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Version 0: 

Reviewer comments: 

Reviewer #1 

(Remarks to the Author) 
This study introduces a phase-locked loop (PLL) technique to the process of dynamical encircling of exceptional points
(EPs) in non-Hermitian systems. In the conventional case of dynamically encircling EPs (mostly realized in waveguides
system), non-adiabatic transitions cannot be avoided, resulting in the phenomenon of asymmetric mode switching. In the
current work with the PLL technique, in contrast, the system dynamically binds excitation frequencies to response phases,
ensuring smooth traversal of eigenstates along the Riemann surfaces and effectively avoiding non-adiabatic transitions. In
this way, the topological structure of a non-Hermitian system around EPs can be measured since the evolution of
eigenstates is adiabatic. In experiments, the authors designed an on-chip non-Hermitian MEMS resonator, where the
structural asymmetry is employed to introduce a damping rate difference between two coupled modes. Through precise
electrical control of parameters, the feasibility of EP encircling is validated, with experimental results showing agreement
with theoretical predictions. This is overall an interesting work. It provides a new technique for probing the topology of non-
Hermitian systems. I would be happy to support the publication of the work after the authors address my following comments.
1. While conventional static measurements can already characterize both the state exchange dynamics and Riemann
surface topology near EPs, what distinct advantages does the proposed approach offer for such investigations compared to
conventional static methods? 
2. The experiment employed a rectangular path to dynamically encircle the EP, where only one parameter is varied at any
time. Could alternative path geometries (e.g., circular paths) also be utilized such that the two system parameters vary
simultaneously? 
3. The PLL technique adjusts the excitation frequency in real-time via a feedback to synchronize the parameter variation rate
with the system response, thereby emulating an adiabatic process. Is it possible to intentionally induce non-adiabatic
transitions by modifying the PLL feedback parameters (e.g., reducing the PID controller’s response speed or altering the
phase-locking conditions)? If so, the proposed platform can also be used to probe non-Hermitian physics with non-adiabatic
transitions. 
4. Some typos to be corrected: 
In Line 12 of the caption of Fig. 3, “frequence (c)” should be revised to “frequency (d)”. 
In Line 5 of the caption of Fig. 4, “(green curve)” should be corrected to “(purple curve)”. 

Reviewer #2 

(Remarks to the Author) 
In the manuscript, the authors have presented a new method for smoothly traversing the eigenfrequency Riemann surface of
non-Hermitian systems. By measuring the instantaneous phase-tracked hybrid state information, one can extract the
Hamiltonian information and reconstruct the imaginary part of the eigenvalue and eigenstates. The idea is novel, and the
presented results are quite solid. This is an interesting and timely work in the field of non-Hermitian photonics, and I in
general support its publication, pending the authors address the following issues: 
1. Since the presented work includes experimental demonstrations, it is better to include the device layout in the main text. 
2. The fabricated 6-inch wafer contains 333 devices. Do all these devices have identical properties, such as resonances and
damping rates? 
3. What is the tuning range and speed of the fabricated microelectromechanical device? 
4. What is the practical application of the proposed non-Hermitian system? 



Reviewer #3 

(Remarks to the Author) 
This manuscript presents a novel experimental approach to dynamically encircle exceptional points (EPs) in non-Hermitian
systems by leveraging a phase-locked loop (PLL) technique. The authors address a key challenge in the field—the difficulty
of achieving continuous and controlled traversal along the Riemann surfaces of non-Hermitian eigenvalues due to non-
adiabatic transitions. By coupling the excitation frequency of steady states to their response phases, the proposed method
maintains resonance and enables robust, phase-tracked encircling of EPs. The technique is demonstrated within a fully
electrically controlled microelectromechanical system, showcasing practical implementation and in-situ tunability. The paper
is well written and this work provides a significant advance in the study of non-Hermitian topologies, particularly by offering a
scalable and experimentally accessible route to probing Riemann surfaces dynamically. I believe the manuscript is
promising, but I would appreciate some clarifications that could enhance its clarity and impact. 

1) Although they mention that the encircling of the EP does not depend on the direction of encircling. Does it depend on the
starting point?  Whether the encircling starts in the PT-symmetric or PT-broken phase? 

2) The manuscript focuses on the dynamical encircling of a single EP using the PLL-based approach. However, if the
system contains two nearby EPs, how does the method extend to characterize or encircle both? Specifically, can the authors
shed some light on: How does the PLL technique respond when the control loop passes near or around both EPs? Does the
proximity of the two EPs influence the transport behavior—particularly the emergence or suppression of non-chiral dynamics
when the system starts in the symmetry-broken phase? If the control loop encloses both EPs, does the resulting behavior
depend solely on the starting point of the loop, or are there qualitatively new phenomena (e.g., interference between EPs or
modified topology) that arise? 

3) How do your findings relate to recent developments in non-Hermitian topology? Specifically, is the phase-tracked
dynamical encircling connected to any topological invariants—such as spectral winding numbers—defined over the control
parameter loop? Clarifying this connection would help in the broader context of non-Hermitian topological physics. 

Version 1: 

Reviewer comments: 

Reviewer #1 

(Remarks to the Author) 
The authors have addressed all my concerns in a satisfactory way. I sincerely thank the authors for their efforts in improving
their work. I recommend the publication of the work in its present form. 

Reviewer #2 

(Remarks to the Author) 
The authors have made significant efforts in improving the manuscript. The revised manuscript can be accepted as is now. 

Reviewer #3 

(Remarks to the Author) 
The authors have thoroughly addressed the previous concerns, and the refined version of the manuscript significantly
improves the overall quality, clarity, and impact of the work. The revisions strengthen the presentation and resolve the issues
raised in the earlier review. I find that the manuscript now meets the standards required for publication and can
be recommended for publication in its current form. 
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Response to Reviewers 

We express our sincere gratitude to the reviewers for their valuable reviews. The 

manuscript has been modified accordingly to address the feedback received. Please find 

below our response to the reviewers. Reviewers’ comments are in blue, authors’ 

responses are in black, and the red parts indicate the corresponding modifications in 

the manuscript. 

Reviewer #1 (Remarks to the Author): 

This study introduces a phase-locked loop (PLL) technique to the process of dynamical 

encircling of exceptional points (EPs) in non-Hermitian systems. In the conventional 

case of dynamically encircling EPs (mostly realized in waveguides system), non-

adiabatic transitions cannot be avoided, resulting in the phenomenon of asymmetric 

mode switching. In the current work with the PLL technique, in contrast, the system 

dynamically binds excitation frequencies to response phases, ensuring smooth traversal 

of eigenstates along the Riemann surfaces and effectively avoiding non-adiabatic 

transitions. In this way, the topological structure of a non-Hermitian system around EPs 

can be measured since the evolution of eigenstates is adiabatic. In experiments, the 

authors designed an on-chip non-Hermitian MEMS resonator, where the structural 

asymmetry is employed to introduce a damping rate difference between two coupled 

modes. Through precise electrical control of parameters, the feasibility of EP encircling 

is validated, with experimental results showing agreement with theoretical predictions. 

This is overall an interesting work. It provides a new technique for probing the topology 

of non-Hermitian systems. I would be happy to support the publication of the work after 

the authors address my following comments. 

1. While conventional static measurements can already characterize both the state 

exchange dynamics and Riemann surface topology near EPs, what distinct advantages 

does the proposed approach offer for such investigations compared to conventional 

static methods? 



Response: 

Thank you very much for your thoughtful and valuable comments. We greatly 

appreciate your insights and recognize that traditional static measurements play a 

crucial role in characterizing the topological properties of EP singularities. We agree 

that such studies are essential for deepening our understanding of the topological 

features of non-Hermitian singularities. However, we would like to highlight some 

practical limitations associated with static measurements. 

Firstly, static measurements rely on a discrete sampling approach to gather 

information about the eigenvalues or eigenstates along the encircling path. While this 

method facilitates the observation of the topological characteristics of EPs, it inherently 

lacks the ability to represent genuine continuous encircling. For practical applications 

of non-Hermitian topological properties, continuous and dynamical encircling is critical. 

Our proposed method allows for a direct investigation of key topological properties, 

such as genuine eigenvalue braiding and real-time Berry phase accumulation. 

Additionally, conventional static testing necessitates fitting the spectral response at 

each sampling point to extract the system’s eigenvalues or eigenstates along the 

encircling path, which can lead to considerable computational redundancy. In contrast, 

our approach simplifies this process by requiring only the measurement of the 

amplitude, phase, and resonant frequency of the system during continuous dynamic 

encircling. By integrating these measurements with the intrinsic resonator parameters 

obtained beforehand, we can effectively construct the system’s instantaneous 

Hamiltonian and reconstruct its eigenvalues or eigenstates, as elaborated in the 

Discussion section. This innovative method significantly reduces computational 

redundancy. 

Changes made: 

We have added a relevant discussion in the Introduction section as “However, the 

primary utility of discrete measurements resides in the characterization of topological 

properties within non-Hermitian systems, which inherently constrains the practical 



applications of topological properties. Notably, such measurements require spectral 

analysis at each discrete sampling point, introducing considerable computational 

redundancy. Dynamic measurements provide a methodology to mitigate the 

aforementioned challenges, while achieving genuine continuous braiding or real-time 

accumulation of the Berry phase through dynamic execution of smooth encircling 

remains a formidable challenge, especially since the dynamical encircling of EPs often 

encounters non-adiabatic transitions.” 

2. The experiment employed a rectangular path to dynamically encircle the EP, where 

only one parameter is varied at any time. Could alternative path geometries (e.g., 

circular paths) also be utilized such that the two system parameters vary simultaneously? 

Response: 

Thank you for pointing out the concern about the geometry encircling path. We 

sincerely apologize for the confusion caused due to the experimental design issues. In 

fact, the dynamically encircling scheme based on phase-tracked closed-loop control 

that we propose does not rely on the special design of the encircling trajectory. It 

depends on the unique mapping relationship between the excitation frequency 𝜔d and 

the phase response 𝜃 = −Arg[𝜒1(𝜔d)]. By using the PLL to lock the system to the 

resonant phase corresponding to its eigenfrequency (i.e., 𝜃[Re(𝜆±)]), the excitation 

frequency can be locked to any point on the Riemann surface of the eigenfrequency to 

achieve stable oscillations. Therefore, by presetting the parameters of the phase-

tracking module to accurately trace the phase evolution trajectory during EP encircling, 

we can achieve smooth encircling of EP along arbitrary geometric paths. 

Changes made: 

We have added a circular path in the revised text to demonstrate the feasibility of 

our proposed method under simultaneous variation of two parameters: the pump 

strength ( 𝑉p(𝑡) = 0.3 + 0.2cos (
𝜋

30
𝑡)(V) ) follows a cosinusoidal time dependence, 

while the pump frequency detuning (𝛿p(𝑡) = 2𝜋 ∙ 0.2sin (
𝜋

30
𝑡)(Hz)) varies sinusoidally. 



The results are shown in Fig. R1. 

 

Fig. R1. Results of the smoothly encircling of EP with a circular trajectory. a, The phase-tracked 

closed-loop oscillation frequencies for the CW encircling process starting from the high-frequency 

sheet (red curve), the CW encircling process from the low-frequency sheet (blue curve), the CCW 

encircling process from the high-frequency sheet (purple curve), and the CCW encircling process 

from the low-frequency sheet (green curve) smoothly evolve on the Re[𝜆±(𝑡)] Riemann surface. 

The circles and squares denote the start/end points of the encircling trajectories on the high and low-

frequency sheets, respectively. The arrow indicates the direction. b, The corresponding tracked 

phases for the four encircling processes. The colors on all the surfaces correspond to the imaginary 

part Im(𝜆±) of the eigenvalues. 

 

(1) From Line 1 to Line 4 on Page 13 in the revised main text, we have added a 



demonstration about the circular path: “The rectangular path above varies only one 

parameter at any time. We also constructed a circular path where two parameters are 

varied simultaneously to better demonstrate the feasibility of smoothly encircling EP 

through phase-tracked closed-loop control (see Methods). The full results of encircling 

EP with a circular path are shown in Extended Data Fig. 5.” 

(2) In the revised Methods Section, we have added a new subsection titled “Smoothly 

encircling of EP with a circular trajectory” to describe in detail the parameter variation 

for the circular path and the analysis of the results. And the results are presented in 

“Extended Data Fig. 5”. 

3. The PLL technique adjusts the excitation frequency in real-time via a feedback to 

synchronize the parameter variation rate with the system response, thereby emulating 

an adiabatic process. Is it possible to intentionally induce non-adiabatic transitions by 

modifying the PLL feedback parameters (e.g., reducing the PID controller’s response 

speed or altering the phase-locking conditions)? If so, the proposed platform can also 

be used to probe non-Hermitian physics with non-adiabatic transitions. 

Response: 

Thank you for pointing out this interesting issue. Indeed, it is possible to adjust the 

phase-locking conditions to achieve non-adiabatic transitions. As mentioned in the 

main text, the system has two eigenstates at a single parameter point of the encircling 

trajectory, with the high-frequency (Re(𝜆+)) and low-frequency (Re(𝜆−)) eigenstates 

corresponding to their respective resonant phases (𝜃{Re(𝜆±)} = −Arg{𝜒1[Re(𝜆±)]}). 

Therefore, we can achieve a transition of the oscillation frequency between the high-

frequency sheet and the low-frequency sheet by deliberately controlling the tracking 

phase 𝜽 of the PLL to convert between 𝜽{𝐑𝐞(𝝀+)} and 𝜽{𝐑𝐞(𝝀−)}.  

Changes made: 

(1) In the revised main text, we have added a clarification in the “Discussion” section 

as “Beyond emulating adiabatic evolution, our proposed method can also induce non-



adiabatic transitions by intentionally modulating the resonant phase switch between 

high-frequency and low-frequency sheets (see Methods), providing a platform for 

exploring the non-Hermitian physical properties of non-adiabatic transitions.” 

(2) We have added a new part titled “Non-adiabatic transitions through phase-tracked 

closed-loop control” to demonstrate the details of inducing non-adiabatic transitions, 

and the experimental results are also shown in “Extended Data Fig. 6. Results of non-

adiabatic transitions through phase-tracked closed-loop control”, and Fig. R2. 

 

Fig. R2. Results of non-adiabatic transitions through phase-tracked closed-loop control. a, The 

phase-tracked closed-loop oscillation frequencies for the CW encircling process starting from the 

high-frequency sheet (red curve), the CW encircling process from the low-frequency sheet (blue 

curve), the CCW encircling process from the high-frequency sheet (purple curve), and the CCW 

encircling process from the low-frequency sheet (green curve) exhibit a transition between the high- 



and low-frequency sheets of the Riemann surface in lower-loss states. The circles and squares denote 

the start/end points of the encircling trajectories on the high and low-frequency sheets, respectively. 

The arrow indicates the direction. b, The corresponding tracked phases for the four encircling 

processes. The colors on all the surfaces represent the system's energy dissipation, with pink 

indicating low-loss states and cyan representing high-loss states. 

4. Some typos to be corrected: 

In Line 12 of the caption of Fig. 3, “frequence (c)” should be revised to “frequency 

(d)”. 

In Line 5 of the caption of Fig. 4, “(green curve)” should be corrected to “(purple 

curve)”. 

Response: 

Thank you for the careful review and suggestions. We have corrected the 

misspellings and have checked the writing of the whole paper to avoid similar mistakes. 

Changes made: 

(1) In line 12 of the caption of Fig. 3, we have corrected the mistake to “and the 

corresponding oscillation frequency (d) of the encircling process”. 

(2) In line 5 of the caption of Fig. 4, we have corrected the mistake to “the CCW 

encircling process from the high-frequency sheet (purple curve), and the CCW 

encircling process from the low-frequency sheet (green curve)”. 

 

Reviewer #2 (Remarks to the Author): 

In the manuscript, the authors have presented a new method for smoothly traversing the 

eigenfrequency Riemann surface of non-Hermitian systems. By measuring the 

instantaneous phase-tracked hybrid state information, one can extract the Hamiltonian 

information and reconstruct the imaginary part of the eigenvalue and eigenstates. The 

idea is novel, and the presented results are quite solid. This is an interesting and timely 



work in the field of non-Hermitian photonics, and I in general support its publication, 

pending the authors address the following issues: 

1. Since the presented work includes experimental demonstrations, it is better to include 

the device layout in the main text. 

Response: 

We would like to express our sincere thanks to you for the valuable feedback, which 

is very constructive for revising the manuscript. 

Indeed, the on-chip non-Hermitian device is constructed from a silicon MEMS disk 

resonator, which consists of multiple concentric rings connected by an intermediate 

anchor. The resonator is segmented into 12 fan-shaped sectors, with single-thick beams 

and double-thin beams arranged alternately between adjacent sectors to modulate the 

thermo-elastic damping of the n=3 (n is the wave number) mode and induce non-

Hermitian properties, as shown in Extended Data Fig. 1. Additionally, we uniformly 

arranged 24 electrodes around the structure’s surrounding to enable the excitation, 

detection, and tuning of the resonator. 

Changes made: 

We have added the 3D model diagram and the microscope image of the device to 

describe the device layout in revised Fig. 2a. The revised Fig. 2a is shown as Fig. R3.  

 

Fig. R3. The layout of this non-Hermitian resonator, where the left one shows the 3D model 

diagram, the right one shows a wafer containing 333 devices, and the middle one displays the 

microscope image of a single device. 

2. The fabricated 6-inch wafer contains 333 devices. Do all these devices have identical 



properties, such as resonances and damping rates? 

Response: 

We thank the referee for raising this point. Indeed, our resonators are fabricated via 

MEMS processes. Theoretically, resonators of identical design from the same 

fabrication batch possess nearly identical resonant frequencies and damping ratios. 

However, we implemented a gradient variation in beam thickness difference across 

these 333 devices, which produced a gradient variation in frequency splitting while 

maintaining nearly identical damping ratios. 

In the initial idea, we considered utilizing ordinary coherent coupling to regulate 

the coupling strength of the non-Hermitian MEMS resonator, which requires the 

resonator to have two near-degenerate modes with matched natural frequencies. 

However, to satisfy the damping mismatch required for the non-Hermitian resonator, 

we implemented a special design for the beams at the nodal positions of the resonator’s 

n=3 modes. Specifically, the structure features an alternating arrangement of double-

thin beams and single-thick beams, as shown in “Device design” and “Extended Fig. 

1”. This specialized design may introduce increased fabrication errors of the beams, 

thereby affecting the resonator’s stiffness and inducing significant frequency splitting 

between the two operational modes. Therefore, based on the ideal structural parameters 

of the frequency-matched resonator, we implemented a gradient-based design for the 

thickness variation of the resonator’s beams. The frequency splitting of these resonators 

shows a gradient change, and the damping ratios are nearly identical, as shown in the 

Table. R1. Consequently, there must be some prototypes in these devices that satisfy 

the condition of frequency matching, thereby enabling the construction of EPs through 

ordinary coherent coupling. 

In previous studies, dynamic coupling has been applied to the regulation of 

coupling between frequency-mismatched modes [e.g., Okamoto, Hajime, et al. 

“Coherent phonon manipulation in coupled mechanical resonators.” Nature Physics 9.8 

(2013): 480-484.]. Thus, we employ Device # -40, exhibiting the highest dissipation 



difference, as our experimental platform in this study. Using dynamic coupling, we 

successfully observe the Riemann surface of eigenvalues, as shown in Fig. 2c in the 

main text. The non-Hermitian system constructed by dynamic coupling forms the 

research platform of the continuous dynamic encircling of EPs applied in this paper. 

Table. R1. Properties of the designed non-Hermitian MEMS resonators 

# f1 (Hz) f2 (Hz) ∆f (Hz) γ1 (2πHz) γ2 (2πHz) ∆γ(2πHz) 

-40 51161.483 50651.584 -509.899 0.91732 0.67726 0.24006 

-30 50025.678 49619.113 -406.565 0.87208 0.64305 0.22903 

-20 48626.976 48206.200 -420.776 0.78209 0.61450 0.16759 

-16 49016.899 48945.584 -71.315 0.78209 0.60515 0.17694 

-10 49468.787 49815.246 346.459 0.84657 0.66872 0.17785 

 

As can be seen in the Table. R1, Device # -16 exhibits the smallest frequency 

splitting, measuring -71.315 Hz. Through electrostatic tuning, we can adjust the two 

modes to a frequency-matched state. Following our initial idea, we also conducted 

investigations using Device # -16. By employing electrostatic negative-stiffness 

perturbations to precisely tune both the system's frequency degeneracy and coupling 

strength, we successfully observed the Riemann surface of complex eigenvalues, as 

shown in Fig. R4, those results will be presented in our ongoing future work. In our 

follow-up, next work, we will use Device # -16 as the platform to study topological 

properties in non-Hermitian systems, including eigenvalue braiding and Berry phase 

using the dynamical encircling method proposed in this study. 



 

Fig. R4. Experimental results of eigenvalue Riemann surface for ordinary coherently coupled 

systems. (a) The resonant frequency and (b) The linewidth of the non-Hermitian system. The red 

stars mark two exceptional points. 

3. What is the tuning range and speed of the fabricated microelectromechanical device? 

Response: 

Thank you for pointing out this interesting question. First, the non-Hermitian 

resonator we proposed is a fully electrically controlled MEMS resonator, which enables 

in-situ frequency modulation through electrostatic tuning. By applying a frequency-

tuning voltage Vt to the electrodes along the vibrational axis of the resonator, 

electrostatic negative stiffness ∆t can be generated in the resonator, which is expressed 

as  

Δ𝑡 =
𝐴𝜖0𝑉𝑡(2𝑉0 − 𝑉𝑡)

𝑑0
3𝑚𝑒𝑓𝑓

 

where A is the electrode area, d0 represents the capacitive gap, ϵ0 denotes the vacuum 

permittivity, V0 is the bias voltage applied to the resonant structure, and meff stands for 

the effective mass. The resonant frequency after applying ∆t becomes: 

𝜔1 = √𝜔0
2 + Δ𝑡 

To prevent device breakdown due to high voltage, the potential difference threshold 



between the structure and electrodes is set to 60 V, with a fundamental frequency tuning 

capability of 100 Hz. If the frequency splitting exceeds this range, dynamic coupling 

can be employed instead to compensate for the large frequency mismatch. 

Furthermore, the frequency and coupling strength of this resonator employs an in-

situ regulation method based on electrostatic negative stiffness, whose system stiffness 

matrix can be expressed as: 

𝑀 = [
𝜔0

2 + ∆p/2 + Δ𝑡 ∆p/2

∆p/2 𝜔0
2 + ∆p/2

] 

where ∆t represents the electrostatic negative stiffness induced by the frequency-tuning 

voltage Vt as previously mentioned, while ∆p denotes the electrostatic negative stiffness 

generated by the coupling-tuning voltage Vp. Consequently, real-time regulation of 

both frequency and coupling strength can be achieved by adjusting Vt and Vp. 

Changes made: 

From Line 2 to Line 3 on Page 7, we have made a statement about the tuning speed 

in the revised text as “The dynamic coupling can be regulated in real time by tuning the 

pump Vp cos(ωpt), showcasing remarkable in-situ controllability.” 

4. What is the practical application of the proposed non-Hermitian system? 

Response: 

We sincerely appreciate your evaluation and comment. This issue provides 

significant guidance for applied research on non-Hermitian MEMS resonators. 

The primary research objective of this paper is the continuous, dynamically 

encircling of EPs, which is of importance for investigating the topological properties in 

non-Hermitian systems. Due to the presence of non-adiabatic transitions, the continuity 

of dynamically encircling an EP will be disrupted. Therefore, current research 

methodologies for investigating topological properties in non-Hermitian systems are 

predominantly limited to quasi-static discrete measurements. In this work, we 



demonstrate continuous, dynamical encircling of an EP through phase-tracked closed-

loop control in our presented non-Hermitian system. Therefore, the proposed non-

Hermitian system can be used as a testbed for fundamental investigations of 

topological phenomena, including Berry phase accumulation and eigenvalue 

braiding. 

In addition, as a fully electrically controllable MEMS resonator, the proposed non-

Hermitian resonator has the advantages of small size, low cost, and low power 

consumption, and has broad application prospects in integrated sensing. The non-

Hermitian resonator is optimized based on a Hermitian disk MEMS gyroscope. 

Therefore, the resonator can also be used as a MEMS gyroscope to measure angular 

velocity. Furthermore, in several previous works [e.g., Lai, Yu-Hung, et al. 

“Observation of the exceptional-point-enhanced Sagnac effect.” Nature 576.7785 

(2019): 65-69.; Hokmabadi, Mohammad P., et al. “Non-Hermitian ring laser 

gyroscopes with enhanced Sagnac sensitivity.” Nature 576.7785 (2019): 70-74.], the 

EPs in the non-Hermitian system have been applied to the sensitivity enhancement of 

the optical gyroscope, which inspires enhancing the sensitivity of MEMS gyroscopes 

by using EPs. If the Coriolis effect of the MEMS gyroscope can be enhanced by using 

EPs, the sensitivity of the MEMS gyroscope will be improved by orders of magnitude. 

The proposed non-Hermitian MEMS resonator provides a feasible platform for the 

study of improving the performance of MEMS gyroscopes by using EP-enhanced 

sensing, which is the goal of one of our future works. 

 

Reviewer #3 (Remarks to the Author): 

This manuscript presents a novel experimental approach to dynamically encircle 

exceptional points (EPs) in non-Hermitian systems by leveraging a phase-locked loop 

(PLL) technique. The authors address a key challenge in the field—the difficulty of 

achieving continuous and controlled traversal along the Riemann surfaces of non-

Hermitian eigenvalues due to non-adiabatic transitions. By coupling the excitation 



frequency of steady states to their response phases, the proposed method maintains 

resonance and enables robust, phase-tracked encircling of EPs. The technique is 

demonstrated within a fully electrically controlled microelectromechanical system, 

showcasing practical implementation and in-situ tunability. The paper is well written 

and this work provides a significant advance in the study of non-Hermitian topologies, 

particularly by offering a scalable and experimentally accessible route to probing 

Riemann surfaces dynamically. I believe the manuscript is promising, but I would 

appreciate some clarifications that could enhance its clarity and impact. 

1) Although they mention that the encircling of the EP does not depend on the direction 

of encircling. Does it depend on the starting point?  Whether the encircling starts in the 

PT-symmetric or PT-broken phase? 

Response: 

Thank you very much for pointing out this vagueness. We are really sorry for the 

unclear presentation of the starting point of encircling in the previous manuscript. 

Indeed, our proposed dynamically encircling scheme is independent of the initial 

position where the parameter loop begins.  

In the initial manuscript, we take (𝑉p, 𝛿p/2𝜋) = (0.5 V, 0.3 Hz)  in the PT-

symmetric phase as the base point and conduct four sets of encircling starting from the 

high-frequency sheet (lower-loss mode) and the low-frequency sheet (higher-loss 

mode), respectively. As illustrated in Fig. 4, the results show that phase-tracked closed-

loop control effectively suppresses non-adiabatic transitions when the system starts 

from the PT-symmetric phase, regardless of the initial dissipation state. 

And in the revised manuscript, we have added four sets of encircling starting from 

(𝑉p, 𝛿p/2𝜋) = (0.1 V, 0.3 Hz) , which is located in the PT-broken phase. The 

starting points are located in the high and low-frequency sheets, respectively. In the CW 

encircling path, the control parameters vary linearly by the sequence: [(𝑉p, 𝛿p/2𝜋)] =

[(0.1 V, 0.3 Hz) , (0.1 V, −0.3 Hz) , (0.5 V, −0.3 Hz) , (0.5 V, 0.3 Hz) , 



(0.1 V, 0.3 Hz)] , while the parameters follow the reverse sequence in the CCW 

encircling path. As shown in Fig. R5, the results indicate that the system evolves 

smoothly along the Riemann surface associated with real eigenvalues, exhibiting stable 

dynamical behavior. 

 

Fig. R5. Results of smooth encircling starting from PT-broken phase obtained using the 

adaptive phase-tracking technique. a, The phase-tracked closed-loop oscillation frequencies for 

the CW encircling process starting from the high-frequency sheet (red curve), the CW encircling 

process from the low-frequency sheet (blue curve), the CCW encircling process from the high-

frequency sheet (purple curve), and the CCW encircling process from the low-frequency sheet 

(green curve) smoothly evolve on the Re[𝜆±(𝑡)] Riemann surface. The circles and squares denote 

the start/end points of the encircling trajectories on the high and low-frequency sheets, respectively. 

The arrow indicates the direction. b, The corresponding tracked phases for the four encircling 

processes. The colors on all the surfaces correspond to the imaginary part Im(𝜆±) of the eigenvalues. 



To summarize, our proposed method for dynamically encircling exceptional points 

exhibits robustness regardless of the starting point of the encircling. 

Changes made: 

(1) From Line 19 to Line 21 of Page 9 in the revised manuscript, we have added a 

clarification as “The base point for the topological encircling is selected as 

(Vp, δp/2π) = (0.5 V, 0.3 Hz), which is located in the PT-symmetric phase.” 

(2) In the revised Section “Smooth encircling of EP ”, we have added a demonstration 

about the feasibility of the proposed smooth dynamically encircling when the starting 

point is in the PT-broken phase: 

“To demonstrate that the encircling of EP is not only independent of the encircling 

direction, but also independent of the position of the starting point, we also conducted 

an encircling path starting at the PT-broken phase. The base point for the encircling is 

selected as (Vp, δp/2π) = (0.1 V, 0.3 Hz), which is located in the PT-broken phase. 

In the CW encircling path, the control parameters vary linearly by the sequence: 

[(Vp, δp/2π)] = [(0.1 V, 0.3 Hz) , (0.1 V, −0.3 Hz) , (0.5 V, −0.3 Hz) , 

(0.5 V, 0.3 Hz), (0.1 V, 0.3 Hz)], while the parameters follow the reverse sequence 

in the CCW encircling path. The results of the encircling processes are shown in Fig. 5. 

The dynamical encircling of EP initiated from the PT-broken phase does not manifest 

chiral behavior, which demonstrates that the phase-tracked dynamic encircling of the 

EP enables adiabatic and continuous dynamical evolution.” 

And Fig. R5 has been included in the revised manuscript “Fig. 5. Results of smooth 

encircling starting from PT-broken phase obtained using the adaptive phase-tracking 

technique.” 

2) The manuscript focuses on the dynamical encircling of a single EP using the PLL-

based approach. However, if the system contains two nearby EPs, how does the method 

extend to characterize or encircle both? Specifically, can the authors shed some light 

on: How does the PLL technique respond when the control loop passes near or around 



both EPs? Does the proximity of the two EPs influence the transport behavior—

particularly the emergence or suppression of non-chiral dynamics when the system 

starts in the symmetry-broken phase? If the control loop encloses both EPs, does the 

resulting behavior depend solely on the starting point of the loop, or are there 

qualitatively new phenomena (e.g., interference between EPs or modified topology) 

that arise? 

Response: 

We thank the Referee for this constructive suggestion. The question proposed by 

the Referee is very important for our ongoing future work, and we are now carrying out 

research on multiple EPs encircling. 

In our next work, we construct two nearby EPs in another frequency-matched 

device using the ordinary stiffness coupling, as seen in Fig. R4. In the ordinary 

coherently coupled non-Hermitian system, the degeneracy and coupling strength of the 

system are controlled by two DC voltages Vf and Va, respectively. The two nearby EPs 

are located at (𝑉a, 𝑉f) = (0.8 V, 0 𝑉)  and (𝑉a, 𝑉f) = (−0.8 V, 0 𝑉) , respectively. 

Employing this system as a platform, we have conducted two sets of experiments, with 

the control parameters varying by the sequence of [ (𝑉a, 𝑉f) = (2.6 V, −1.2 V) , 

(2.6 V, 1.2 V) , (−2.6 V, 1.2 V) , (−2.6 V, −1.2 V) , (2.6 V, −1.2 V) ] and 

[(𝑉a, 𝑉f) =

(2.6 V, −1.2 𝑉), (2.6 V, 1.2 𝑉), (0.5 V, 1.2 𝑉), (0.5 V, −1.2 𝑉), (−2.6 V, −1.2 𝑉), 

 (−2.6 V, 1.2 𝑉), (0.5 V, 1.2 𝑉), (0.5 V, −1.2 𝑉),  (2.6 V, −1.2 𝑉)] , respectively, 

which encloses both exceptional points. By using the PLL to lock the phase response 

to the resonant phase mapped by the eigenfrequency, we can achieve continuous 

dynamically encircling along Riemann surfaces. As shown in Fig. R6, the results 

demonstrate that non-adiabatic transitions are rigorously excluded during the 

dynamically encircling process. 

Additionally, the dynamically encircling we proposed is independent of the 

starting point. The interaction between the two EPs may involve more profound 



physical phenomena, and this is also the focus of our next work. We will further report 

the related results in a follow-up work. 

 

Fig. R6. Results of encircling two EPs through phase-tracked closed-loop control. a, A rectangle 

loop on the upper sheet of the Riemann surface. b, A “∞” trajectory connecting the top-left and 

bottom-right sheets. All encircling trajectories smoothly evolve along the Riemann surface. 

3) How do your findings relate to recent developments in non-Hermitian topology? 

Specifically, is the phase-tracked dynamical encircling connected to any topological 

invariants—such as spectral winding numbers—defined over the control parameter 

loop? Clarifying this connection would help in the broader context of non-Hermitian 

topological physics. 

Response: 

We sincerely appreciate your interest in the application of our proposed 

dynamically encircling method for non-Hermitian topological properties, as well as 

your invaluable comments and suggestions. 

In the Discussion section of the main text, we have mentioned that the state of the 

phase-tracked dynamically encircling can be represented by the hybrid state described 

by: 

|𝜓⟩ =
−1

(𝜆+ − 𝜔d)(𝜆− − 𝜔d)
(𝜔d − Ω2 + 𝑖

𝛾2

2
, 𝑔)

T

 

where 𝜆± corresponds to the system's eigenvalues, and 𝜔d = Re[𝜆±] represents the 



real part of 𝜆±, which serves as the resonant frequency of the resonator. By testing the 

amplitude, phase, and resonant frequency of the dynamically encircling system, we can 

construct its instantaneous Hamiltonian H and reconstruct the imaginary part of the 

eigenvalues Im[𝜆±], thereby achieving genuine continuous braiding. In this direction, 

we have made some progress, using the frequency-matched device, we successfully 

measured the amplitude, phase information of both modes and realized a genuine 

eigenvalue braiding, as shown in Fig. R7. 

 

Fig. R7. Genuine braiding of the eigenvalues through dynamically encircling. a, Dynamical 

encircling path. b, Measured amplitude, phase information of both modes. c, Reconstructed 

eigenvalue braiding. 

Furthermore, we can reconstruct the instantaneous eigenstates |𝑣±⟩  after 

obtaining the instantaneous eigenvalues 𝜆± as: 

|𝑣±⟩ = 𝑒𝑖𝛼 (𝜆± − Ω2 + 𝑖
𝛾2

2
, 𝑔)

T

 

where 𝛼  is an arbitrary phase factor. Based on these theories, we can further 

investigate the real-time accumulation of the Berry phase in eigenstates. Those results 

are direct extensions of this work and will be presented in our forthcoming work. 



Response to Reviewers 

Please find below our response to the reviewers. Reviewers’ comments are in blue, and 

authors’ responses are in black. 

Reviewer #1 (Remarks to the Author): 

The authors have addressed all my concerns in a satisfactory way. I sincerely thank the 

authors for their efforts in improving their work. I recommend the publication of the 

work in its present form. 

Response: 

Thank you very much for your valuable and constructive comments. The feedback 

has greatly enhanced our manuscript. 

  



Reviewer #2 (Remarks to the Author): 

The authors have made significant efforts in improving the manuscript. The revised 

manuscript can be accepted as is now. 

Response: 

We would like to express our sincere thanks to you for the valuable feedback, which 

is very constructive for revising the manuscript. 

  



Reviewer #3 (Remarks to the Author): 

The authors have thoroughly addressed the previous concerns, and the refined version 

of the manuscript significantly improves the overall quality, clarity, and impact of the 

work. The revisions strengthen the presentation and resolve the issues raised in the 

earlier review. I find that the manuscript now meets the standards required for 

publication and can be recommended for publication in its current form. 

Response: 

Thank you very much for your constructive comments and suggestions, which not 

only improved our paper but also inspired our future work. 


