Ultradense Tailored Vortex Pinning Arrays in Superconducting YBa$_2$Cu$_3$O$_{7-\delta}$ Thin Films Created by Focused He Ion-Beam Irradiation for Fluxonics Applications

Bernd Aichner,† Benedikt Müller,‡ Max Karrer,‡ Vyacheslav R. Misko,¶§∥ Fabienne Limberger,‡ Kristijan L. Mletschnig,† Meirzhan Dosmailov,¶⊥# Johannes D. Pedarrig,⊥ Franco Nori,§@ Reinhold Kleiner,‡ Dieter Koelle,‡ and Wolfgang Lang∗,†

†Faculty of Physics, University of Vienna, Wien, Austria
‡Physikalisches Institut and Center for Quantum Science (CQ) in LISA+, Universität Tübingen, Tübingen, Germany
¶Department of Physics, Universiteit Antwerpen, Antwerpen, Belgium
§Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama, Japan
∥µFlow group, Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium
⊥Institute of Applied Physics, Johannes Kepler University Linz, Linz, Austria
#Current address: Al-Farabi Kazakh National University, Almaty, Kazakhstan
@Physics Department, University of Michigan, Ann Arbor, USA

E-mail: wolfgang.lang@univie.ac.at

S-1
Supporting Information

Critical current and resistance data of a square array of vortex pinning centers fabricated by irradiation in the helium ion microscope

![Graph showing critical current and resistance](image)

Figure S1: Critical current I_c and resistance R of a 80-nm thick YBCO film, irradiated in a HIM with a square pattern of beam spots (50 nm FWHM) with a lattice constant of 200 nm. The matching field determined from the geometric parameters is $B_m = 52$ mT and leads to a peak in the critical current and a minimum of the resistance. Inset: HIM image of a square array of defects induced by the focused ion beam of the HIM. Irradiation was performed with 5×10^6 ions/spot to visualize the pattern, a much larger fluence than it was used for preparation of the actual sample.

A square array of columnar defect cylinders (CDs) has been fabricated in the helium ion microscope with an intentionally defocused ion beam of FWHM = 50 nm and point-to-point distance $a = 200$ nm in a 80-nm thick YBCO film. The parameters were chosen similar to previous experiments performed with masked ion beam irradiation. The critical current $I_c(B_a)$ shows a distinct peak and the magnetoresistance $R(B_a)$ a minimum when each defect is filled with one vortex at an applied magnetic field B_a that fulfils the matching condition for single-vortex occupation of every CD, $B_1 = \Phi_0/a^2$, where Φ_0 is the magnetic

S-2
flux quantum and $a = 200 \text{nm}$ the lattice constant of the square pinning array. The vortex commensurability effects displayed in Fig. S1 appear exactly at the calculated matching field $B_1 = 52 \text{mT}$.

References

