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Supplementary Note 1: Effective Hamiltonian for multi-photon down-conversion

The total Hamiltonian of the whole system contains two parts:

Htot =H0 +HD,

H0 =ωa†a (|e⟩⟨e|+ |g⟩⟨g|+ |µ⟩⟨µ|) + Ω|e⟩⟨e|+ ωµ|µ⟩⟨µ|
− g(a+ a†)(|g⟩⟨e|+ |e⟩⟨g|),

HD = [Ωp cos(ωpt) + Ωs cos(ωst)] (|µ⟩⟨g|+ |g⟩⟨µ|) . (S1)

The Hamiltonian H0 can be diagonalized as

H0 =

∞∑
m=0

Em|Em⟩⟨Em|+
∞∑

n=0

(ωµ + nω) |µn⟩⟨µn|, (S2)

where |Em⟩ (Em) is the mth eigenstate (eigenvalue) of the Rabi Hamiltonian HR and |µn⟩ = |n⟩|µ⟩ is the nth
eigenstate of the noninteracting term

(
ωµ|µ⟩⟨µ|+ ωa†a⊗ |µ⟩⟨µ|

)
. Then, we can perform the unitary transformation

H ′
D =exp (iH0t)HD exp (−iH0t)

=

 ∑
k′=p,s

Ωk′ cos(ωk′t)

∑
n

∑
m

{
c(m)
n exp [i(ωµ + nω)t− iEmt] |µn⟩⟨Em|+ h.c.

}
, (S3)

where c
(m)
n = ⟨g|⟨n|Em⟩ are probability amplitudes of the states |n⟩|g⟩ in the eigenstate |Em⟩. Then, when choosing

ωp = E0 − ωµ, and ωs = E0 − ωµ − 2lω, (l = 1, 2, 3 . . .) (S4)

the Hamiltonian in Eq. (S3) can be divided into two parts: H ′
D = H1 +H2, where

H1 =
1

2

[
c
(0)
0 Ωp|µ0⟩+ c

(0)
2l Ωs|µ2l⟩

]
⟨E0|+ h.c., (S5)

describes the resonant transitions |µ0⟩ ↔ |E0⟩ ↔ |µ2l⟩, and H2 describes the off-resonance transitions. Generally,
when Ωp,(s) ≪ |Em −Em′ |, ω (m′ ̸= m), H2 can be effectively neglected by the rotating wave approximation because
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FIG. S1: Effective and actual dynamics. Mean photon number of the system with relatively strong drive, i.e., Ωp =
0.05(E2 − E0) and Ωs = 2Ωp. Dotted curves: theoretical prediction according to Eqs. (16) and (17) in the main text. Solid
curves: actual dynamical evolution governed by the total Hamiltonian. Other parameters are the same as those in Fig. 4 of
the main text.

H2 contains only fast-oscillating terms. However, for relatively strong driving fields such as Ωp,(s) ≳ 10−2ω, H2 can
have influence to the system dynamics, which can be estimated using second-order process [S1–S3]:

H2 ≈
∑
n

∑
m

|c(m)
n |2

4

[
|Ωp|2

E0 − Em + nω
+

|Ωp|2

E0 − Em + nω − 2ωp
+

|Ωs|2

E0 − Em + (n− 2l)ω

+
|Ωs|2

E0 − Em + (n− 2l)ω − 2ωs

]
(|µn⟩⟨µn| − |Em⟩⟨Em|) . (S6)

Here, the denominators of the terms in the summation cannot be zero because it means that the corresponding
transitions in Eq. (S3) are resonant when the denominators are zero.

We can assume that the influence of H2 can be neglected by setting Ωp,(s) ∼ 10−3|E2 − E0|. For simplicity, we

can ignore the superscript of the coefficient c
(0)
n when considering only the eigenstate |E0⟩ in the effective dynamics.

Thus, the effective Hamiltonian of Eq. (6) in the main text is obtained, i.e.,

Heff = H1 =
1

2
[c0Ωp|µ0⟩+ c2lΩs|µ2l⟩] ⟨E0|+ h.c. (S7)

The effective level transitions of the system described by Heff are shown in Fig. S2(a). When the initial state for
the system is |µ0⟩, the effective level transitions in Fig. S2(a) can be understood as a multi-photon down-conversion
process: The pump pulse of frequency ωp is converted into a Stokes pulse of frequency ωs and 2l cavity photons of
frequency ω. At the critical point gc = 1, the energy spectrum of Heff collapses [see Fig. S2(b)] because of c0 ≃ c2l ≃ 0.
In this case, the down-conversion process becomes invalid. It is worth noting that for relatively strong drivings, H2

causes energy level shifts in the effective three-level system, leading to small detunings in the Raman transitions. This
can affect the efficiency of the down-conversion process, e.g., leading to small oscillations (see Fig. S1) in the maximal
population of the target multi-photon state |µ2l⟩.

When the initial state is |µ0⟩, the evolution of the system can be solved:

|ϕ(t)⟩ ≈ exp (−iHefft) |µ0⟩
=
[
cos(θ)2 + cos(Ξt) sin(θ)2

]
|µ0⟩ − i sin(Ξt) sin(θ)|E0⟩

+
1

2
sin(2θ) [cos(Ξt)− 1] |µ2l⟩, (S8)
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FIG. S2: Effective model. (a) Effective level transitions described by the effective Hamiltonian Heff . (b) Energy spectrum
of the effective Hamiltonian Heff . The spectrum collapses at gc = 1, which is the critical point determined by the Rabi
Hamiltonian HR. We choose Ω = 106ω, ωµ = E0 − [2(nd − 4) + 0.25]ω, Ωp = 0.005(E2 − E0), and Ωs = 2Ωp to satisfy the
required conditions. Here, nd ≥ 4 is used to adjust the driving frequencies ωp and ωs. The eigenvalues E0 and E2 can be
numerically calculated.

where

Ξ =
1

2

√
(c0Ωp)

2
+ (c2lΩs)

2
, and θ = arctan [c0Ωp/ (c2lΩs)] . (S9)

Obviously, the population of the state |µ2l⟩ reaches its maximum when τ = t = π/Ξ. The system state at time τ
becomes

|ϕ(τ)⟩ ≈ cos(2θ)|µ0⟩ − sin(2θ)|µ2l⟩ = [cos(2θ)|0⟩ − sin(2θ)|2l⟩]⊗ |µ⟩, (S10)

which is a separable state. In this case, the maximum mean photon number of the system is

n̄max = ⟨X−X+⟩|t=τ = 2l sin(2θ). (S11)

Note that when the third atomic level |µ⟩ is considered, the operator X+ should be modified as

X+ =
∑
j

∑
j′<j

⟨ξj′ |a† + a)|ξj⟩|ξj′⟩⟨ξj |, (S12)

where |ξj⟩ is the jth eigenstate of H0, i.e., {|ξj⟩} = {|Em⟩, |µn⟩}.
In Fig. S3(a), we show the maximum populations

Pmax
2k = max

[
|⟨µ2k|ϕ(τ)⟩|2

]
(k = 0, 2), (S13)

of the state |µ2k⟩, at the time τ , versus different choices of gc. Also, we show, in Figs. S3(b–g), the Wigner function
W (β) of the system at the time τ for different gc. Here, the Wigner function W (β) is defined by

W (β) =
1

π

∫
d2γ exp (γ∗β − γβ∗)Tr[D(γ)|ϕ(τ)⟩⟨ϕ(τ)|],

D(γ) = exp
(
γa† − γ∗a

)
, (S14)

where the atomic state can be ignored because |ϕ(τ)⟩ is a separable state. As shown in Figs. S3(b–g), when the Rabi
Hamiltonian is in the normal phase (i.e, gc < 1), the system state at time τ is a superposition state of even Fock
states. Increasing the parameter gc results in an increase of the weight of the 2l Fock state |µ2l⟩. When gc approaches
1 from the left, the component of the ground state |µ0⟩ vanishes, leaving only the 2l Fock state |µ2l⟩. When gc crosses
the critical point, we can see a collapse of the Wigner function [see Figs. S3(f) and (g)], i.e., suddenly, the 2l Fock
state |µ2l⟩ vanishes, leaving only the ground state |µ0⟩ in the system at the time τ . This is understood that the
energy spectrum of the effective Hamiltonian Heff collapses [see Fig. S2(b)] at the critical point of the quantum Rabi
Hamiltonian.
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FIG. S3: Dynamics of the model. (a) Populations of the ground state |µ0⟩ and the four-photon state |µ4⟩ at the time
τ = π/Ξ in the evolution governed by Htot when gc is fixed to different values. (b–g) Wigner functions W (β) defined in
Eq. (S14) for some specific values of gc. The parameters are the same as those in Fig. S2. For Ξ → 0, we impose Ξ = 0.01ω
to avoid an infinite evolution time τ → ∞. The eigenvalues E0 and E2 can be numerically calculated. For a fixed gc in the
normal phase (gc < 1), the system at the time τ is the superposition state described by Eq. (S10), while in the superradiant
phase (gc > 1), the system keeps in the ground state |µ0⟩. A collapse of the Wigner function occurs at the critical point.

To indicate that a quantum phase transition occurs, the most immediate signature should be a discontinuity of the
derivative of ⟨E0|a†a|E0⟩ at the critical point, i.e.,

d⟨E0|a†a|E0⟩
dgc

∣∣∣∣
gc=1−

̸= d⟨E0|a†a|E0⟩
dgc

∣∣∣∣
gc=1+

. (S15)

As shown in Figs. S4(a) and S4(b), the derivative of ⟨E0|a†a|E0⟩ is discontinuous when Ω/ω = 106 and Ω/ω = 104;
thus, the thermodynamic limit Ω/ω → ∞ is effectively satisfied. For Ω/ω = 102, the phenomenon becomes less
pronounced [see Fig. S4(c)]. For comparision, we show the Fig. 4(a) of the main text (here as Fig. S5) displaying the
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FIG. S5: Photon output rate. Steady-state output photon rates Φss
out = Φout|t→∞ given in our protocol when (a) Ω/ω = 106,

(b) Ω/ω = 104, and (c) Ω/ω = 102. For (a) and (b), the output photon rates are discontinuous at gc = 1, which coincide very
well with the curves in Figs. S4(a) and S4(b), respectively. For (c), the transition of two different phases is smooth.
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FIG. S6: Schematic representation. A qubit (green) couples to (a) an LC resonator, (b) an array of dc SQUIDS.

steady-state output field of the system for different frequency rates. At the critical point, the output photon field of
the system changes abruptly (see Fig. S5), which coincides very well with the change of ⟨E0|a†a|E0⟩ (see Fig. S4).
This gives a signature for the occurrence of the quantum phase transition.

Supplementary Note 2: Possible implementations using superconducting quantum circuits

The past decade has seen a rapid increase in light-matter couplings [S10–S12]. Some experimental observations
of the ultrastrong light-matter coupling in superconducting quantum circuits are listed in Table S1. Generally, the
circuits in the experiments [S4–S9] can be simplified as an artificial atom coupled with an LC resonator [see Fig. S6(a)]
via a capacitance.
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To realize the atomic three-level construction, we need a relatively strong anharmonicity for the artificial atom, so
that the third level (as well as other levels) is far off-resonance to the resonator frequency. For this goal, we can use
an artificial atom which is constituted by three junctions in the superconducting circuit, i.e., a flux qubit. Assuming
that two larger junctions have equal Josephson energies EJ = EJ1 = EJ2 and capacitances CJ = CJ1 = CJ2, while
for the third junction EJ3 = αEJ and CJ3 = αCJ , with α < 1. The Hamiltonian of the artificial atom is

Ha =
P 2
p

2Mp
+

P 2
m

2Mm
+ U(φp, φm), (S16)

where Pp = −iℏ∂/∂φp, Pm = −iℏ∂/∂φm, Mp = 2CJ(ϕ0/2π)
2, and Mm = Mp(1 + 2α). Here, φp = (φ1 + φ2)/2 and

φm = (φ1 −φ2)/2 are defined by the phase drops φ1 and φ2 across the two larger junctions. In addition, ϕ0 = ℏ/(2e)
is the superconducting flux quantum. The effective potential is

U(φp, φm) = 2EJ(1− cosφp cosφm) + αEJ [1− cos(2πf + 2φm)], (S17)

where f = ϕe/ϕ0 is the reduced magnetic flux. It is clear that the shape of the double-well potential energy U(φp, φm)
can be changed from asymmetric to symmetric if f is changed from f ̸= 0.5 to f = 0.5 by adjusting the external
magnetic flux ϕe. Thus, ϕe is a control parameter for various properties of these flux-qubit circuits.
The desired transition energies of our protocol can be obtaining at f ≃ 0.53. By using EJ = 6500 GHz, EC =

180 GHz and α = 0.8, one can obtain

ω1 − ω0 ≃ 2π × 250 GHz,

ω2 − ω1 ≃ 2π × 50 GHz,

ω3 − ω2 ≃ 2π × 75 GHz. (S18)

The anharmonicity of the artificial atom is strong enough to decouple the ground state to the cavity.
Then, by applying a flux drive to the artificial atom, the control Hamiltonian becomes

HC = [Ωp cos(ωpt) + Ωs cos (ωst)]
∑
n

(|n⟩⟨n+ 1|+ |n+ 1⟩⟨n|) , (S19)

where |n⟩ is the nth level of the artificial atom. Because ωp and ωs are very close to the transition frequency ω1 −ω0,
the flux drive can only induce transitions between the ground and the first-excited states of the artificial atom, while
the other level transitions are far off resonance driven.

The Hamiltonian of the LC resonator is given by

HLC = 4EC q̂
2 +

EL

2
φ̂2, (S20)

where EC = e2/(2C) and EL = 1/(4e2L). The dimensionless charge and flux operators q̂ and φ̂ obey the commutation
relations [φ̂, q̂] = i. Following the standard quantization procedure for circuits

φ̂ =

(
2EC

EL

) 1
4 (

a† + a
)
, and q̂ = i

(
EL

32EC

) 1
4 (

a† − a
)
, (S21)

TABLE S1: Superconducting experiments that have achieved the ultrastrong light-matter coupling. Abbreviations are FQ=flux
qubit, TR=transmon qubit, TL=transmission line resonator, and LE=lumped-element resonator.

Year & Ref. Qubit Cavity g/2π (MHz) ω/2π (GHz) g/ω

2010 [S4] FQ TL 636 5.357 0.12

2010 [S5] FQ LE 810 8.13 0.1

2017 [S6] FQ LE 7630 5.711 1.34

2017 [S7] FQ LE 5310 6.203 0.86

2017 [S8] TR TL 897 4.268 0.19

2018 [S9] FQ LE 7480 6.335 1.18
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we can diagonalize the Hamiltonian HLC as

HLC = ω

(
a†a+

1

2

)
, (S22)

where ω =
√
8ECEL = 1/

√
LC. In this case, in order to reduce the cavity frequency ω to satisfy the Ω/ω → ∞ limit,

one needs to choose a very large C and L, which could be difficult in current experiments.
To overcome this problem, we suggest using an array of dc superconducting quantum interference devices (SQUIDs)

to replace the LC resonator, as shown in Fig. S6(b). The Hamiltonian of this array of Cooper pairs reads

HA = 4EC n̂
2 −N0EJ(Φ) cos

(
φ̂

N0

)
. (S23)

Here, n̂ and φ̂ satisfying [φ̂, n̂] = i are the number of Cooper pairs and the overall phase across the junction array,
respectively; EJ(Φ) is the Josephson energy of a single SQUID, which can be adjusted by the external-magnetic flux
Φ; and N0 is the total number of the SQUID in the array. For N0 ≫ φ̂, HA can be simplified as

HA ≈ 4EC n̂
2 −N0EJ(Φ)

[
1− 1

2

(
φ̂

N0

)2
]
= 4EC n̂

2 +
EJ(Φ)

2N0
φ̂2 −N0EJ(Φ), (S24)

Using the quantization procedure

φ̂ =

[
N0EC

EJ(Φ)

] 1
4 (

a† + a
)
, and n̂ = i

[
EJ(Φ)

32N0EC

] 1
4 (

a† − a
)
, (S25)

the Hamiltonian HA is diagonalized as

HA ≈ ω

(
a†a+

1

2

)
−N0EJ(Φ), (S26)

where the cavity frequency

ω =

√
8ECEJ(Φ)

N0
, (S27)

is adjustable with the parameters Φ and N0. This allows us to reduce the frequency ω to reach the Ω/ω > 103 limit
and the critical point gc = 1. For instance, we can choose

EC = 2π × 100 MHz, EJ(Φ) = EC/8 = 2π × 12.5 MHz, N0 = 400, (S28)

so that ω = 2π × 5 MHz. The qubit frequency can be chosen as Ω ∼ 2π × 50 GHz, which could be possible using,
e.g., flux qubits [S10, S11, S13–S15]. These allow to reach Ω/ω = 104. In this case, the coupling strength to reach
the critical point gc = 1 is g = 50ω ≃ 2π × 250 MHz.

Supplementary Note 3: Quantum phase transition in a simulated quantum Rabi model

Another possible way to verify our proposal is using a simulated quantum Rabi model [S16–S19]. Here, we present
a possible implementation of our method in a simulated quantum Rabi model induced by a squeezing-light field
[S16, S17]. Assuming that the three-level atom weakly couples to a cavity with coupling strength η, the system can
be described by the Jaynes-Cummings Hamiltonian under the rotating-wave approximation:

HJC = ωbb
†b+ ωe|e⟩⟨e|+ ωµ|µ⟩⟨µ| − η(b†|g⟩⟨e|+ b|e⟩⟨g|), (S29)

where ωb is the bare frequency of the cavity b and ωe is the level frequency of the state |e⟩. The cavity is subjected
to a two-photon (i.e. parametric) drive with amplitude Ωnl and frequency ωnl:

Hnl = −Ωnl

2

[
b†2 exp (−iωnlt) + b2 exp (iωnlt)

]
. (S30)
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in Eq. (S33), where gc is defined in Eq. (S35). We impose the eigenvalue of the ground eigenstate to be 0. (b) Probability
amplitudes |c2k| = ⟨g|⟨2k|S†(rnl)S(rnl)|E0⟩ of the states S(rnl)|2k⟩|g⟩ in the ground eigenstate of H ′

0 in Eq. (S33) calculated for
different gc. We choose parameters rnl = 0.5 and δa = 104δcsech(2rnl) ≈ 6.841×103δc, which correspond to the frequency ratio
Ω/ω = 104. With there parameters, the collapse of the energy spectrum is shifted to gc ≃ 1.002 due to the finite-frequency
effect.

Then, working in a frame rotating at half of the parametric drive frequency ωnl/2, the system Hamiltonian becomes:

H ′
0 = HJC +Hnl =δcb

†b+ δa|e⟩⟨e|+ ωµ|µ⟩⟨µ|

− Ωnl

2

(
b†2 + b2

)
− η(b†|g⟩⟨e|+ b|e⟩⟨g|), (S31)

where δc = ωb−ωnl/2 and δa = ωe−ωnl/2 are detunings. Upon introducing the Bogoliubov squeezing transformation

bs = S†(rnl)bS(rnl) = cosh(rnl)b− sinh(rnl)b
†, (S32)

the Hamiltonian H ′
0 in Eq. (S31) becomes

H ′
0 =δcsech(2rnl)b

†
sbs + δa|e⟩⟨e|+ ωµ|µ⟩⟨µ|

−
[
η cosh(rnl)bs + η sinh(rnl)b

†
s

]
|e⟩⟨g|

−
[
η cosh(rnl)bs + η sinh(rnl)b

†
s

]
|g⟩⟨e|, (S33)

where

rnl =
1

4
ln

(
δc +Ωnl

δc − Ωnl

)
. (S34)

Note that bs and b†s satisfy [bs, b
†
s] = 1, i.e., bs is also a bosonic mode. For this bosonic mode, the ground state

is the squeezed vacuum state S(rnl)|0⟩b, where the state |n = 0⟩b is the vacuum state of the cavity mode b. The
Hamiltonian H ′

0 describes the anisotropic Rabi model, which can also exhibit a superradiant quantum phase transition
in the δa/ [δcsech(2rnl)] → ∞ limit [S20]. The critical point for H ′

0 is at

gc =
η cosh(rnl) + η sinh(rnl)√

δaδcsech(2rnl)
=

η exp(rnl)√
δaδcsech(2rnl)

= 1. (S35)

That is, the quantum phase transition exhibited by this anisotropic Rabi Hamiltonian is the same as that exhibited
by the standard quantum Rabi Hamiltonian [S20]:

H ′
R ≃ δcsech(2rnl)b

†
sbs + δa|e⟩⟨e|+ ωµ|µ⟩⟨µ| −

η

2
exp(rnl)(bs + b†s)(|g⟩⟨e|+ |e⟩⟨g|). (S36)



9

0.9 1 1.1
0

0.5

1

𝑔𝑔𝑐𝑐

Po
pu

la
tio

ns

𝑆𝑆 𝑟𝑟nl |0⟩|𝜇𝜇⟩

𝑆𝑆 𝑟𝑟nl |0⟩|𝜇𝜇⟩

Φ
ou
t

ss
(u

ni
ts

of
 1

0−
3 𝛿𝛿

𝑐𝑐)

0

4

6

2

0.9 1 1.1
𝑔𝑔𝑐𝑐

(a) (b)

FIG. S8: Phase transition in a simulated quantum Rabi model. (a) Populations of the squeezed-vacuum state
S(rnl)|0⟩|µ⟩ and the squeezed-four-photon state S(rnl)|4⟩|µ⟩ at the time τ = π/Ξ in the evolution governed by H ′

tot when
gc is fixed to different values. We choose driving amplitudes Ωp = 0.005(E2 − E0) and Ωs = 2Ωp. (b) Steady-state output
rate Φss

out defined in Eq. (S43). We choose relatively strong driving fields, i.e., Ωp = 0.05(E2 − E0) and Ωs = 2Ωp, to achieve
relatively large output photon rates. Strong driving fields may cause small errors (via counter-rotating effects) in obtaining
the effective Hamiltonian Heff , leading to oscillations in Φss

out in the normal phase, i.e., gc < 1. The dissipation rates are
κ = γ1 = γ2 = 10−3δcsech(2rnl). Other parameters are the same as those in Fig. S7.

Figure S7(a) shows the energy spectrum of the anistropic Rabi Hamiltonian H ′
0. We can see that the energy spectrum

nearly collapses when gc ≃ 1. Meanwhile, the probability amplitudes of different photonic-state components

|c2k| = ⟨g|⟨2k|S†(rnl)S(rnl)|E0⟩, (S37)

also collapse, as shown in Fig. S7(b). These indicate that the quantum phase transition exhibited by the anisotropic
Rabi Hamiltonian in Eq. (S33) is the same as that exhibited by the standard quantum Rabi Hamiltonian.

For simplicity, we can choose the parameters

ω = δcsech(2rnl), Ω = δa, g =
η

2
exp(rnl), a = bs, (S38)

so that H0 = HR = H ′
R, where H0 is given in Eq. (S1). Therefore, by driving the atomic transition |g⟩ ↔ |µ⟩ with

the Hamiltonian HD in Eq. (S1), the system dynamics is the same as that discussed in Appendix A. The difference
is that the Fock state |n⟩ discussed in Appendix A should be replaced with the squeezed Fock state S(rnl)|n⟩b. The
total Hamiltonian for the system in the lab frame becomes

H ′
tot = HJC +Hnl +HD. (S39)

For simplicity, in the following discussions we ignore the subscript b for the cavity mode, i.e., |n⟩b is simplified to
|n⟩. According to the derivation in Appendix A, the evolution governed by Eq. (S39) is

|ϕ′(t)⟩ ≈
[
cos(θ)2 + cos(Ξt) sin(θ)2

]
S(rnl)|µ0⟩ − i sin(Ξt) sin(θ)S(rnl)|E0⟩

+
1

2
sin(2θ) [cos(Ξt)− 1]S(rnl)|µ2l⟩, (S40)

where the parameters are defined in Appendix A. Choosing possible experimental parameters:

rnl = 0.5, δc/2π = 1 MHz, δa/2π ≃ 6.841 GHz, (S41)

and the initial state S(rnp)|0⟩|µ⟩, for different gc, the populations for the states S(rnl)|0⟩|µ⟩ and S(rnl)|4⟩|µ⟩ at the
time τ are shown in Fig. S8(a). Similar to Fig. S3(a), we can find a sudden change of these populations near the
critical point in Fig. S8(a), indicating a sudden change of the photon number distributions.

Note that the system governed by the Hamiltonian H ′
tot contains only real cavity photons. We can use the standard

input-output theory to study the output cavity photon rate. The master equation for this system is

ρ = i [ρ,H ′
tot] + κD[b] + γ1D[|g⟩⟨e|] + γ2D[|µ⟩⟨g|], (S42)
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where κ is the decay rate of the cavity mode b and γ1,(2) is the spontaneous emission rate of the transition |g⟩ → |µ⟩
(|e⟩ → |g⟩). The steady-state output photon rates, defined by

Φss
out = Φout|t→∞ = κTr

[
b†bρ(t → ∞)

]
, (S43)

are shown in Fig. S8(b). We can find that the output photon rate Φss
out suddenly vanishes when gc is tuned across

the critical point. This phenomenon is the same as that discussed for the standard quantum Rabi model in the main
text. It is worth noting that relatively strong drivings chosen for Fig. S8(b) induce counter-rotating effects. These
may excite the system to the higher levels of H ′

R at some specific values of gc, leading to the increase of Φss
out at those

values.
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