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SUPPLEMENTARY NOTE 1. DEVICE FABRICATION

As illustrated in Supplementary Fig. 7a, the fabrication of the device commences with a 6-inch silicon-

on-insulator (SOI) wafer. This wafer comprises a 10 �m-thick P-type h100i single-crystal silicon conduc-

tive layer with a resistivity of 0:01 ��cm, a 3 �m-thick oxide layer, and a 500 �m-thick single-crystal

silicon handle layer. The fabrication process involves several key steps:

1. Platform etching: Shallow cavities are etched into the conductive layer of the substrate SOI using

a deep reactive ion etching (DRIE) technique to create bonding platforms and conductive routings. Impor-

tantly, the tops of the bonding platforms remain unetched, while the tops of the conductive routings are

etched, achieving a height of 5 �m. Prior to this etching process, alignment marks are etched on the handle

layer to facilitate subsequent patterning and bonding operations.

2. Wafer direct bonding: A structure SOI is then bonded to the etched substrate SOI through a direct

wafer bonding process. This structure SOI consists of a 100 �m-thick P-type h100i single-crystal silicon

structural layer, also exhibiting a resistivity of 0:01 ��cm, in addition to a 3 �m-thick oxide layer and a

450 �m-thick single-crystal silicon handle layer. The structure layer of the second SOI is tightly bonded to

the platforms of the substrate SOI.

3. Chemical mechanical polishing (CMP): The handle and oxide layers of the structure SOI are

subsequently removed using a CMP process, leaving a 100 �m-thick structural layer firmly bonded to

the substrate SOI.

4. Metal pads patterning: With the aid of the previously etched alignment marks, metal pads are

patterned and spurted onto the structural layer to facilitate wire bonding.

5. Structure release: The structure layer is patterned using a photolithography process and then etched

through using a DRIE process to release the resonator, the electrodes, and the pads. The alignment of the

structure with the platforms underneath is guaranteed using the alignment marks.

The completed wafer, as depicted in Supplementary Fig. 7b, contains a total of 333 devices. The dicing

process employs stealth laser cutting along the dicing lanes shown in Supplementary Fig. 7c, during which

the laser is focused inside the wafer to induce a series of defects. These internal imperfections serve as

starting points for crack propagation. By applying tension to the tape adhered to the wafer’s underside, the

devices are separated from the cut lanes due to stress concentration. This technique avoids contamination

of the bare devices, as the laser cutting occurs internally. Finally, the microscopic image of a fabricated

non-Hermitian MEMS resonator is presented in Supplementary Fig. 7d, and the device is subsequently

packaged in a carrier to maintain a vacuum of 0.001 Pa, thereby substantially mitigates air damping effects.
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SUPPLEMENTARY NOTE 2. EQUATIONS OF MOTION AND THE EFFECTIVE HAMILTONIAN

A. Equations of motion in driving frames

We commence with the classical Newtonian equations of motion for the system, described by24 Rx
Ry

35C
24
1 0

0 
2

3524 Px
Py

35C
24!21 C�p=2 �p=2

�p=2 !22 C�p=2

3524x
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35 ; (S.1)

where�p D 2�V0Vp cos.!pt /� 2�V
2

p =2. We apply the rotating-wave approximation that considers higher-

harmonic idler waves, the displacements can be expanded as
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where c.c. denotes complex conjugation, Am and Bm are the slowly varying complex amplitudes of the

m-th idler wave. The 0-th idler wave is the exact mode itself. Substituting (S.2) into (S.1) and omitting the

second-order time derivatives of the complex amplitudes, we have,�
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In this study, actuation is applied to mode 1, !d � !1. The pump frequency is tuned close to the

frequency difference, !p � �! � !2 � !1. Consequently, this configuration facilitates the up-conversion

of the drive and pump, which effectively reaches mode 2, !dC!p � !2. To simplify our analysis, we focus

exclusively on the first-order dynamical interaction, which is captured by settingm D 0 in (S.3) andm D 1

in (S.4),
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By dividing equations (S.5) and (S.6) by 2!1 and 2!2, respectively, we derive the approximated first-order

equations of motion within the driving rotating frames,
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where, �1 D !1 � �V 2p =.8!1/, �2 D !2 � �V
2

p =.8!2/ � !p, g D �V0Vp=.4!1/, and f D F=.4m!1/.

B. Effective Hamiltonian

The equations of motion (S.7) are formulated in fast rotating driving frames of !d for mode 1 and !dC!p

for mode 2. To facilitate analysis, we now transform these equations into a slowly rotating frame of !p,

which is known as the Floquet frame. This transformation is achieved by letting
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Equating the coefficients of like power of ei!dt in (S.9) and (S.10), we have
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Equations (S.12) and (S.14) are the equations of motion in the negative-frequency frames, which are con-

jugations of (S.7). Equations (S.11) and (S.13) constitute the equations of motion in the Floquet frame,
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The dynamic matrix of the equations of motion (S.15) is regarded as the effective Hamiltonian,
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where ıp is the detuning of the pump, ıp � !p ��!. The eigenvalues of this non-Hermitian Hamiltonian

is obtained by calculating det .H � �I/ D 0,
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C. Steady-state responses

The steady-state information of the system can be obtained by letting PA0 D PB1 D 0 for (S.7), which

gives 24A0
B1
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The complex amplitudes of the mode 1 and the first idler wave of mode 2 are given by

A0 D f
�2 � !d � i
2=2

.!d � �C/.!d � ��/
; (S.19)

B1 D f
�g

.!d � �C/.!d � ��/
: (S.20)

The theoretical amplitude responses are obtained by calculating jA0j and jB1j. The phase response of

mode 1 is given by �Arg.A0/. It is noteworthy that the phase of the mode-2 idler wave is not directly

represented by �Arg.B1/ due to the contribution of the pump phase to the overall phase of the idler wave.

Since the pump phase is arbitrary and uncontrollable in this study, the overall phase of the mode-2 idler

wave is undetectable.

SUPPLEMENTARY FIGURES.
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Supplementary Figure 1. Results of the smoothly encircling of EP with a circular trajectory. (a) The phase-

tracked closed-loop oscillation frequencies for the CW encircling process starting from the high-frequency sheet (red

curve), the CW encircling process from the low-frequency sheet (blue curve), the CCW encircling process from the

high-frequency sheet (purple curve), and the CCW encircling process from the low-frequency sheet (green curve)

smoothly evolve on the Re.�˙/ Riemann surface. The circles and squares denote the start/end points of the encircling

trajectories on the high and low-frequency sheets, respectively. The arrow indicates the direction. (b) The correspond-

ing tracked phases for the four encircling processes. The colors on all the surfaces correspond to the imaginary part

Im.�˙/ of the eigenvalues.
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Supplementary Figure 2. Results of non-adiabatic transitions through phase-tracked closed-loop control. (a)

The phase-tracked closed-loop oscillation frequencies for the CW encircling process starting from the high-frequency

sheet (red curve), the CW encircling process from the low-frequency sheet (blue curve), the CCW encircling process

from the high-frequency sheet (purple curve), and the CCW encircling process from the low-frequency sheet (green

curve) exhibit a transition between the high- and low-frequency sheets of the Riemann surface in lower-loss states.

The circles and squares denote the start/end points of the encircling trajectories on the high and low-frequency sheets,

respectively. The arrow indicates the direction. (b) The corresponding tracked phases for the four encircling processes.

The colors on all the surfaces represent the system’s energy dissipation, with pink indicating low-loss states and cyan

representing high-loss states.
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Supplementary Figure 3. Device Design. (a) Structure of the non-Hermitian disk resonator, highlighted in red. The

capacitive electrodes are indicated in cyan, while the electric routings and pads are marked in yellow. The substrate

is shown in gray. The resonator has a diameter of 4 mm and a height of 100 �m, with a capacitive gap of 9 �m.

The widths of the thin and thick beams are 9 �m and 13 �m, respectively. (b) The six-node in-plane standing-

wave modes displaying normalized displacements. (c) The instantaneous temperature-deviation fields resulting from

thermal-elastic coupling.

10



Vd cos(ωdt)

Vp cos(ωpt)

Charge
amplifiers

Programable wave generator

Circuitry

Cf

Rf

Cf

Rf

Lock-in amplifier

ϕ(t ) = θ{Re[λ(t )]} − θ{Re[λ(0)]}

θ{Re[λ(0)]}

θ − ϕ(t )
A cos(ωd t + θ)

cos(ωd t + ϕ)

co
s(
ω

d t
)

V0

−1
Pump signal

API

Vp(t )

2.5 V

2.5 V

ωd = Re[λ(t )]

S
yn

ch
ro

ni
ze

d

ωp(t )

PID

Phase
shift ϕ(t )

Phase
detector− φ

Phase
compensation

Reference
oscillator

−150

−100

−50

0

P
ha

se
 (°

)

50,467 50,468 50,469 50,470
ωd (2π Hz)

50,467 50,468 50,469 50,470

−100

0

100

P
ha

se
 (°

)

ωd (2π Hz)

a

b Without phase compensation With phase compensation

Theo.
Exp.

Exp.

Supplementary Figure 4. Detailed experimental setup. (a) Mode 1 is actuated differentially, and its response

displacement is measured capacitively. A parametric pump with adjustable amplitude and frequency is employed

to modulate the coupling stiffness. An adaptive PLL is implemented within a Zurich Instruments MFLI lock-in

amplifier to track the phase �fReŒ�˙.t/�g in real-time. The wave generator and the lock-in amplifier are synchronized

to facilitate the coordinated variations of Vp.t/, ıp.t/, and �.t/. (b) The test circuitry can introduce an additional phase

' D �65ı to the output signal. This phase shift is compensated before the output signal is put into the phase detector.

The left and right panels illustrate the phases of the open-loop output signal without and with phase compensation,

respectively. The black curve represents the theoretically expected response phase, given by � D �Arg.�1/.
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Supplementary Figure 5. Reduced-order model of the dynamical coupling of the two operational modes. Modes

1 and 2 can be represented as two orthogonal degrees of freedom of a single proof mass. The parametric pump is

equivalent to the Floquet dynamical modulation of a spring oriented at a 45ı off-axis angle.
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Supplementary Figure 6. Fitting processes of the frequency responses to obtain the complex eigenvalues. The

in-phase and quadrature components of the measured data are fitted to the real and imaginary parts of the modified

susceptibility, respectively, to extract the complex eigenvalues. Exp., experimental results. Fit., fitting results.
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Supplementary Figure 7. Fabrication of the non-Hermitian MEMS resonator. (a) MEMS fabrication process of

the devices. (b) The fabricated 6-inch wafer with 333 devices. (c) Details of the dicing lanes. (d) The microscopic

picture of a non-Hermitian MEMS disk resonator.
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