #2

Comment 1:

I greatly appreciate the authors’ detailed responses to my questions and comments. Overall,
I believe this manuscript can proceed to publication at Comm Phys.

But, there is one minor correction I'd encourage the authors to make: In Eq. 5, the
equality condition corresponds to a “perfect” perturbation driving the smallest singular
value of L exactly to 0. Thus, exactly at this point, the system’s local topological invariant
(eg Eq. 4) is undefined, and so it’s not clear if any zero mode is topological under such a
perturbation. I would strongly recommend that the authors alter Eq. 5 to be strictly less
than.

Our reply :

We sincerely thank the Reviewer for the positive assessment and recommendation for
publication.

Regarding the condition in Eq. 5, we agree with the reviewer’s observation that the
equality corresponds to a “perfect” perturbation, which drives the smallest singular value
of the spectral localizer exactly to zero, thereby rendering the local topological invariant
undefined. Following this suggestion, we have revised Eq. 5 to use an inequality, which more
accurately captures the intended physical interpretation.



