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I. INTRODUCTION

The inability of a classical computer to efficiently simulate the dynamics of a
quantum system is well known. The problem is that the dimension of the Hilbert
space grows exponentially with the number of degrees of freedom of the quantum
system, which in turn causes an exponential growth in the amount of memory
and CPU time required to carry out the simulation. This inefficiency is a major
stumbling block for numerical studies aiming to determine the asymptotic perfor-
mance of quantum algorithms. For example, numerical simulation of the dynamics
of the quantum adiabatic evolution (QAE) algorithm applied to the NP-Complete
problem Exact Cover 3 has been limited to systems containing N ≤ 20 qubits [1].
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Because the algorithm requires adiabatic dynamics, its performance is highly sen-
sitive to the minimum energy gap �(N) separating the instantaneous ground- and
first-excited states, with the gap’s asymptotic limit, (N � 1), largely determining
the algorithm’s computational efficiency. Attempts to evaluate �(N) using exact
diagonalization have been limited to N ≤ 20 qubits [2]. Recently, however, the
minimum gap �(N) for QAE applied to Exact Cover 3 has been determined for
N ≤ 128 qubits using quantum Monte Carlo methods [3]. This substantial tech-
nical advance has stirred great interest in finding other computational approaches
that might allow quantum algorithm performance to be determined for still larger
qubit systems.

Quantum computation is not the only research area struggling with the diffi-
culties of simulating quantum systems. Condensed-matter physicists and quantum
chemists have been working under the shadow of this problem for decades. A num-
ber of computational approaches have been developed that, together with increas-
ingly more powerful computers, have allowed much progress to be made, despite
the ultimately unavoidable difficulties involved. Among these approaches, density
functional theory (DFT) has proven to be one of the most successful [4]. DFT ap-
plies to interacting fermion systems. It captures all many-body effects through the
exchange-correlation energy functional. Ground state density functional theory
(GS-DFT) has been used to determine a wide range of ground state properties
of atomic, molecular, and solid-state systems [5,6]; while time-dependent density
functional theory (TD-DFT) has been used to determine excited-state properties,
as well as the linear and nonlinear response of interacting many-electron systems to
electromagnetic fields [7,8]. For our purposes, it is especially significant that DFT
has been successfully applied to quantum systems containing N ∼ 103 interacting
degrees of freedom [9–11].

Here, we show how DFT can be applied to quantum computing systems [12].
Although our analysis can be extended to the case of N qudits (d-level systems)
residing on aD-dimensional lattice, we restrict the presentation toN qubits residing
on a 2D lattice because it corresponds to the experimentally interesting cases of
qubits placed in a 2D ion trap, or restricted to a planar superconducting qubit circuit.
We begin by showing how the N-qubit system can be transformed into a system
of N lattice fermions. We illustrate this transformation by using it to rewrite the
dynamics of the QAE algorithm applied to the NP-Complete problem MAXCUT
[13]. For the resulting interacting fermion system, we establish the Hohenberg-
Kohn (HK) [5] and Runge-Gross [7] theorems, and setup the auxiliary Kohn–
Sham (KS) system of noninteracting fermions [6]. This justifies the application of
GS- and TD-DFT to the dynamics of the interacting fermion system. The linear
response of the interacting fermions is determined using TD-DFT, which is then
used to obtain the energy gap �(N) for the MAXCUT dynamics. In light of earlier
remarks, this approach would allow evaluation of the minimum gap �(N) for
N ∼ 103 qubits.
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II. QUBIT/FERMION TRANSFORMATION

Consider N qubits residing on an N-site 2D lattice with basis vectors êk (k = 1, 2),
and sites specified by the position vector r. Let σ(r) denote the Pauli matrices
associated with the qubit at r. We now show how the qubits can be converted into
lattice fermions via the 2D Jordan–Wigner (JW) transformation [14]. Note that
the following analysis can be extended to N qudits on a D-dimensional lattice
using the generalized JW transformation [15] that fermionizes a spin s system in
D spatial dimensions (d = 2s + 1).

For a 2D system of qubits, the JW transformation is

σ+(r) = 2a†rQr

σ−(r) = 2Q†
rar

σz(r) = 2n̂r − 1 (1)

Here, σ±(r) = σx(r) ± iσy(r); a
†
r (ar) creates (annihilates) a lattice fermion at r;

n̂r = a
†
rar; and

Qr = exp [−iφr] ; φr = (1/2πθ)
∑

r′
�(r, r′) n̂r′ (2)

In Eq. (2), �(r, r′) is the angle made by (r − r′) with respect to some reference
direction, say ê1. Thus, (i) �(r, r′) changes by 2π when (r − r′) traces out a closed
loop around r′; and (ii) �(r, r) ≡ 0. The requirement that the Pauli operators σ(r)
commute at different lattice sites forces θ to satisfy

θ = 1

(2m + 1)2π
(m = 0, ±1, ±2, . . .)

in Eq. (2).
As shown in Ref. [14], the lattice fermions are spinless and minimally coupled

to a gauge field Ak(r) = �kφr ≡ φr+êk
− φr. The action for the gauge field Aμ(r)

is given by the Chern–Simons term [16]

ACS = − θ

4

∫
dt

∑
r

εμνλAμ(r)Fνλ(r)

Maxwell’s equations for this system take the form

jμ = εμνλFνλ (3)

where jμ is the fermion current, Fνλ is the gauge field tensor, εμνλ is the totally anti-
symmetric Levi-Civita tensor, and μ, ν, λ = 0, 1, 2. Fermion current conservation,
∂μjμ = 0, follows immediately from Maxwell’s equations.
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III. NP-COMPLETE PROBLEM MAXCUT

In this problem, one considers an N-node undirected graph with nodes specified
by r. The nodes (edges) are assigned weights wr (wr,r′ ) and a binary variable sr
is associated with each node r. A cut of the graph is a partition of the nodes into
two sets S0 and S1. For the nodes belonging to S0 (S1), sr is assigned the value
0 (1). The problem is to find the cut that maximizes the payoff function

P(s) =
∑

r

wrsr +
∑
r,r′

sr(1 − sr′ )wr,r′

The QAE algorithm was applied to MAXCUT in Ref. [13], where the dynamics
is driven by the time-dependent Hamiltonian

H(t) = (1 − t/T )H0 + (t/T )HP (4)

Here, T is the algorithm runtime; the initial Hamiltonian H0 is

H0 =
∑

r

1

2
[1 − σx(r)] (5)

and the final/problem Hamiltonian HP is

HP =
∑

r

wr(1 − σz(r))/2 +
∑
r,r′

wr,r′ (1 − σz(r)σz(r′))/2 (6)

Using Eqs. (1) in H(t) gives the fermionized QAE Hamiltonian for MAXCUT:

H(t) = (1 − t/T )
∑

r

[a†rQr + Q†
rar]

+ (t/T )
∑

r

vrn̂r + (t/T )
∑

r

∑
r′ /=r

wr,r′ n̂rn̂r′ (7)

where wr ≡ vr + Wr; Wr = ∑
r′ /=r wr,r′ ; and a term proportional to the identity

has been suppressed. We now show that GS-DFT can be applied to the dynamics
of the instantaneous MAXCUT Hamiltonian H(t) for each t ∈ (0, T ).

Note: Throughout the remainder of this chapter, the instantaneous ground-
state is assumed to be nondegenerate as would be appropriate for the case of a
nonvanishing gap �.

IV. GS-DFT

The QAE algorithm has an adiabatic dynamic that is driven by a slowly varying
Hamiltonian H(t). In our discussion of GS-DFT, we focus on the MAXCUT
Hamiltonian H(t) at a fixed instant of time t = t∗ . By fixing the time, we obtain a
well-defined static Hermitian operator H∗ ≡ H(t = t∗). We aim to show that the
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Hohenberg–Kohn theorem applies to H∗. With this theorem in place, GS-DFT can
be used to study the ground state properties of H∗ = H(t = t∗) for any specific
intermediate time 0 < t∗ < T . We stress that even though the QAE algorithm
works with a slowly varying Hamiltonian, the following GS-DFT discussion is
restricted to the static Hermitian operator H∗ that is the value of H(t) at t = t∗.

Our starting point is the energy functional for the instantaneous MAXCUT
Hamiltonian H∗ = H(t = t∗),

E[n] = min
|ψ〉→n

〈ψ|H∗|ψ〉 (8)

The domain of E[n] is the set of all N-representable site occupation functions
(SOF) nr that can be obtained from an N-fermion wave function. The minimization
in Eq. (8) is over all |ψ〉 for which

n ≡ nr = 〈ψ|n̂r|ψ〉
and the minimizing state |ψmin[n]〉 is thus a functional of nr. Let |ψg〉 denote the
ground state of H∗; Eg the ground state energy; and n

g
r the ground state SOF.

Inserting Eq. (7) into Eq. (8) gives

E[n] = (t∗/T )
∑

r

vrnr + Q[n]

where

Q[n] ≡ min
|ψ〉→n

〈ψ|(Tt∗ + Ut∗ )|ψ〉

and Tt∗ and Ut∗ are the first and third terms, respectively, on the right-hand side
of Eq. (7) at t = t∗.

To establish the HK theorem for H∗ we must show [17]: (i) E[ng] = Eg; (ii) for
nr /= n

g
r , E[n] > Eg; and (iii) the ground state expectation value of any observable

is a unique functional of the ground state SOF n
g
r . By the variational principle,

〈ψ|H∗|ψ〉 ≥ Eg, with equality when |ψ〉 = |ψg〉. Thus, for n = ng, the search in
Eq. (8) returns the ground state |ψg〉 as the state |ψmin[ng]〉 that minimizes E[ng].
It follows that

E[ng] = 〈ψg|H(t)|ψg〉 = Eg

This establishes condition (i). For n /= ng, the minimizing state
|ψmin[n]〉 /= |ψg[ng]〉, and so by the variational principle,

E[n] = 〈ψmin[n]|H(t)|ψmin[n]〉 > Eg

This establishes condition (ii). Finally, because the ground state |ψg〉 =
|ψmin[ng]〉, it is a unique functional of ng and, consequently, so are all
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ground state expectation values,

〈Ô〉gs = 〈ψg|Ô|ψg〉 = 〈ψmin[ng]|Ô|ψmin[ng]〉 = O[ng]

Condition (iii) is thus established, completing the proof of the HK theorem for
H∗ = H(t∗).

To obtain a practical calculational scheme, an auxiliary system of noninteracting
KS fermions is introduced [6], and it is assumed that the ground state SOF n

g
r can

be obtained from the ground state density of the KS fermions moving in an external
potential vks

r . For H∗ = H(t∗), the KS Hamiltonian Hks = T ′
t + Vks is defined to

be

Hks =
∑

r

(1 − t∗/T ){qra
†
r + q∗

rar} +
∑

r

(t∗/T )vks
r n̂r

where qr = 〈Qr〉 is the ground state expectation value of Qr. The effects of Qr
are thus incorporated into the KS dynamics through the mean-field qr. The KS
energy functional εks[n] is

εks[n] = min
|ψ〉→n

〈ψ|Hks|ψ〉 = T ′
t∗ [n] +

∑
r

(t∗/T )vks
r nr (9)

To determine the KS external potential vks
r , we rewrite Eq. (8) as

E[n] = T ′
t∗ [n] +

∑
r

(t∗/T )vrnr + ξxc[n] (10)

where

ξxc[n] ≡ Q[n] − T ′
t∗ [n]

is the exchange-correlation energy functional. Recall that it is through
the exchange-correlation energy functional ξxc[n] that DFT accounts for
all many-body effects. Because n

g
r minimizes εks[n] and E[n], Eqs. (9) and (10)

are stationary about n = ng. Taking their functional derivatives with respect to n,
evaluating the result at n = ng, and eliminating δT ′/δn|n=ng gives

vks
r = vr + (T/t∗)vxc[ng] (11)

for t∗ /= 0. Here, vxc[ng](r) is the exchange-correlation potential, which is the
functional derivative of the exchange-correlation energy functional ξxc[ng],

vxc[ng](r) = δξxc[ng]

δn
g
r



DENSITY FUNCTIONAL THEORY AND QUANTUM COMPUTATION 143

This sets in place the formulas for a self-consistent calculation of the ground
state properties of H∗ = H(t∗) using GS-DFT. Entanglement [18] and its links to
quantum phase transitions [19] have been studied using GS-DFT.

V. TD-DFT

Here, we establish the Runge-Gross theorem [7] for the instantaneous MAXCUT
dynamics. Thus, we focus on the instantaneous HamiltonianH∗ = H(t∗) for a fixed
t∗ (0 < t∗ < T ). Now, however, we suppose that the external potential vr in H(t∗)
begins to vary at a moment we call t = 0. For t ≤ 0, vr(t) = vr, and the fermions are
in the ground-state |ψ0〉 of H(t∗). The Runge-Gross theorem states that the SOFs
nr(t) and n′

r(t) evolving from a common initial state |ψ(0)〉 = |ψ0〉 under the in-
fluence of the respective potentials Vr(t) and V ′

r(t) (both Taylor-series expandable
about t = 0) will be different provided that [Vr(t) − V ′

r(t)] /= C(t). For us,

Vr(t) = (t∗/T )(1 − t∗/T )vr(t)

V ′
r(t) = (t∗/T )(1 − t∗/T )v′

r(t)

and

Vr(t) =
∞∑

k=0

ak(r)tk/k!

V ′
r(t) =

∞∑
k=0

a′
k(r)tk/k!

Let Ck(r) ≡ ak(r) − a′
k(r). The condition that [Vr(t) − V ′

r(t)] /= C(t) means a
smallest integer K exists such that Ck(r) is a nontrivial function of r for all
k ≥ K, while for k < K, it is a constant Ck, which can be set to zero without loss
of generality.

It follows from Eq. (3) that the conserved fermion current jr,μ has components

ĵr,0(t) = nr(t)

ĵr,k(t) = (1/2π)
∑

y

(�kGr,y)∂tny(t)

with k = 1, 2 [14]. Here, Gr,y is the Green’s function for the lattice Laplacian,∑
k=1,2

�k�kGr,y = −2πδr,y

Defining jr,k(t) = 〈ψ0|ĵr,k(t)|ψ0〉, it follows that

∂t{jr,k(t) − j′
r,k(t)} = 〈ψ0|[ĵr,k(t), H(t) − H ′(t)]|ψ0〉 (12)



144 FRANK GAITAN AND FRANCO NORI

Here, jr,k(t) [j′
r,k(t)] and H(t) [H ′(t)] are the expected fermion current and

the Hamiltonian, respectively, when the external potential is vr(t) [v′
r(t)]. The

Hamiltonians H(t) and H ′(t) differ only in the external potential. Defining

δjr,k(t) = jr,k(t) − j′
r,k(t)

and

δVy(t) = Vy(t) − V ′
y(t)

evaluation of the commutator in Eq. (12) eventually gives

∂t{δjr,k(t)} = −(1/2π)
∑

y

(�kGr,y) δVy(t)My(t) (13)

where

My(t) = 〈ψ0|(a†yQy + Q†
yay)|ψ0〉

With K defined, taking K time-derivatives of Eq. (13) and evaluating the result at
t = 0 gives

∂K+1

∂tK+1 (δjr,k(t))

∣∣∣∣
0

= −1

2π

∑
y

(�kGr,y)My(0)CK(r) (14)

where we have used that

∂k/∂tk(δVy(t))|t=0 = Ck(y) = 0

for k < K. It is important to note that My(0) /= 0. This follows because

[H(t∗), nr(t∗)] /= 0

for t∗ /= T , and so the eigenstates of H(t∗) (specifically, its ground state |ψ0〉)
cannot be fermion number eigenstates, which ensures the ground state expectation
value

My(0) = 〈ψ0|(a†yQy + Q†
yay)|ψ0〉 /= 0

for t∗ /= T . It follows from the continuity equation for the fermion current that

∂t(nr(t) − n′
r(t)) = −

∑
k=1,2

�k(δjr,k(t))
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Taking K time-derivatives of this equation, evaluating the result at t = 0, and using
Eq. (14) gives

∂K+2

∂tK+2 (nr(t) − n′
r(t))|t=0 = −CK(r)Mr(0) /= 0 (15)

where we have used the equation of motion for Gr,y. Eq. (15) indicates that nr(t)
cannot equal n′

r(t) because it ensures that they will be different at t = 0+, and
so cannot be the same function, which proves the Runge-Gross theorem for the
instantaneous MAXCUT dynamics.

We have just seen that when potentials Vr(t) and V ′
r(t) differ by a time-

dependent function C(t), they give rise to the same SOF nr(t). However, the wave
functions produced by these potentials from the same initial state will differ by a
time-dependent phase factor. For our purposes, it is important to note that this extra
phase factor cancels out when calculating the expectation value of an operator. In
particular, it will cancel out when calculating the instantaneous energy eigenval-
ues En(t) = 〈En(t)|H(t)|En(t)〉. As a result, this phase factor will not affect our
calculation of the minimum energy gap to be described next. Having said this, it
is worth noting that this subtlety is not expected to cause difficulties in practice
because the probe potential Vr(t) is assumed to be under the direct control of the
experimenter, and so the precise form of Vr(t) is known. When an experimentalist
says a sinusoidal probe potential has been applied, this means Vr(t) = Vr sin ωt;
it does not mean Vr(t) = Vr sin ωt + C(t). Thus, in a well-defined experiment
C(t) = 0.

The KS system of noninteracting fermions can also be introduced in TD-DFT
[7]. We must still assume that the interacting SOF nr(t) can be obtained from the
SOF of the noninteracting KS fermions moving in the external potential vks

r (t).
The potentials vks

r (t) and vr(t) are related via (t∗ /= 0)

vks
r (t) = vr(t) + (T/t∗) vxc[nr(t)] (16)

though Eq. (16) is to be thought of as defining the exchange-correlation potential
vxc[nr(t)].

VI. MINIMUM GAP

A problem of long-standing treachery in GS-DFT is the calculation of the exci-
tation energies of a fermion system. TD-DFT was able to find these energies by
determining the system’s frequency-dependent linear response, and relating the
excitation energies to poles appearing in that response [20]. The arguments used
are quite general and can be easily adapted to determine the energy gap for the
instantaneous MAXCUT dynamics.

Previously, we considered an external potential that becomes time-varying for
t ≥ 0. Our interest is the interacting fermion linear response, and so we assume
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that the total potential has the form

vtot
r (t) = vr + v1

r(t)

with v1
r(t) a suitably small time-varying perturbation. The probe potential v1

r(t)
generates a first-order response n1

r(t) in the SOF:

ntot
r (t) = ng

r + n1
r(t)

The susceptibility χr,r′ (t − t′) connects the first-order probe potential to the SOF
response. The total potential vtot

r (t) is related to the KS potential vks
r (t) through

Eq. (16), and by assumption, the SOF for both the interacting and KS fermions
is the same. The time-Fourier transform of the SOF response n1

r(ω) can then be
determined from the time-Fourier transforms of the KS susceptibility χks

r,r′ (ω), the

exchange-correlation kernel fxc[ng](r, r′; ω), and the probe potential v1
r(ω):∑

y′
{δr,y′ −

∑
r′

χks
r,r′ (ω)fxc[ng](r′, y′; ω)}n1

y′ (ω) =
∑

r′
χks

r,r′ (ω)v1
r′ (ω) (17)

The KS susceptibility [8] depends on the KS static unperturbed orbitals φj(r); and
the corresponding energy eigenvalues εj and orbital occupation numbers fj ,

χks
r,r′ (ω) =

∑
j,k

(
fk − fj

) φj(r)φk(r)φj(r′)φk(r′)
ω − (εj − εk) + iη

(18)

The exchange-correlation kernel fxc[ng] incorporates all many-body effects into
the linear response dynamics and is related to the exchange-correlation potential
vxc[ng] through a functional derivative,

fxc[ng] = δvxc[ng]

δng

In general, the interacting fermion excitation energies

�jk = Ej − Ek

differ from the KS excitation energies

ωjk = εj − εk

The right-hand side of Eq. (17) remains finite as ω → �jk, while the first-order
SOF response n1

y′ (ω) has a pole at each �jk. Thus, the operator on the left-hand

side acting on n1
y′ (ω) cannot be invertible. Otherwise, its inverse could be applied

to both sides of Eq. (17) with the result that the right-hand side would remain finite
as ω → �jk, while the left-hand side would diverge. To avoid this inconsistency,
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the operator must have a zero eigenvalue as ω → �jk. Following Ref. [20], one
is led to the following eigenvalue problem:

∑
k′,j′

Mkj;k′j′ (ω)

ω − ωj′k′ + iη
ξk′j′ (ω) = λ(ω)ξkj(ω) (19)

where, writing

αk′j′ = fk′ − fj′

and

�kj
r = φ

k
rφ

j
r

we have

Mk′j′;kj(ω) = αk′j′
∑
r′,y′

�
kj

r′ fxc[ng](r′, y′; ω)�k′j′
y′ (ω)

It can be shown that λ(�jk) = 1.
So far, the argument is exact. To proceed further, some form of approxima-

tion must be introduced. In the single-pole approximation [20], the KS poles are
assumed to be well-separated so that we can focus on a particular KS excitation
energy ωjk = ω∗. The eigenvectors ξk′j′ (ω) and the matrix operator Mkj;k′j′ (ω) are
finite at ω∗, while the eigenvalue λ(ω) must have a pole there to match the pole
on the left-hand side of Eq. (19):

λ(ω) = A(ω∗)

ω − ω∗
+ O(1)

Let ω∗ be d-fold degenerate: ωk1j1 , . . . , ωkdjd
= ω∗. Matching singularities in

Eq. (19) gives
d∑

l=1

Mkiji;k′
l
j′
l
(ω∗)ξn

k′
l
j′
l
= An(ω∗)ξn

kiji
(ω∗) (20)

where i, n = 1, . . . , d. For our purposes, the eigenvalues An(ω∗) are of primary
interest and are found from Eq. (20). From each An(ω∗), we find

λn(ω) = An(ω∗)

ω − ω∗
Since λn(�jk) = 1, it follows that the sum of λn(�jk) and its complex conjugate
is 2. Plugging into this sum the singular expressions for λn(�jk) and that of its
complex conjugate, and solving for �n

jk gives

�n
jk = ω∗ + Re[An(ω∗)]
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Interactions will thus generally split the ω∗-degeneracy. Now let

δE = min
n

Re[An(ω∗)]

and

�jk = min
n

�n
jk

Our expression for �n
jk then gives

�jk = ω∗ + δE

In the context of the QAE algorithm, our interest is the energy gap

�(t∗) = E1(t∗) − E0(t∗)

separating the instantaneous ground- and first-excited states. In this case, our ex-
pression for �jk gives

�(t∗) = [ε1(t∗) − ε0(t∗)] + δE(t∗) (21)

To obtain the minimum gap � for QAE numerically, one picks a sufficiently large
number of t∗∈(0, T ); solves for �(t∗) using the KS system associated with H(t∗) to
evaluate the right-hand side of Eq. (21); and then uses the minimum of the resulting
set of �(t∗) to upper bound �. Because the KS dynamics is noninteracting, it has
been possible to treat KS systems with N ∼ 103 KS fermions [9–11], which allows
evaluation of the minimum gap �(N) for the QAE algorithm for N ∼ 103.

VII. DISCUSSION

As with all KS calculations, the minimum gap calculation requires an approxi-
mation for the exchange-correlation energy functional ξxc[n]. Note that, because
the qubits in a quantum register must be located at fixed positions for the register
to function properly, the associated JW fermions are distinguishable because they
are each pinned to a specific lattice site. Consequently, antisymmetrization of the
fermion wave function is not required, with the result that the exchange energy
vanishes in the MAXCUT dynamics. The exchange-correlation energy functional
ξxc[n] is then determined solely by the correlation energy, which can be calculated
using the methods of Ref. [21]. Parametrization of these results yields analytical
expressions for the correlation energy per particle that upon differentiation, give
vxc[n] and fxc[n]. Replacing n → nr in ξxc[n] gives the local density approx-
imation (LDA) for GS-DFT; while n → nr(t) gives the adiabatic local density
approximation (ALDA) for TD-DFT. These simple approximations have proven
to be remarkably successful and provide a good starting point for the minimum
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gap calculation. Self-interaction corrections to ξxc[n] are not necessary since the
two-fermion interaction [see Eq. (7)] has no self-interaction terms. Finally, be-
cause the fermions are pinned, it will be necessary to test the gap for sensitivity to
derivative discontinuities [22] in ξc[n].

After our initial work appeared [12], others followed this line of research [23].
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