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The challenge of identifying hidden order within complex physical
systems receives a boost from new research exploring the link between
quantum circuit complexity and unsupervised machine learning.
Yanming Che from the University of Michigan, Clemens Gneiting and
Franco Nori from RIKEN, along with Xiaoguang Wang from Zhejiang Sci-
Tech University, demonstrate how measuring the complexity of quantum
circuits can improve the efficiency and interpretability of algorithms
designed to uncover patterns in many-body systems. The team
establishes a direct connection between circuit complexity and
measurable quantities like fidelity and entanglement, allowing them to
formulate practical similarity measures for use in machine learning.
Through numerical experiments on various quantum models, including



the bond-alternating XXZ spin chain and Kitaev’s toric code, they show
these new methods outperform existing approaches, offering a powerful
new tool for understanding and classifying quantum phases of matter.

In machine learning, researchers explore quantum circuit complexity, a
key concept in quantum computation and quantum information science,
to build interpretable and efficient unsupervised machine learning
methods for understanding quantum many-body systems exhibiting
topological order. To bridge the gap between theoretical concepts and
practical applications, the team presents two theorems that connect
Nielsen’s quantum circuit complexity with changes in fidelity and the
generation of entanglement, enabling the creation of fidelity-based and
entanglement-based similarity measures, known as kernels, more readily
implemented in practical algorithms.

Quantum Machine Learning Landscape and References

This collection of references covers a broad range of topics within
guantum machine learning, many-body physics, quantum error
correction, and related fields, demonstrating a growing interest in using
guantum algorithms to improve machine learning tasks and applying
machine learning techniques to enhance quantum systems.
Foundational work by Biamonte and colleagues introduces the field of
gquantum machine learning, while Bartkiewicz and colleagues
demonstrate experimental kernel-based quantum machine learning.
Recent studies explore quantum neural networks, such as the QKAN
introduced by Ivashkov and colleagues, and the use of reinforcement
learning for preparing quantum ground states, optimizing circuits, and
performing error correction. The references also highlight significant
progress in understanding and simulating complex quantum systems,
with tensor networks, a dominant technique in this area, explored by
Schollwoeck and colleagues, and Vermersch and colleagues
demonstrating their use for enhanced estimation of quantum properties.

Studies on entanglement and area laws, led by Bravyi and colleagues,
explore the relationship between entanglement, the size of quantum
systems, and the stability of quantum states, while key papers by
Pollmann and Turner investigate symmetry-protected topological
phases, and Elben and colleagues demonstrate the detection of
topological invariants using randomized measurements. Recent work by
Granet and colleagues explores entanglement transitions in
measurement-only circuits, and a growing body of research focuses on



mixed-state topological order. Albash and Lidar provide a
comprehensive review of adiabatic qguantum computation, a promising
approach to solving complex optimization problems. The collection also
covers essential aspects of quantum error correction and quantum
information theory, with Liu and colleagues focusing on quantum Fisher
information and multiparameter estimation, and Taddei and colleagues
discussing the quantum speed limit for physical processes. Foundational
texts by Helstrom and Holevo lay the groundwork for qguantum
detection and estimation theory, and studies by Hutter and Wehner, and
Van Acoleyen and colleagues, explore the limits on entanglement
generation and the stability of quantum states. Emerging trends include
hybrid quantum-classical machine learning, reinforcement learning for
quantum control, topological order in mixed states, and the continued
development of quantum simulation techniques using tensor networks,
all aiming to demonstrate a quantum advantage for specific tasks.

Quantum Circuits Reveal Topological Phase Transitions

Researchers have established a new connection between quantum
complexity and the ability to identify and categorize different phases of
matter, particularly those exhibiting complex topological order,
addressing a significant challenge in physics: detecting topological
phases defined by global properties. Existing methods often struggle
with strongly interacting quantum systems, where traditional
approaches become inefficient. The team proposes a novel approach
based on the idea that topologically equivalent quantum states can be
connected by relatively simple quantum circuits, building on the
concept of quantum circuit complexity, which measures the cost of
transforming one quantum state into another. By using this complexity
as a measure of distance between states, researchers developed new
kernels, mathematical tools that allow machine learning algorithms to
identify patterns and group similar states together.

Experiments demonstrate that these new kernels significantly
outperform existing methods in clustering different quantum phases,
including the bond-alternating XXZ spin chain, the ground state of
Kitaev’s toric code, and random quantum states. The improved
performance stems from the ability of the new approach to capture the
intricate entanglement patterns characteristic of topological order at
multiple scales, offering a potentially optimal solution for unsupervised
machine learning and establishing a link between quantum complexity
and classifying guantum phases of matter. By framing the problem in



terms of minimal quantum circuit cost, researchers provide a
theoretically grounded approach to unsupervised learning, opening new
avenues for both fundamental research and potential applications in
materials science and quantum technologies.

Quantum Kernels Reveal Hidden Quantum Order

This research establishes a connection between quantum circuit
complexity and unsupervised machine learning, offering a new approach
to identifying order in complex quantum systems. By leveraging
Nielsen’s quantum circuit complexity, the team developed practical
kernels, mathematical functions that measure similarity, based on fidelity
and entanglement. Numerical experiments demonstrate these kernels
effectively cluster different quantum phases, outperforming existing
methods in clarity and interpretability, particularly when applied to the
bond-alternating XXZ spin chain. The study’s significance lies in its
ability to provide both accurate and understandable results, a crucial
combination for advancing the field of topological quantum order. The
entanglement-based kernel proved robust against noise and offered
insights into the relationship between long-range entanglement and
topological phases. While the current work focuses on pure and gapped
ground states, the authors acknowledge limitations and suggest
promising avenues for future research, including applications to gapless
systems, entanglement transitions, and mixed-state topological order, as
well as exploring guantum machine learning techniques and combining
their approach with reinforcement learning for quantum state
generation, potentially leading to even more powerful tools for
understanding and manipulating complex quantum systems.
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