
ARTICLE

Solving quasiparticle band spectra of real solids
using neural-network quantum states
Nobuyuki Yoshioka 1,2✉, Wataru Mizukami 3,4,5 & Franco Nori 1,6

Establishing a predictive ab initio method for solid systems is one of the fundamental goals in

condensed matter physics and computational materials science. The central challenge is how

to encode a highly-complex quantum-many-body wave function compactly. Here, we

demonstrate that artificial neural networks, known for their overwhelming expressibility in the

context of machine learning, are excellent tool for first-principles calculations of extended

periodic materials. We show that the ground-state energies in real solids in one-, two-, and

three-dimensional systems are simulated precisely, reaching their chemical accuracy. The

highlight of our work is that the quasiparticle band spectra, which are both essential and

peculiar to solid-state systems, can be efficiently extracted with a computational technique

designed to exploit the low-lying energy structure from neural networks. This work opens up

a path to elucidate the intriguing and complex many-body phenomena in solid-state systems.
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Artificial neural networks (ANNs) are a class of expressive
mathematical models originally designed to imitate the
high computing power of the human brain. Driven by

the outstanding success over existing data processing methods in
the field of machine intelligence1–3, ANNs have been used in a
wide range of applications, from physical science4–8, medical
diagnosis, to astronomical observations. Remarkable among
numerous factors underlying their performance is their ability to
perform efficient feature extraction from high-dimensional data.

As universal approximators, ANNs have a rich expressive
power, which can also be exemplified by encoding complicated
quantum correlations9. Carleo and Troyer10 showed that ANNs,
employed as a quantum many-body wave-function ansatz, can
solve strongly correlated lattice systems at state-of-the-art level.
Such quantum-state ansatze, often referred to as neural quantum
states (NQS), capture quantum entanglement that even scales
extensively11. The use of such a powerful nonlinear para-
metrization has been keenly investigated in the quantum physics
community: both equilibrium12,13 and out-of-equilibrium14–17

properties, extension of the network structure18–20, and quantum
tomography21–24. Meanwhile, we point out that the application of
ANNs to fermionic systems is much less explored, despite their
practical significance, such as the modeling of real materials and
the experimental realizability in quantum simulators25,26. The
proof of concept for small molecular systems was first presented
by Choo et al.27 which applied the ANNs to solve the many-body
Schrödinger equation governed by the second-quantized Hamil-
tonian for molecular orbits. Few implementations have been
further performed to simulate the electronic structures using
ANNs28–31. Thus, a crucial question remains to be answered: are
ANNs powerful enough to represent the electronic structures of
real solid materials? This is related to one of the fundamental
problems in condensed-matter physics and computational
materials science; namely, establishing a predictive ab initio
method for solids or surfaces. In particular, it must be demon-
strated that the ANNs are capable of investigating the
thermodynamic limit.

We stress that no current first-principles method can take into
account both weak and strong electron correlations compactly
and sufficiently. For instance, it is well known that the accuracy of
the de facto standard method, density functional theory (DFT), is
semi-quantitative and it is very difficult to improve
significantly32,33. Many-body-wave-function-based methodolo-
gies are, in contrast, systematically improvable. Such techniques,
mainly based on coupled-cluster (CC) theory (or many-body
perturbation theory)34, have been successful for the electronic
states of molecules. This has encouraged the application of
quantum chemical methods to solid-state physics35,36. However,
methods such as CC specialize in describing weak electronic
correlations, and only work well for electronic states where the
mean-field approximation is valid.

Methods for dealing with strongly correlated electrons, called
multireference theory, also exists in quantum chemistry37; but
these assume that the number of strongly correlated electrons is
small. Such a condition usually holds in the case of molecules,
because the number of strongly correlated electrons is often
localized and limited. In contrast, there can be a large number of
moderately or strongly correlated electrons in solid-state systems,
owing to their high symmetry and dense structure. Based on its
success in spin systems, it is natural to expect that the NQS have
the potential to compactly describe a variety of electron correla-
tions appearing in first-principles calculations of solids with a
moderate computational cost (See Fig. 1 for a schematic diagram
of the hierarchy of quantum chemical methods38–42).

In this work, we demonstrate that neural-network-based
many-body wave functions can readily simulate the essense of
first-principles calculations for extended periodic materials: the
ground-state and excited-state properties. The second-quantized
fermionic Hamiltonian is transformed into a spin representation,
such that the problematic sign structure of fermions, which
usually imposes severe limits on the numerical accuracy, is
naturally encoded. Employing the variational Monte Carlo
(VMC)-based stochastic optimization, we show that the ther-
modynamic limit of a one-dimensional system can be simulated
within chemical accuracy. For real solids in both two and three
dimensions, the static electronic correlation in the minimal active
space is compactly represented by the NQS. Our work’s main
contribution is that multiple excited states, forming quasiparticle
band spectra, are computed by constructing an effective Hamil-
tonian in the truncated Hilbert space. To the best of our
knowledge we offer the first demonstration that the NQS can be
applied to simulate low-lying eigenstates in the identical-
quantum-number sector.

Results
Second-quantization representation of solid systems. To alle-
viate the notorious difficulty of simulating the many-body pro-
blem of solid systems, we employ a linear combination of the
single-particle basis. Namely, we construct crystalline orbitals
(COs) using the solution of the crystalline Hartree–Fock (HF)
equation43,44. The second-quantization form of the many-body
fermionic Hamiltonian is

H ¼ ∑
pq
∑
k
tkpqc

y
pkcqk

þ 1
2
∑
pqrs

∑
0

kpkqkrks
v
kpkqkrks
pqrs cypkp cqkq c

y
rkr
csks ;

ð1Þ

where cpk (c
y
pk) denotes the annihilation (creation) operator of an

electron on the p-th CO with crystal momentum k. Here, the
anticommutation relation fcpkp ; c

y
qkq

g ¼ δpqδkpkq is imposed, and

one-body (two-body) integrals are given as tkpq (v
kpkqkrks
pqrs ). For

Fig. 1 Schematic illustration of the relationship between the formal
computational complexity and accuracy in various first-principles
calculation methods for solid systems. Our goal is to demonstrate that the
variational calculation using neural-network-based ansatz can readily
describe both weakly and strongly correlated electronic structures with
moderate number of variational parameters, i.e., computational cost. We
denote the full configuration interaction (FCI) method by the black square,
whereas the Hartree–Fock (HF) and post-HF calculation methods are
indicated by blue squares: the second-order Møller–Plesset perturbation
theory (MP2), the coupled-cluster singles and doubles (CCSD), and CCSD
with perturbative triple excitations (CCSD(T)). Also, the green squares
indicate methods based on the Density Functional Theory (DFT): the DFT
and DFT-based Random Phase Approximation (RPA). The number of
orbitals at each k-point is denoted as N and the total number of k-points as
Nk. Note that this is a qualitative (approximate) illustration, which will vary
from case to case.
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simplicity, hereafter we denote the suffix as μ≔ (pk). While the
general framework of the crystalline HF equation is common with
that for molecular systems, it must be noted that the contribution
from the reciprocal lattice vector G= 0 requires extra numerical
care owing to the divergence of the exchange integrals. In this
work, we employ the crystalline Gaussian-based atomic functions
as the single-particle basis. The Gaussian density fitting technique
is applied to efficiently compute the two-body integrals45.

The summation in the first term of Eq. (1) is taken over a
uniform grid, which is typically obtained by shifting the k’s
obeying the Monkhorst–Pack rule46. Note that the number Nk of
sampled k-points can be arbitrary. The primed summation in the
second term satisfies the conservation of crystal momentum,
which follows from translational invariance:

kp þ kr � kq � ks 2 G; ð2Þ

where G is the set of reciprocal lattice vectors. With the number of
COs at each k-point denoted as N, the total number of terms in
Eq. (1) is given as OðN4N3

kÞ.
To solve the fermionic many-body Hamiltonian (1), we must

explicitly impose the antisymmetric sign structure in the
quantum state. Here, we map the Hamiltonian into the spin-1/
2 representation such that the sign structure is encoded in the
operators rather than the quantum states, as Choo et al.27

considered in their application of the NQS to small molecules.
The Jordan–Wigner (JW) transformation47 defines the relation of
fermionic and spin operators as cðyÞμ ¼ ð�1Þμ�1Q

ν < μσ
z
νσ

þð�Þ
μ ,

where σþð�Þ
μ is the raising (lowering) operator of the μ-th spin.

Such a mapping yields a nonlocal spin Hamiltonian

H ¼ ∑
Q
cQPQ; ð3Þ

where PQ∈⨂μ{I, X, Y, Z} is a product of Pauli matrices for a
corresponding Pauli string Q.

Let us make two remarks on the application of JW
transformation. First, the use of the fermion-to-spin transforma-
tion for stochastic variational calculations was initially considered
in the context of near-term quantum computers48, including the
application to real solids49–51, while the spin-to-fermion mapping
has been long applied in condensed-matter and statistical physics
community, e.g., to solve exactly soluble quantum spin models.
Second, the JW transformation merely generates the spin
operator representation of the Hamiltonian (1) and does not
alter the computational basis. The evaluation of physical
observables in the Monte Carlo approach by the occupation-
number basis of the fermionic representation is identical to that
by the spin computational basis of the spin representation. This is
not the case when we apply other transformations developed in
quantum information, such as the Bravyi–Kitaev
transformation52.

Ground states in the thermodynamic limit. In general, it is
classically intractable to solve for the ground state of the many-
body Hamiltonian defined in Eq. (1) or (3). Here we alternatively
rely on a variational method that exemplifies the expressive power
of neural networks. Namely, a neural network is used as a var-
iational many-body wave-function ansatz. It is optimized so that
the expectation value of the energy, estimated via the Monte
Carlo simulation, is minimized by approximating the imaginary-
time evolution. Such a technique, called variational Monte Carlo
(VMC), has been successfully applied to condensed-matter
systems53–56 and quantum chemistry problems57,58, leading to
state-of-the-art numerical analysis on strongly correlated phe-
nomena. The choice of the variational ansatz plays a key role for

the accuracy, which, as has been pointed out by Carleo and
Troyer10, can be significantly improved by using neural networks.

Let us briefly review the general protocol of VMC for
simulating ground states in many-body spin systems using the
quantum-state ansatz based on the restricted Boltzmann machine
(RBM)59. First, we introduce the quantum many-body wave
function expressed as follows10,

ΨRBM
θ

�� � ¼ 1
Z
∑σΨ

RBM
θ ðσÞ σj i;

ΨRBM
θ ðσÞ ¼ ∑

h
expðWμνσμhν þ∑

μ
aμσμ þ∑

ν
bνhνÞ;

ð4Þ

where ΨRBM
θ ðσÞ is the unnormalized amplitude for a spin

configuration σ 2 f�1;þ1gNv where Nv=NNk is the total

number of spin orbitals and Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑σ jΨRBM

θ ðσÞj2
q

is the

normalization factor. We denote the set of complex variational
parameters as θ= {Wμν, aμ, bν}, where the interaction Wμν

denotes the virtual coupling between the spin σμ and the
auxilliary degrees of freedom, or the hidden spin hν. One-body
terms aμ and bν are also introduced to enhance the expressive
power of the RBM state. In the present work, we find that the it
suffices to take the total number of the hidden spin as Nh=Nv,
and therefore the number of the complex variational parameters
is ðN2

v þ 2NvÞ in total. The all-to-all connectivity between σ and h
allows the RBM state to capture complicated quantum correla-
tions such as topological orders13,60, spin-liquid behaviours61–63,
and electronic structures in small molecular systems27,28.

Using the RBM state (4) as the many-body variational ansatz,
the ground-state problem is solved in the VMC framework. In
particular, we rely on the stochastic reconfiguration technique64

to approximate the imaginary-time evolution as

ΨGS

�� � / lim
τ!1

e�τH Ψ0

�� � � ΨRBM
θ0þ∑kΔθk

��� E
; ð5Þ

where the parameter update at the k-th step Δθk is given by the
Monte Carlo simulation, and the initial state Ψ0

�� �
is taken as the

HF state in our simulation. Detailed information on the
implementation and optimization techniques is provided in
“Methods”.

As a first demonstration, we provide the potential energy curve
for a one-dimensional system whose electronic correlation varies
drastically as the geometry is changed. Concretely, we consider a
linear hydrogen chain with homogeneous atom separation dH in a
minimal basis set (STO-3G)65,66. Figure 2a presents the result of
the calculation using the RBM state as well as the second-order
Møller–Plesset perturbation theory (MP2)67, the coupled-cluster
singles and doubles (CCSD)41,68, and CCSD with perturbative
triple excitations (CCSD(T))69, which is considered as the gold-
standard in modern quantum chemistry. While the weakly
correlated regime at near-equilibrium is simulated quite well by
all the conventional methods, we see that they start to collapse as
the correlation grows at the intermediate dH regime, not to
mention the Mott-insulating large dH regime. In sharp contrast,
the RBM state precisely describes the electronic correlation and
achieves chemical accuracy at any atom separation dH. Here, two
k-points are sampled from each unit cell, which contains four
hydrogen atoms so that the interactions between nearby sites are
reflected explicitly on the model.

To further illustrate the RBM state’s power and reliability, we
calculate the energy in the thermodynamic limit by extrapolating
Nk→∞ in a system with a single atom per unit cell. The
numerical result at near-equilibrium (dH= 2.0aB) is shown in
Fig. 2b. We confirm the excellent agreement with conventional
methods by comparing the result with the FCI for Nk ≤ 8 and
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CCSD for 10 ≤Nk ≤ 18. Clearly, the thermodynamic limit is
simulated precisely as well as the finite-size system.

Next, we provide the demonstration in both 2D and 3D real
solids: graphene and the lithium hydride (LiH) crystal in the
rocksalt structure. Here, we restrict the active space per each
k-point to its highest occupied CO and lowest unoccupied CO.
The results for graphene [Fig. 3a] and the crystalline LiH [Fig. 3b]

are both in remarkable agreement with the FCI or CCSD(T).
Clearly, the RBM ansatz gives a quantitatively accurate descrip-
tion, which may allow crystal structure determinations of weakly
to moderately correlated real solid systems.

Quasiparticle band structure from the one-particle excitation.
Interest beyond the ground-state electronic structures in solids is

Fig. 2 Solving the ground state of the linear hydrogen chain using the minimal STO-3G basis set. a The potential energy curve calculated by the
restricted Boltzmann machine (RBM) agrees with the full configuration interaction (FCI) method within chemical accuracy (1.6 mHa) for any atom
separation dH. This indicates that the RBM states are capable of describing both the weakly and strongly interacting regimes, where gold-standard
techniques, such as coupled-cluster singles and doubles (CCSD) shown by the yellow line and CCSD with perturbative triple excitations (CCSD(T)) in
black line, break down. The results by restricted Hartree–Fock (RHF) and second-order Møller–Plesset perturbation theory are indicated by blue and gray
lines, respectively. A unit cell consists of four hydrogen atoms placed at even intervals, and two k-points are sampled from a uniform grid. b Finite-size
scaling of the ground-state energy up to Nk= 18 and its deviation from the FCI (Nk≤ 8Nk≤ 8) or CCSD(T) (Nk > 8Nk > 8), ΔE, at near-equilibrium dH= 2.
The results show excellent agreement with conventional methods even in the thermodynamic limit Nk→∞. Here, the unit cell consists of a single hydrogen
atom, and hence the maximum number of spin orbitals considered here is 36. The error bars denote the standard deviation of the estimation by the Monte
Carlo sampling.

Fig. 3 Potential energy curves for 2D and 3D real solids calculated by neural networks. The ground-state energy is computed for various lattice
constants in the vicinity of equilibrium values. a Graphene on a honeycomb lattice solved using the cc-pVDZ basis set. The smallest active space is taken at
each 2 × 2Γ-centered k-point, and hence 16 spin orbitals in total. b LiH with the rocksalt structure solved using the STO-3G basis. The smallest active space
is taken at each 2 × 2 × 2Γ-centered k-point, and hence 32 spin orbitals in total. The result obtained for the RBM state (green triangle) shows remarkable
agreement either with the full configuration interaction (FCI) method or coupled-cluster singles and doubles with perturbative triple excitations (CCSD(T)),
achieving an error within chemical accuracy (1.6 mHa). The red, blue dotted, gray, yellow, and black dashed lines denote the results by the FCI
method, restricted Hartree–Fock (RHF) method, second-order Møller–Plesset perturbation theory (MP2), coupled-cluster singles and doubles (CCSD), and
CCSD(T).
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diverse: the response against electromagnetic fields, impurity
effects, phononic dispersions, and so on. Here, we focus on the
band structure, which is a peculiar yet fundamental property that
characterizes solid systems. We stress that variational calculations
for the lowest bandgap, which can be experimentally measured
from photoemissions, are already few, not to mention the simu-
lation of the band spectra based on stochastic methods70. Fur-
thermore, to the best of our knowledge, there is no NQS
simulation of excited states in the identical sector of quantum
numbers except the first excited state19. This motivates us to
perform the first attempt to calculate multiple low-lying states
and deepen our understanding on the representability of the NQS
beyond the well-studied regimes.

In general, the calculation of band structures is based on the
assumption that the system is weakly to moderately correlated. In
other words, the mean-field approximation is qualitatively valid,
so that one-particle excitations dominate the low-lying spectrum.
By employing such a picture in a quantum many-body context,
we can also simulate the band structure via quasiparticle
excitations. We take a similar approach here and compute the
band structure from the single-particle linear-response behavior
of the ground state.

Let us construct an appropriately truncated Hilbert space which
captures the low-lying states in a stochastic manner. It is justified
from the above argument that we consider a subspace spanned by a
set of non-orthonormal bases fRα ΨGS

�� �g, where Rα denotes the α-th
single-particle excitation operator. Here, the valence (conduction)
bands are obtained from the ionization (electron attachment)
operators fcpkpg (fcypkpg), which allows us to compute the

quasiparticle band with an additional computational cost of
OðN3

vÞ. Although it is possible to include higher-order excitation
operators, here we avoid them from the viewpoint of computational
cost and size inconsitency. It can be shown that the diagonalization
of the effective Hamiltonian given the non-orthonormal basis is
done by the following generalized eigenvalue equation71,eHC ¼ eSCE ð6Þ
where E ¼ diagðE1; :::; ENv

Þ denote the eigenvalues and C is an
array of eigenvectors. The matrix elements of the non-hermitian
matrix eH and the metric eS are estimated via the Monte Carlo
sampling as expectation values:eHαβ ¼ ΨRBM

θ� jRy
αHRβjΨRBM

θ�

D E
; ð7Þ

eSαβ ¼ ΨRBM
θ� jRy

αRβjΨRBM
θ�

D E
; ð8Þ

where the ground state is now replaced by the RBM ansatz
ΨRBM

θ�
�� �

, with the optimized variational parameter θ*. In the field of
quantum chemistry, this procedure is referred to as the internally
contracted multireference configuration interaction72,73.

To enhance the numerical reliability, we incorporate the effect
of orbital relaxation by estimating the bandgap from the extended
Koopmans’ theorem74–76. The energies are shifted so that the first
valence and conduction bands coincide with the energy difference
ΔEIP and ΔEEA as

ΔEIP ¼ ENv
GS � ENv�1

GS ;

ΔEEA ¼ ENvþ1
GS � ENv

GS;

(
ð9Þ

where En
GS is the energy of the RBM optimized in the particle-

number sector n (See “Methods”).
We provide a demonstration for the quasiparticle band

structure of the polyacetylene [Fig. 4a] using the STO-3G basis
sets. The result is compared with a variant of the equation-of-
motion coupled-cluster theories (EOM-CC): ionization-potential

(electron-attached) EOM-CC (IP-EOM-CC, EA-EOM-CC),
which considers up to 2-hole and 1-particle (2-particle and 1-
hole) excitations41. The agreement with EOM-CCSD(T)(a)*77 is
very good for the first valence and conduction bands, while it
becomes slightly worse for higher excitations. As is shown in
Fig. 4b, the first conduction band is simulated almost within
chemical accuracy, which is partly due to the cancellation of the
optimization errors induced by Eq. (9). Meanwhile, Fig. 4c
indicates that errors in the higher excitations can be an order of
magnitude larger in the worst case, which cannot be explained
merely from the variational simulation error. Rather, it can be
understood as a systematic error originating in the insufficiency
of the truncated Hilbert space; there is a trade-off between the
computational cost and the accuracy. Systematic improvement
can be expected from using higher-order excitation operators,
e.g., two-electron excitation operators fcypkp cqkqg for the lowest

energy state in the particle-number sectors (Nv ± 1).

Conclusion
We have shown that a shallow neural network with a moderate
number of variational parameters allows us to perform the
essence of first-principles calculations in solid systems, i.e., the
ground-state property and the quasiparticle band spectra. In the
weakly to moderately correlated regions of the linear hydrogen
chain, we have demonstrated that even the thermodynamic limit
can be simulated using the RBM state. The representability of the
RBM is also exhibited in the strongly correlated regions, where
the standard approaches break down. We have furthermore
shown that the electronic structures of real solids in both 2D and
3D can be described accurately. Furthermore, we have success-
fully obtained the quasiparticle band spectra of a polymer in the
linear-response regime. To the best of our knowledge, this is the
first demonstration proving that NQS are capable of computing
multiple excited states, in addition to precise ground-state
simulations that reach their chemical accuracy.

Numerous future directions can be envisioned. We remark the
following three points. First is the extension towards the complete
basis limit. While we have here focused on relatively simple basis
sets, the quantitative prediction and comparison with experi-
ments would necessarily require larger basis sets. Working in
the continuum space is a possibility, but the calculation would
be much more involved than in molecular systems. Second is the
systematic improvement of the calculations for excited states.
It is intriguing to investigate the quantitative performance; whe-
ther higher-order subspace expansions can be efficiently imple-
mented, how the accuracy is compared to other excited-state
calculation framework such as the equation-of-motion and time-
dependent linear response78, and so on. Third is the behavior
of physical observables. One may want to know the optical/
magnetoelectric/thermal responses, so that experimental results
can be directly compared. If the system is either quasi-static or
static, those properties can be evaluated as derivatives of the
energy with respect to an external perturbation (e.g., electric
field)79.

The main bottleneck that prevents the simulation by the NQS
in larger systems is the sampling efficiency. As mentioned by
Choo et al. for the case of RBM27, and as known before in the
VMC community, accurate calculations for relatively weak
electronic correlations in the HF basis requires increasingly
larger number of Monte Carlo samplings, because the ampli-
tudes for multi-electron excitations are small. One may con-
sider applying efficient sampling techniques, such as parallel
tempering, heat-bath configuration interaction80, or even
employ non-HF bases.
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Methods
Stochastic imaginary-time evolution by variational Monte Carlo. Given an
initial state Ψ0

�� �
whose overlap with the true ground state is nonzero (and

desirably not exponentially small), the ground state ΨGS

�� �
can be simulated as

ΨGS

�� � / lim
N!1

lim
η!0

QN
k¼1

e�ηH

� �
Ψ0

�� �
; ð10Þ

where H is the Hamiltonian of the system and η is a "learning rate" that determines
the step of the imaginary-time evolution. The exact simulation of Eq. (10) for
generic quantum many-body systems becomes exponentially inefficient as the
system size grows. Hence, we approximate the quantum state by a variational
ansatz Ψθ

�� �
and consider the update rule of the parameters θ such that Eq. (10) is

realized approximately.
There are numerous variational principles that dictate the parameter updates.

Here, we choose the stochastic reconfiguration method64,81, which uses the Fubini-
Study metric F to measure the difference between the exact and variational
imaginary-time evolution. Given a set of variational parameter θ, the update δθ is
determined as

δθ ¼ arg min
Δ

F e�ηĤ Ψθ

�� �
; ΨθþΔ

�� �h i� �
¼ �ηg�1f

ð11Þ

where F ½ ψ
�� �

; ϕ
�� �� ¼ arccosð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ψjϕ	 �

ϕjψ	 �
= ψjψ	 �

ϕjϕ	 �q
Þ and elements of the

generic force fi and the geometric tensor gij are given as

f i ¼ ∂i
ΨθjHjΨθ

	 �
ΨθjΨθ

	 � ; ð12Þ

gij ¼
∂iΨθj∂jΨθ

D E
ΨθjΨθ

	 � � ∂iΨθjΨθ

	 �
ΨθjΨθ

	 � Ψθj∂jΨθ

D E
ΨθjΨθ

	 � ; ð13Þ

where ∂i is the derivative with respect to the i-th element of the parameter θi. It is
noteworthy that the geometric tensor g is the extension of the Fisher information to
quantum states. The stochastic gradient method based on g, or the Fisher
information, was independently developed in the machine learning community81,
and is frequently referred to as the natural gradient method.

Note that both f and g can be estimated efficiently using Monte Carlo sampling.
Indeed, any physical observable O can be estimated for a quantum state Ψj i as

Oh i ¼ ΨjOjΨh i
ΨjΨh i ¼ ∑σ jΨðσÞj2OlocðσÞ

∑σ jΨðσÞj2
¼ ∑

σ
pðσÞOlocðσÞ; ð14Þ

where OlocðσÞ ¼ ∑σ 0
Ψðσ 0 Þ
ΨðσÞ σjOjσ 0h i is introduced to enable the simulation of the

expectation value from classical sampling over the probability distribution p(σ)
= ∣Ψ(σ)∣2/∑σ∣Ψ(σ)∣2. Using the Metropolis–Hastings algorithm with particle-
number conservation, we typically sample Oð105Þ to Oð107Þ spin configurations to
estimate p(σ). Each configuration is drawn every 10–20 Monte Carlo steps so that
the autocorrelation, and hence the sampling error, is sufficiently small when the
optimization converges.

Three technical remarks are in order. First, we take the initial state Ψ0

�� �ð¼
ΨRBM

θ0

��� E
Þ as the HF state such that the overlap with the ground state is nonzero.

Small noise is added to avoid the gradient vanishing problem, which arises when
the parameters of the RBM state are tuned to express any computational basis
exactly. Second, to stabilize the optimization, small number ϵ is uniformly added to
the diagonal elements of g as gii→ gii+ ϵ. While large ϵ is beneficial in early
iterations, it is necessary to decrease it, or otherwise one may result in undesirable
local minima. Therefore, ϵ is initially set as Oð10�2Þ and gradually decreased to
Oð10�3Þ after several hundred steps. Third, we find that it is crucial to adopt an
appropriate scheduling of η to speed up the optimization and, more importantly,
avoid local minima. In the present work, we exclusively employ the RMSProp
method82, which adaptively modifies η according to the magnitude of the gradient.

Energy corrections by the extended Koopmans’ theorem. In Fig. 5, we visualize
the effect of the corrections to the energy bands by the extended Koopmans’
theorem, which are defined in Eq. (9) in the main text as

ΔEIP ¼ ENv
GS � ENv�1

GS ;

ΔEEA ¼ ENvþ1
GS � ENv

GS;

(

where En
GS is the energy of the RBM optimized in the particle-number sector n.

Here, panels (a) and (b) indicate the first conduction and valence bands, respec-
tively. In both bands, we observe a systematic deviation, which we attribute to the
lack of orbital relaxation effect caused by the removal or addition of a single

Fig. 4 Quasiparticle band spectra from multiple excited-state calculation. a Schematic diagram of the trans-polyacetylene (C2H2)n. The cyan and gray
spheres indicate the carbon and hydrogen atoms, respectively. b Three quasiparticle bands below and above the Fermi energy. Here, the yellow lines and
black dashed lines indicate results obtained from the equation-of-motion coupled-cluster (EOM-CC) formalism; CCSD and CCSD(T) stand for the
unperturbed EOM-CCSD and the perturbed EOM-CCSD(T)(a)*methods, respectively. The blue dotted lines denote the restricted Hartree–Fock (RHF)
method. c A zoom-in of the first conduction band, which is computed from the electron attatchment (EA) energy. It is clearly shown, from the energy
differences against the EA-EOM-CCSD(T)(a)* method, that the results by the RBM (green triangle) are comparable or better than the unperturbed EA-
EOM-CCSD method. In all calculations, a single k-point is taken under the minimal basis set (STO-3G) and hence 24 spin orbitals are taken into account.
The size of the unit cell is taken as 2.451Å.
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electron. The order of the correction ΔE ~ 0.05 Ha is comparable to that of the
electronic correlation (~0.1 Ha).

Data availability
The data that support the findings of this study are available from the corresponding
author upon request.

Code availability
Codes written for and used in this study is available from the corresponding author upon
reasonable request.
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