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Supplementary Note 1: Phenomenon of stable value and the period of coherent evolution in PT -symmetric systems

Let us first consider the PT -symmetric non-Hermitian Hamiltonian shown in Eq. (1) of the main text. The evolution of
quantum states in PT -symmetric systems is described by the time-evolution operator UPT = exp(−iĤPT t):

UPT (t) = exp(−iĤPT t)

= exp [−is(σx + iaσz)t]

= exp

[
s

(
a −i
−i −a

)
t

]
=

(
A−B −iC
−iC A+B

)
. (S1)

Here A, B and C are given by:
(i) for 0 < a < 1,

A = cos (ω1st) , B = − a

ω1
sin (ω1st) , C =

1

ω1
sin (ω1st) , (S2)

where ω1 =
√
1− a2 > 0.

(ii) for a > 1,

A = cosh (ω2st) , B = − a

ω2
sinh (ω2st) , C =

1

ω2
sinh (ω2st) , (S3)

where ω2 =
√
a2 − 1 > 0.

In general, the initial state is |ϕ⟩ = α|H⟩ + βeiφ|V ⟩, where α, β ∈ [0, 1], α2 + β2 = 1 and φ ∈ [0, 2π]. The time-evolved
state is expressed as:

|ϕ(t)⟩ =
UPT |ϕ⟩
∥UPT |ϕ⟩∥

=
1√
M

(
α(A−B)− iCβeiφ

(A+B)βeiφ − iCα

)
, (S4)

where ∥|·⟩∥ =
√

Tr (|·⟩⟨·|) denotes the normalization coefficient, and

M = ∥|·⟩∥2 = A2 +B2 + C2 + 2AB
(
β2 − α2

)
− 4αβBC sinφ. (S5)
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Thus, the coherence of the state |ϕ(t)⟩ is given by:

Cl1 (|ϕ(t)⟩) =
2
{[
α2(A−B)2 + C2β2 + 2αβ(AC −BC) sinφ

] [
C2α2 + (A+B)2β2 − 2αβ(AC +BC) sinφ

]}1/2

A2 +B2 + C2 + 2AB (β2 − α2)− 4αβBC sinφ
.

(S6)
Let us first consider the case when 0 < a < 1 (i.e., the PT -symmetric-unbroken regime). In this case, A, B, and C are given

by Eq. (S2). After inserting Eq. (S2) into Eq. (S6), a simple calculation gives:

Cl1 (|ϕ(t)⟩) =
2
√
m1

1 +m1
, (S7)

where m1 = x1/y1, with x1 and y1 given below:

x1 =
1

ω2
1

[
α2

(
ω2
1 cos 2θ1 + aω1 sin 2θ1

)
+

1− cos 2θ1
2

+ αβ sinφ (ω1 sin 2θ1 + a(1− cos 2θ1))

]
,

y1 =
1

ω2
1

[
β2

(
ω2
1 cos 2θ1 − aω1 sin 2θ1

)
+

1− cos 2θ1
2

− αβ sinφ (ω1 sin 2θ1 − a(1− cos 2θ1))

]
. (S8)

Here θ1 = ω1st. From Eq. (S7) and Eq. (S8), one can see that Cl1 (|ϕ(t)⟩) is a function of sin 2θ1 and cos 2θ1. Thus, the period
of Cl1 (|ϕ⟩) is the same as that of sin 2θ1 or cos 2θ1. Note that sin 2θ1 (cos 2θ1) can be written as sin 2ω1st (cos 2ω1st) with
ω1 =

√
1− a2. Therefore, the period of coherent evolution in PT -symmetric systems is:

TPT =
2π

2ω1s
=

π

s
√
1− a2

. (S9)

Now, let us consider the case a > 1 (i.e., the PT -symmetric-broken regime). In this situation, A, B, and C are given by
Eq. (S3). Substitution of Eq. (S3) into Eq. (S6) gives:

Cl1 (|ϕ(t)⟩) =
2
√
m2

1 +m2
, (S10)

where m2 = x2/y2, with x2 and y2 given by

x2 = α2

(
cosh θ2 +

a

ω2
sinh θ2

)2

+
1

ω2
2

β2 sinh2 θ2 + 2αβ

(
1

ω2
cosh θ2 sinh θ2 +

a

ω2
sinh2 θ2

)
sinφ,

y2 = β2

(
cosh θ2 −

a

ω2
sinh θ2

)2

+
1

ω2
2

α2 sinh2 θ2 − 2αβ

(
1

ω2
cosh θ2 sinh θ2 −

a

ω2
2

sinh2 θ2

)
sinφ. (S11)

Here θ2 = ω2st. When t → ∞, cosh θ2 ∼ sinh θ2 → ∞. Thus, it is straightfordward to find from Eqs. (S10) and (S11) that:

lim
t→∞

Cl1 (|ϕ(t)⟩) =
2
{
a2 + ω2

2(α
2 − β2)2 + 2aω2(α

2 − β2) + 4αβ sinφ
[
a+ ω2(α

2 − β2)
]
+ 4α2β2 sin2 φ

}1/2

2a2 + 2aω2 (α2 − β2) + 4aαβ sinφ

=
2
[
a+ ω2(α

2 − β2) + 2αβ sinφ
]

2a2 + 2aω2 (α2 − β2) + 4aαβ sinφ

=
1

a
. (S12)

Equation (S12) shows that the phenomenon of stable value (PSV) of coherence occurs after a long time evolution; that is, the
coherence tends to a stable value 1/a, which is independent of the initial states.

Supplementary Note 2: Phenomenon of stable value and the period of coherent evolution in anti-PT -symmetric systems

Let us now consider the anti-PT (APT )-symmetric non-Hermitian Hamiltonian in Eq. (2) of the main text. The evolution of
the quantum states in APT -symmetric systems is governed by the operator UAPT = exp(−iĤAPT t):

UAPT (t) = exp(−iĤAPT t)

= exp [−is(iσx + aσz)t]

= exp

[
s

(
−ia 1
1 ia

)
t

]
=

(
A+ iB C

C A− iB

)
. (S13)
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Here A, B and C are given by:
(i) for a > 1,

A = cos (ω3st) , B = − a

ω3
sin (ω3st) t, C =

1

ω3
sin (ω3st) , (S14)

where ω3 =
√
a2 − 1 > 0.

(ii) for 0 < a < 1,

A = cosh (ω4st) , B = − a

ω4
sinh (ω4st) , C =

1

ω4
sinh (ω4st) , (S15)

where ω4 =
√
1− a2 > 0.

In general, the initial state is |ϕ⟩ = α|H⟩+ βeiφ|V ⟩. The time-evolved state is given by:

|ϕ(t)⟩ =
UAPT |ϕ⟩

∥UAPT |ϕ⟩⟩∥

=
1√
M

(
α(A+Bi) + Cβeiφ

(A−Bi)βeiφ + Cα

)
, (S16)

where M = A2 +B2 + C2 + 4C (A cosφ+B sinφ)αβ. The coherence of |ϕ(t)⟩ is:

Cl1 (|ϕ(t)⟩) =
2
{[

(Aα+ Cβ cosφ)2 + (Bα+ Cβ sinφ)2
] [

((A cosφ+B sinφ)β + Cα)
2
+ (A sinφ−B cosφ)2β2

]}1/2

A2 +B2 + C2 + 4C (A cosφ+B sinφ)αβ
.

(S17)
Let us first consider the case a > 1 (i.e., the APT -symmetric-unbroken regime). In this case, A, B and C are given by

Eq. (S14). After inserting Eq. (S14) into Eq. (S17), we obtain:

Cl1 (|ϕ(t)⟩) =
2
√
m3

1 +m3
, (S18)

where m3 = x3/y3, with x3 and y3 given below:

x3 =
1

ω2
3

[
ω2
3α

2 + αβω3 cosφ sin 2θ3 +
1− cos 2θ3

2
(1− aαβ sinφ)

]
,

y3 =
1

ω2
3

[
ω2
3β

2 + αβω3 cosφ sin 2θ3 +
1− cos 2θ3

2
(1− aαβ sinφ)

]
. (S19)

Here θ3 = ω3st. Based on Eq. (S18) and Eq. (S19), one sees that Cl1 (|ϕ(t)⟩) is a function of sin 2θ3 and cos 2θ3; that is,
sin 2ω3st and cos 2ω3st. Hence, the period of coherent evolution in APT -symmetric systems is:

TAPT =
2π

2ω3s
=

π

s
√
a2 − 1

. (S20)

Let us now consider the case of 0 < a < 1 (i.e., the APT -symmetric-broken regime). In this situation, A, B and C are given
by Eq. (S15). Substitution of Eq. (S15) into Eq. (S17) leads to:

Cl1 (|ϕ(t)⟩) =
2
√
m4

1 +m4
, (S21)

where m4 = x4/y4, with x4 and y4 given below:

x4 =
1

ω2
4

[(
ω2
4 cosh

2 θ4 + a2 sinh2 θ4
)
α2 + β2 sinh2 θ4 + 2αβ sinh θ4 (ω4 cosφ cosh θ4 − a sinh θ4 sinφ)

]
,

y4 =
1

ω2
4

[(
ω2
4 cosh

2 θ4 + a2 sinh2 θ4
)
β2 + α2 sinh2 θ4 + 2αβ sinh θ4 (ω4 cosφ cosh θ4 − a sinh θ4 sinφ)

]
. (S22)

Here θ4 = ω4st. When t → ∞, cosh θ4 ∼ sinh θ4 → ∞. Thus, it follows from Eq. (S22) that:

x4 ∼ y4 ∼
1 + 2αβ(

√
1− a2 cosφ− a sinφ)

1− a2
sinh2 θ4. (S23)
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Accordingly, it follows from Eq. (S21) that:

lim
t→∞

Cl1 (|ϕ(t)⟩) = lim
t→∞

2
√

x4/y4
1 + x4/y4

= 1. (S24)

Equation (S24) shows that the phenomenon of stable value (PSV) of coherence occurs after a long time evolution; that is, the
coherence tends to 1, which is independent of the initial states.

Supplementary Note 3: Proof for the characteristics of each backflow in the PT -symmetric-unbroken regime

For an arbitrary initial state |ϕ⟩ = α|H⟩+ βeiφ|V ⟩, the coherence of the evolved state |ϕ(t)⟩ in the PT -symmetric unbroken
regime is given by Eq. (S7). According to Eq. (S7), the derivative of Cl1 (|ϕ(t)⟩) can be decomposed into

dCl1 (|ϕ(t)⟩)
dt

=
dCl1 (|ϕ(t)⟩)

dm1
× dm1

dθ1
× dθ1

dt
. (S25)

Because of dθ1
dt = ω1s > 0, the condition for dCl1

(|ϕ(t)⟩)
dt = 0 turns into:

dCl1 (|ϕ(t)⟩)
dm1

= 0 (S26)

or

dm1

dθ1
= 0. (S27)

First, we consider the case of dCl1
(|ϕ(t)⟩)
dm = 0. According to Eq. (S7), we have

dCl1 (|ϕ(t)⟩)
dm1

=
1−m1

(1 +m1)2
√
m1

= 0. (S28)

Because of m1 = x1/y1, it follows from Eq. (S8) that:

m1 =
α2

(
ω2
1 cos 2θ1 + aω1 sin 2θ1

)
+ 1−cos 2θ1

2 + αβ sinφ [ω1 sin 2θ1 + a(1− cos 2θ1)]

β2 (ω2
1 cos 2θ1 − aω1 sin 2θ1) +

1−cos 2θ1
2 − αβ sinφ [ω1 sin 2θ1 − a(1− cos 2θ1)]

. (S29)

After inserting Eq. (S29) into Eq. (S28), we obtain

tan 2θ1 = −
(
α2 − β2

)
ω1

a+ 2αβ sinφ
. (S30)

Note that the period of tan 2θ1 is π
2 with respect to θ1, while the period of Cl1 (|ϕ(t)⟩) is TPT =π/(ω1s) with respect to t.

Because of θ1=ω1st, the period TPT =π/(ω1s) can be expressed as Tθ1=π with respect to θ1. Thus, one period of Cl1 (|ϕ(t)⟩)
includes two periods of tan 2θ1; that is, there are two different values of θ1 (or t) satisfying Eq. (S30) or Eq. (S26) within one
period of Cl1 (|ϕ(t)⟩).

Now, we consider the case of dm1

dθ1
= 0. Based on m1 = x1/y1, one has

dm1

dθ1
=

x′
1y1 − x1y

′
1

y21
, (S31)

where x′
1 = dx1

dθ1
and y′1 = dy1

dθ1
. It follows from Eq. (S8) that:

x′
1 =

1

ω2
1

[
α2

(
−2ω2

1 sin 2θ1 + 2aω1 cos 2θ1
)
+ sin 2θ1 + αβ sinφ (2ω1 cos 2θ1 + 2a sin 2θ1)

]
,

y′1 =
1

ω2
1

[
β2

(
−2ω2

1 sin 2θ1 − 2aω1 cos 2θ1
)
+ sin 2θ1 − αβ sinφ (2ω1 cos 2θ1 − 2a sin 2θ1))

]
. (S32)

Substituting Eq. (S8) and Eq. (S32) into Eq. (S31), one can easily find that the condition for dm1/dθ1 = 0 is:
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[
2aω2

1α
2β2 − a(4α2β2 sin2 φ+ 1)− αβ sinφ(3a2 + 1)

]
tan2 θ1 − ω1(1− 2β2)(1− 2aαβ sinφ) tan θ1

+2aω1α
2β2 + αβ sinφ = 0. (S33)

Thus, the discriminant of Eq. (S33) is given by:

∆ = g + 4(p+ q)r, (S34)

with

g = ω2
1(α

2 − β2)2(1− 2aαβ sinφ)2,

p = 4aα2β2 sin2 φ+ αβ sinφ(3a2 + 1),

q = a
[
(α2 − β2)2 + 2(1 + a2)α2β2

]
,

r = 2aω2
1α

2β2 + αβ sinφ. (S35)

Here, g ≥ 0 and q > 0. Without loss of generality, we consider sinφ ≥ 0 and α, β ∈ (0, 1). In this case, p ≥ 0 and r > 0.
Hence, we have ∆ > 0, which implies that tan θ1 has two different values to satisfy either Eq. (S33) or Eq. (S27). As mentioned
above, the period TPT = π

s
√
1−a2

of Cl1 (|ϕ(t)⟩) can be expressed as Tθ1=π with respect to θ1. Note that the period of tan θ1 and
the period of Cl1 (|ϕ(t)⟩) are π with respect to θ1, and tan θ1 has two different values to satisfy Eq. (S27). Thus, there exist two
different values θ1 (or t) to satisfy Eq. (S27) within one period of Cl1 (|ϕ(t)⟩).

From the above discussion, one can conclude that for a wide rangle of initial states α|H⟩ + βeiφ|V ⟩, with α, β ∈ (0, 1)

and sinφ ≥ 0, the dCl1
(|ϕ(t)⟩)
dt has four zero points in one period (i.e., T= π

s
√
1−a2

) of coherent evolution. Therefore, in the
PT -symmetric-unbroken regime, there indeed exists the phenomenon of two backflows of coherence in a period of coherent
evolution (e.g., see Supplementary Figure 1).
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0.95

1

DB

CA

Supplementary Figure 1: The points A, B, C and D are four extreme points within one period. Note that in the PT -symmetric-unbroken
regime, there are two backflows of coherence inside a simple period of coherent evolution.

Supplementary Note 4: Proof for the characteristics of backflow in the APT -symmetric-unbroken regime

For an arbitrary initial state |ϕ⟩ = α|H⟩ + βeiφ|V ⟩, the coherence of the evolved state in the APT -symmetric systems is
given by Eq. (S17). In the APT -symmetric-unbroken regime (i.e., a > 1), A, B and C are given by Eq. (S14). In view of
Eq. (S18), the derivative of Cl1 (|ϕ(t)⟩) can be expressed as:

dCl1 (|ϕ(t)⟩)
dt

=
dCl1 (|ϕ(t)⟩)

dm3
× dm3

dθ3
× dθ3

dt
. (S36)

Note that dθ3
dt = ω3s > 0. Thus, to meet dCl1

(|ϕ(t)⟩)
dt = 0, it follows from Eq. (S36):

dCl1 (|ϕ(t)⟩)
dm3

= 0, (S37)
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or

dm3

dθ3
= 0. (S38)

First, we consider the case when dCl1
(|ϕ(t)⟩)
dm3

= 0. According to Eq. (S18), we have

dCl1 (|ϕ(t)⟩)
dm3

=
1−m3

(1 +m3)2
√
m3

= 0. (S39)

Because of m3 = x3/y3 and according to Eq. (S19), we have

m3 =

[
ω2
3α

2 + αβω3 cosφ sin 2θ3 +
1−cos 2θ3

2 (1− aαβ sinφ)
][

ω2
3β

2 + αβω3 cosφ sin 2θ3 +
1−cos 2θ3

2 (1− aαβ sinφ)
] . (S40)

Substituting Eq. (S40) into Eq. (S39) leads to

α2 − β2 = 0. (S41)

In general, Eq. (S41) is not satisfied for an arbitrary initial state α|H⟩+ βeiφ|V ⟩.
Now, we consider the other case of dm3/dθ3 = 0. Because of m3 = x3/y3 and according to Eq. (S19), one has

dm3

dθ3
=

x′
3y3 − x3y

′
3

y23
, (S42)

where

x′
3 =

1

ω2
3

[2αβω3 cosφ cos 2θ3 + sin 2θ3 (1− aαβ sinφ)] ,

y′3 =
1

ω2
3

[2αβω3 cosφ cos 2θ3 + sin 2θ3 (1− aαβ sinφ)] . (S43)

According to Eqs. (S19, S42, S43), one can easily find that the condition for dm1/dθ1 = 0 is:

tan 2θ3 = − 2αβω3 cosφ

1− aαβ sinφ
. (S44)

Because the period of tan 2θ3 is π
2 and the period of Cl1 (|ϕ(t)⟩) is Tθ3=π (i.e., TAPT = π

s
√
a2−1

), one period of Cl1 (|ϕ(t)⟩)
includes two periods of tan 2θ3. Thus, there exist two different values of θ3 (or t) satisfying Eq. (S44) or Eq. (S38) within one
period of Cl1 (|ϕ(t)⟩).

From the above discussion, one can conclude that dCl1
(|ϕ(t)⟩)
dt has two zero points in one period (i.e., TAPT = π

s
√
a2−1

) of
coherent evolution. Therefore, the coherent oscillation of quantum states in the APT -symmetric-unbroken regime has only one
backflow within one period (eg., see Supplementary Figure 2).
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Supplementary Figure 2: The points A and B are two extreme points in one period. The coherent oscillation of quantum states in the
APT -symmetric-unbroken regime has only one backflow within one period.
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Supplementary Note 5: Experimental implementation of the loss operator L

As illustrated in Supplementary Figure 3, we experimentally implement the loss operator L by a combination of two beam
displacers (BD1 and BD2) and two half-wave plates (HWP1 and HWP2). Here, the optical axes of the BDs are cut so that
the vertically polarized photons are transmitted directly, while the horizontally polarized photons are displaced into the lower
path. In addition, the HWP1 and HWP2 with setting angles ξi and ξj are, respectively, inserted into the upper and lower paths
between the two BDs. The rotation operations on the photon polarization states, performed by the HWP1 and HWP2, are given
as follows:

1
HWP

2
HWP

2
BD

1
BD

j
x

i
x

Supplementary Figure 3: Experimental setup to realize a loss operator, where ξi and ξj are the two tunable setting angles for the half-wave
plates HWP1 and HWP2, respectively.

RHWP (ξi) =

(
cos 2ξi sin 2ξi
sin 2ξi − cos 2ξi

)
, RHWP (ξj) =

(
cos 2ξj sin 2ξj
sin 2ξj − cos 2ξj

)
. (S45)

In this case, when a horizontally polarized photon passes through the experimental setup, one can find that

|H⟩ BD1−−−→ |H⟩lower
RHWP(ξj)−−−−−−→ RHWP(ξj)|H⟩ BD2−−−→ cos 2ξj |H⟩3 + sin 2ξj |V ⟩2, (S46)

where the subscript “lower” represents the lower path between the two BDs, while subscripts “2” and “3” represent the two paths
2 and 3 after the second BD, respectively. Similarly, when a vertically polarized photon pass the experimental setup, one can
find that

|V ⟩ BD1−−−→ |H⟩upper
RHWP(ξi)−−−−−−→ RHWP(ξi)|V ⟩ BD2−−−→ sin 2ξi|H⟩2 − cos 2ξi|V ⟩1, (S47)

where the subscript “upper” represents the upper path between the two BDs, while subscripts “1” and “2” represent the two
paths 1 and 2 after the second BD, respectively. That is, only horizontally polarized photons in the upper path and vertically
polarized photons in the lower path are transmitted through the second BD and then combined onto path 2, while the other
photons transmitted onto path 1 or 3 are blocked, i.e., they are discarded and lost from the system.

In this sense, according to Eqs. (S46) and (S47), when the input photon is initially in the state |ϕ⟩in = α|H⟩+ βeiφ|V ⟩, then
the output photon appearing in the path 2 would be in the state |ϕ⟩out = α sin 2ξj |V ⟩2+βeiφ sin 2ξi|H⟩2. It is obvious that this
state transformation can be written as |ϕ⟩out = L|ϕ⟩in, with a polarization-dependent photon loss operator L, given by

L (ξi, ξj) =

(
0 sin 2ξi

sin 2ξj 0

)
, (S48)

where ξi and ξj are, respectively, the two tunable setting angles for the half-wave plates HWP1 and HWP2 (Supplementary
Figure 3).
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Supplementary Note 6: Coherence flow for two-qubit PT - and anti-PT - symmetric systems

We have numerically simulated the dynamics of coherence for two-qubit PT /APT systems. As shown in Supplementary
Figures 4(a, c), there exist different periodic oscillations of coherence (including one coherence backflow, two coherence back-
flows, and multiple coherence backflows in one period) for PT /APT -symmetric systems in the unbroken regime. In addition,
as illustrated in Supplementary Figures 4(b, d), there exists PSV for both PT -and APT -symmetric systems in the broken
regime, which are independent of the initial states.
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Supplementary Figure 4: The evolution of coherence for three different initial states in a two-qubit PT /APT -symmetric system. We
consider the two qubits undergoing the same PT /APT -symmetric dynamic process, i.e., the parameters a involved in the Hamiltonian-
s (1) and (2) of the main text are set to be the same for both qubits. (a) a = 0.8, the PT symmetry unbroken regime; (b) a = 1.8,
the PT symmetry broken regime; (c) a = 1.8, the APT symmetry unbroken regime; (d) a = 0.8, the APT symmetry broken
regime. The three initial states are |ψ1⟩ = 1√

3
(|00⟩+ |01⟩+ |11⟩) (blue curves), |ψ2⟩ = 1√

2

(
|00⟩+ eiπ/5|11⟩

)
(red curves), and

|ψ3⟩ = 1
2

(
|00⟩+ |01⟩+ |10⟩+ eiπ/5|11⟩

)
(yellow curves).


