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Very quick overview of various types of
Quantum Hall Effects (for electrons).

Before considering the Quantum
Spin Hall Effect (QSHE) for light.



Hall Spin Hall Anomalous Hall
(1879) (2004) (1881)

Quantum Hall Quantum spin Hall ‘Quantum anomalous Hall
(1980) (2007)

Quantum Hall Quantum spin Hall Quantum anomalous Hall

Quantum Hall trio: For all three quantum Hall effects, electrons flow
through the lossless edge channels, with the rest of the system insulating.



QSHE (Quantum Spin Hall Effect) and
Topological Insulators

for electrons




QSHE and topological insulators

The quantum spin Hall effect means the presence of

topologically—protected edge modes at the interface
between two 2D insulators. Such modes are

characterized by strong spin—momentum locking:
opposite spins propagate in opposite directions.

“Spin filtered” or “helical” edge states
vacuum

Kane & Mele, PRL (2005); Bernevig, Hughes, Zhang, Science (2006)



QSHE and topological insulators

A 3D topological insulator is a 3D generalization of such states.

Such insulator exhibits 2D surface modes, which are

helical massless fermions with spin—momentum locking
(vortex spin texture):

—

=9

Hiseh et al., Nature (2009); Hasan & Kane, RMP (2010)



Now let’s look for a
Photonic counterpart
of the electronic
Quantum Spin Hall effect.

QOSHE of light:
Surface modes with
spin—momentum locking



It has been suggested that photonic topological
insulators can be created in complex metamaterials
structures.

We have shown that pure free-space light already
possesses intrinsic QSHE,

and that simple natural materials (such as metals
supporting surface plasmon-polariton modes) exhibit
some features that resemble topological insulators.

We show that the transverse spin in evanescent waves
(our work from 2012-14) and spin-controlled
unidirectional excitation of surface modes or
waveguide modes can be interpreted as manifestations
of the QSHE of light.



Basic spin properties of light

The bulk modes for free light are propagating plane
waves:
, s X+iocy
E° «ce’explikz), e =
plikz) 2

Here o =*1 is the helicity, and photons carry spin:

S=0'E
k

Longitudinal
helicity—dependent
spin




The electric field vectors of
a traveling circularly-polarized
electromagnetic wave.




Fig. 1. Transverse spin in evanescent electro-
magnetic waves. The evanescent wave (Eq. 4)
propagates along the z axis and decays expo-
nentially in the x > 0 semi-space. (Inset) The
instantaneous distributions of the electric and magnetic wave fields for the case of linear transverse-
magnetic polarization, & = (1,0)". The cycloidal (x.z)-plane rotation of the electric field generates the
transverse spin S, (Eq. 5) (20, 21). The sign of the transverse spin depends on the direction of propagation
of the evanescent wave.



Surface modes and transverse spin

Evanescent modes have spin. Let us consider their
evanescent—wave tails: k=£kZzZ+ikX

(k)

E"oce“exp(ikzz—lcx), e"=Li—ik—2J

 Rek x Imk

S, 2
(Rek)

Transverse
helicity—independent
spin!

Bliokh & Nori, PRA (2012) Bliokh, Bekshaev, Nori, Nature Comm. (2014)



Types of waves

Surface waves (e.g., Rayleigh or ocean waves):

©2016, Dan Russell




Fig. 1. Transverse spin in evanescent electro-
magnetic waves. The evanescent wave (Eq. 4)
propagates along the z axis and decays expo-
nentially in the x > 0 semi-space. (Inset) The
instantaneous distributions of the electric and magnetic wave fields for the case of linear transverse-
magnetic polarization, & = (1,0)". The cycloidal (x.z)-plane rotation of the electric field generates the
transverse spin S, (Eq. 5) (20, 21). The sign of the transverse spin depends on the direction of propagation
of the evanescent wave.



Surface modes and transverse spin

The nature of this transverse spin is similar to the circular motion of water in surface ocean waves:

M. Stone, Science (2015) . “Perspective” to our paper in the same issue.







Extraordinary Momentum
and Spin in Evanescent Waves

Bliokh, Bekshaev, Nori

Nature Communications (2014).

Additional results in:
Physics Reports (2015)
Nature Photonics (2016)
NJP (2018),

PRL (2018)

Nature Communications (2019)

Early work in: Bliokh & Nori, PRA (2012).



Well-known textbook statements:

* Momentum of light is determined by the
Poynting vector

e Momentum of light is directed along the wave
vector and is independent of polarization

e Spin angular momentum of light is determined
by the circular polarization and is directed along
the wave vector



Our results challenge textbook statements:

by the circular polarization an irected along
the wave vector



Transverse spin and momentum

Antognozzi, Bermingham, Harniman, Simpson, Senior, Hayward, Hoerber, Dennis, Bekshaev, Bliokh, Nori
Direct measurements of the extraordinary optical momentum and transverse
spin-dependent force using a nano-cantilever. Nature Physics (2016).

X Poynting vector

Spin momentum

(Belinfante) Canonical momentum

(wave vector)

Radiation pressure

matter

circular

polarization Weak spin force



Transverse spin and momentum

+45° %




Transverse spin and momentum

Transverse force, x102 (pN)

N A O
Qo O o

o A
S O

laser 1 off

laser 1 on

150 100 50 0
Counts

Cantilever displacement (nm)

\}
o
o

—L
o
o

R CRN
=) o O
o o o o

o

— NUMEerics

L 3 é)t(pwerimen't

N
O

‘-21‘0‘ , .0.

+—>

20

Quarter waveplate orientation ¢ (°)

20

@

Longitudinal force (pN)

-
T

o

N

— Nnumerics
- = = particle model
@ experiment

,O...2.O.

>

Quarter waveplate orientation ¢ (°)

40

@



Three-Dimensional Measurement of the
Helicity-Dependent Forces on a Mie Particle

Liu, et al (the group of Federico Capasso)
Phys. Rev. Lett. 120, 223901 — Published 31 May 2018

They report the simultaneous measurement of all components of this
polarization-dependent optical force by using a 3D force spectroscopy
technique with femtonewton sensitivity.

The vector force fields are compared quantitatively with theoretical
calculations as the polarization state of the incident light is varied and
show excellent agreement.

By plotting the 3D motion of the Mie particle in response to the switched
force field, they obtained visual evidence of the effect of spin
momentum on the Poynting vector of an evanescent optical field.



Quantum Spin Hall Effect (= QSHE) of light

This unusual transverse spin (independent of the
polarization) survives in the TE or TM surface modes.

Most importantly, opposite directions of propagation
correspond to opposite transverse spins:

Bliokh, Smirnova, Nori, Science (2015)



Quantum Spin Hall Effect (= QSHE) of light

The metal-vacuum interface resembles

(using a CM analogy) the interface
between a semi-metal and an insulator.

AW

vacuum

Metal = Insulator (for photons! Below w,)



Optical spin-momentum locking has been
observed in many separate experiments.

Some involved Surface Plasmon Polaritons
(SPPs) at metal-vacuum interfaces

(which resemble the interface between a
semi-metal and an insulator).

The SSP modes exhibit spin-momentum
locking, which are typical for electron QSHE
states.



Quantum Spin Hall Effect (= QSHE) of light: experiments

Since 2013 several groups have independently reported
experiments on spin—dependent unidirectional excitation of
surface or waveguided Maxwell waves:

5 50 Transversely-incident
TI N ! light with usual spin
| £ <,

Scatterer: coupling

10 sUrface moces

Spin-dependent
direction of
surface modes




Quantum Spin Hall Effect (= QSHE) of light: experiments
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Petersen et al., Science (2014); Mitsch et al., Nature Commun. (2014)
le Feber et al. Nature Commun. (2015)



Quantum Spin Hall Effect (= QSHE) of light: experiments
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We have shown that pure free-space light already possesses intrinsic QSHE,

and that simple natural materials (such as metals supporting surface plasmon-
polariton modes) exhibit features that resemble topological insulators.

We show that the transverse spin in evanescent waves (our work from 2012-14)
and spin-controlled unidirectional excitation of surface or waveguide modes can
be interpreted as manifestations of the QSHE of light.

Light possesses intrinsic QSHE, i.e., strong spin—momentum locking in surface
Maxwell modes.

The transverse polarization—independent spin in evanescent waves (stemming
from the transversality and SOI of light) is responsible for it.

It differs in its origin from the QSHE of electrons (fermions). Spin—-momentum
coupling rather than spinor-momentum coupling.

It seems that the dual symmetry between magnetic and electric properties plays
an important role in the QSHE of light, but this is not fully clarified yet.



The question

Since 2014, we were considering this question:

Can the very basic surface waves in Maxwell equations
be described as topological surface modes?

Do surface plasmons at metal—dielectric interfaces have a
topological origin?

A X

surface plasmon




Topological
non-Hermitian origin of
surface Maxwell waves

Konstantin VY. Bliokh, D. Leykam, M. Lein, F. Nori
Nature Communications, 10, 580 (2019)



Surface modes of Maxwell equations




Surface Maxwell modes

Maxwell equations (isotropic, homogeneous, lossless):

[VXE:—,uatH, VxH=¢0E, V-HzV-EzO]

Surface modes at an interface between two media:

T™ polarizationw

P )

I'E polarization




Surface Maxwell modes

“Phase diagram” of surface TE/TM Maxwell modes in
the (gr”ur): (‘92/‘919”2//“1) plane:
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Shadrivov et al. PRE (2004); Kats et al. PRL (2007); Bliokh et al. Nat. Comm. (2019)



Surface Maxwell modes

These diagrams are deformed with deformations of the
interface (see, e.g., surface plasmons on a sphere), but
there are some general robust features:

A The TM-mode can exist only at interfaces where the
permittivity changes sign: Sgn(g ): 2

A The TE-mode can exist only at interfaces where the
permeability changes sign: Sgn( /”r) o

Why is this so? Is there a fundamental reason for this?



Topological surface modes of
the Dirac equation




Topological Dirac modes

The Dirac equation (1D, for simplicity):

@ L N[ \ v
7 o . SO AT 78
Hy=po_+mo = - =Y

k Tt G o

The surface mode can appear at an interface between two
media with different masses:

Jackiw & Rebbi PRD (1976)



Topological Dirac modes

The same mode occurs in 2D and 3D and it has a zero-
mass spectrums:




Topological Dirac modes

Most importantly, the Dirac surface mode appears only at
interfaces where the mass changes its sign: Sgn( m ): g by
r

This is related to the nontrivial Mobius-strip-like (Z,)
topology of the Dirac Hamiltonian and bulk eigenmodes:

m, >0 m, >0

N
<

ZERN

bulk

.
e




Topological Dirac modes

Most importantly, the Dirac surface mode appears only at
interfaces where the mass changes its sign: Sgn( m ): g by
r

This is related to the nontrivial Mobius-strip-like (Z,)
topology of the Dirac Hamiltonian and bulk eigenmodes:

m, <0 m, >0
! 4
p;- /\p:‘-




Topological Dirac modes
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Hasan & Kane RMP (2010), Qi & Zhang (2010), ...



Topological Dirac modes

One can introduce a topological Z, invariant:

( )

w{m)=5[1-sen(m)]= (0.1

\. J

There is a bulk-boundary correspondence, which
determines the number of surface modes:

Hasan & Kane RMP (2010), Qi & Zhang (2010), ...



Topological Dirac modes

Notably, one can present the flip in the mass sign as
a 7 rotation in the complex-mass plane:

()= L) -(0)

Bliokh et al. Nat. Commun. (2019)



Weyl form of Maxwell equations and
topological properties of the helicity




Maxwell equations and helicity

Relativistic Dirac/Weyl-like form of Maxwell equations:

A

[ (§ -f))‘P =io™ J ¥ } p=-iV, S=spin-1 matrices

~N

L b (g (oo
\L 0 VXJLHJ_wk—ig OJLHJ

Here the key operator is helicity:

4 R )
(Lt

—ie O

J

Majorana, Oppenheimer, Berry, Bialynicki-Birula, ..., Alpeggiani et al. PRL (2018)



Maxwell equations and helicity

Helicity is a very important property of light, which is
determined by the projection of spin § onto the
momentum direction p/ ‘p‘ :

[t is also related to the dual symmetry between E, and H.

Free-space light has two helicity eigenstates with & = %1
(e.g., circularly polarized plane waves):

Calkin (1965); QED:;...; G. Molina-Terriza et al.; Bliokh et al.



Maxwell equations and helicity

The helicity operator in a lossless medium is generally
non-Hermitian, and its eigenvalues are complex: ‘6‘ =1.

This makes physical sense: e.g., in metals (& < 0) the
momentum (wavevector) becomes imaginary, while the
spin (polarization rotation) remains real:

mcndent %’

&=~

reflected

metal

Alpeggiani et al. PRL (2018); Bliokh et al. NC (2019)



Maxwell equations and helicity

The helicity operator in a lossless medium is generally
non-Hermitian, and its eigenvalues are complex: ‘6 =1.

Furthermore, helicity changes its sign in negative-index

media, (g, ﬂ) iy (—g,— ﬂ): S — —S (because the

momentum ﬂips):
S=-1
S
/P P

l\r.fmlﬂ
negative-n medium

oV

Alpeggiani et al. PRL (2018); Bliokh et al. NC (2019)



Maxwell equations and helicity

Summarizing this, we obtain properties of the photon
helicity in the four types of optical isotropic media:

positive-index positive-index A
“‘metal’ medium &= LSE0 e
‘n‘ —ie 0
n= \n.| \. /
| - E 4 N
n=-—|n n=—iln S=+"1
" o 7
negative-index negative-index \. /

medium ‘metal”

Bliokh et al. Nat. Commun. (2019)



Maxwell equations and helicity

Transitions between these four types of media can be
regarded as discrete rotations in the complex helicity plane:

, S
[
=
—1
e<0 A >0
. .
<0 u<0 ;
o - e - -
-1 1
—ié




Maxwell equations and helicity

This maps the interface helicity properties to the
Z,=7,%Z, (double-M&6bius) group:




Maxwell equations and helicity

Comparing this with the Z, features of the Dirac
Hamiltonian:




Maxwell equations and helicity

We introduce the topological Z, “helicity winding” number:

(- )

w(e,) == Arg(n)=(0,1,2,- 1)

\. J/

or, equivalently, two topological Z, numbers:

4 )

w™(2)=-[1-sen(2) ] = (0.1)

:1 — sgn(,u)_ (O, 1)

/

Bliokh et al. Nat. Commun. (2019)



Maxwell equations and helicity

One fundamental novelty should be emphasized:

All previous works on topological insulators considered
topological properties of the Hamiltonian operator.

In contrast, we consider the topology of the helicity
operator in Maxwell equations.

[ topology of H — topology of S J

This considerably extends the topological approach:
any conserved-quantity operator can be considered.



Topological Dirac modes

The 1D mode of Rebbi-Jackiw also occurs in 2D and 3D
and it has a zero—mass spectrum:




Topological Dirac modes

The Dirac equation (1D, for simplicity):

B A ( iy \( v, )
po_+mo_= =y
\ ARERY

The surface mode can appear at an interface between two

Hy

media with different masses:

Jackiw & Rebbi PRD (1976)



Topological Dirac modes

Most importantly, the Dirac surface mode appears only at
interfaces where the mass changes its sign: Sgn(mr) - -1

This is related to the nontrivial Mébius—strip—like (Z,)
topology of the Dirac Hamiltonian and bulk eigenmodes:

m, <0 m, >0

NN N
RN




Topological Dirac modes

One can introduce a topological Z, invariant:
1
w(m)= 1 [1-sen(m)]- 01

There is a bulk—=boundary correspondence, which
determines the number of surface modes:

N <[}l = () =0

Hasan & Kane RMP (2010), Qi & Zhang (2010), ...



Topological Dirac modes

Notably, one can represent the flip in the mass sign as
a srrotation in the complex—-mass plane:

o)=L Ar(m)= 01

Bliokh et al. Nat. Commun. (2019)



Maxwell equations and helicity

One fundamental novelty should be emphasized:

All previous works on topological insulators considered
topological properties of the

In contrast, we consider the topology of the helicity
operator in Maxwell equations.

{ topology of H — topology of S J

This considerably extends the topological approach:
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Dirac Maxwell
equation equations

Schematics of topological surface modes in the Dirac and Maxwell
equations. a The Dirac equation with a finite mass m is characterized
by the gapped bulk spectrum E(p). An interface between “media”
with opposite-sign masses +m, and bulk spectra (schematically
shown in red and blue), supports topological surface modes with
massless spectrum (shown in green).



Dirac Maxwell
equation equations

__ Surface

b Maxwell equations possess massless bulk spectra (not shown here), which are
double-degenerate with respect to opposite helicity states. These bulk helicity
eigenmodes have opposite circular polarizations, i.e., chiral spatial distributions
of the electric or magnetic field (shown in red and blue here). An interface
between two media with different helicity properties (controlled by the signs of
the permittivity € and permeability u of the medium) supports zero-helicity
surface waves with transverse-electric or transverse-magnetic linear polarizations
(shown in green).



Topological edge mode in the Dirac equation c ‘ I
‘ E ‘ E Positive-index Positive-index
m> 0 0 m<0 0 “metal” medium
n=i|n| n=\|nj
Z=—i|Z Z=|2
. | —n ® o —b 4 | £]
—m m m —-m Z=|Z| Z=—i|Z| ¢
n=-nj n=-i|n|
Negative-index Negative-index
b medium “metal”
Surface modes in the Maxwell equations
£>0 ‘ e<0 ~ e<0 ‘ ~ &>0
S S S S
w=>0 >0 <0 u<0 i
- - —— » ——  ——P e

Winding of the energy and helicity spectra
in the Dirac and Maxwell equations.



a Topological edge mode in the Dirac equation

m=0 ‘ Eo m<0 Eo
- . —— = o—P—
—m m m —-m

Winding of the energy spectra in the Dirac equation.

a Changing the sign of the mass m in the Dirac equation is
equivalent to a m rotation (shown by the arrows) of the rest-
energy spectrum E, = E(0) =m in the complex-mass plane.

This results in a single zero-mass surface mode (shown by the
star symbol) protected by the topological Z, winding number.

The dot and star symbols with their colors correspond to the rest-
energy spectra of the bulk and surface modes shown in Fig. la.


https://www.nature.com/articles/s41467-019-08397-6#Fig1

X
Dirac Maxwell
equation equations
y Z



b Surface modes in the Maxwell equations

>0 ‘ S <0 < <0 s £>0
n=>0 u=>0 ; <0 <0 i
& B — ® o—

-1 1 -1 1
—i —i

Winding of the helicity spectra in Maxwell equations.

b Changing the signs of the permittivity € and permeability p
in Maxwell equations produces +71/2 and n rotations of

the helicity spectrum in the complex helicity plane.

This results in the appearance of one or two zero-helicity
(transverse-electric and transverse-magnetic) surface modes

(the star symbols) described by the topological Z, number.



C H

Positive-index Positive-index
“metal” medium
n=1i|n|j n=\|n|

L=—i|Z| Z=|Z|
Z=|2]| Z=—i|Z|
n=-—\n| n=-—i|nj

Negative-index Negative-index
medium “metal”

¢ The medium-index diagram
showing the signs of the refractive index n

and impedance Z in four possible types of media.
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(e.g., sound or P-elastic):
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Transverse (e.g., S—elastic):

niry .Trﬁ ",'i."'l-

e TR




Types of waves

Surface waves (e.g., Rayleigh or ocean waves):
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Electromagnetic waves

Bulk electromagnetic:

Surface-plasmon:
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Analogy with topological insulators

This is analogous to the topological edge/surface
states in electron topological insulators:

el

Kane & Mele PRL (2005); Bernevig, Hughes, Zhang Science (2006)



The question

Since 2014, we were considering this idea:

Can the very basic surface waves in Maxwell equations
be described as topological surface modes?

Do surface plasmons at metal-dielectric interfaces have a

topological origin (Nobel Prize 2016)?
A X

surface plasmon




Surface modes of Maxwell equations




Surface Maxwell modes

Maxwell equations (isotropic, homogeneous, lossless):

[VXE:—,uatH, VxH=¢0E, V-HzV-EzO]

Surface modes at an interface between two media:

e

(51 w”l) :TM polarizationj

> TE polarization

S




“Phase diagram” of surface TE/TM Maxwell modes in
the (gr”ur)z (52/51,;12/;11) plane:

3 3
2 ep >0 2 &M <0
1 TM Ritghie 1
(1957)
H, H,
0 0
1 -1
_ TE Alu &
-2| Ruppin TE -2 Engheta
| oo 1/T™|  dooy
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
E E
r r

Shadrivov et al. PRE (2004); Kats et al. PRL (2007); Bliokh et al. Nat. Comm. (2019)



These diagrams are deformed with deformations of the

interface (see, e.g., surface plasmons on a sphere), but
there are some general robust features:

d The TM-mode can exist only at interfaces where the
permittivity changes sign: sgn(gr) = -]

[ The TE-mode can exist only at interfaces where the
permeability changes sign: Sgn(/”r) = =]



Most importantly, the Dirac surface mode appears only at
interfaces where the mass changes its sign: Sgn(mr) =—1.

This is related to the nontrivial Mébius—strip-like (Z,)
topology of the Dirac Hamiltonian and bulk eigenmodes:

m, <0 m, >0

NN N
RN




Thus, surface electromagnetic waves (e.g., surface
plasmons) have a topological origin related to the non-
Hermitian helicity operator.

Helicity is ill-defined at ¢ =0and u =0, which split the
(g,ﬂ() plane into the four topologically—different
quadrants: A

0 i

(o 1)
Yy

A Y A A A A T AV T A A A i A

NN EEEEY VNS
o
[
-
o
-
.
. ™
o
o
-
]
o
-

oY



These special valuesg =0 and g =0 correspond to the
exceptional points (EPs) of the operator

A 0 iu

o™ =‘n S =

—-ie 0
Modern theory of non—-Hermitian topological systems:
the topological transitions happen at EPs.
S I m Ei

Lee (2016); Leykam et al. (2017); Gong et al. (2018); Kunst et al. (2018); Yao, Wang (2018)



In our case, we have exceptional points of the helicity
operatorin a system!

Two eigenstates coalesce in the EP and form a chiral state:

(" )

(Y (1 ) L (1) (o)
SR I R Y

These are electric/magnetic—field states in the g-near-
zero and g-near-zero materials. A completely new
non-Hermitian twist for this field of research!

Silveirinha & Engheta PRL (2006); A. Alu et al. IEEE (2007); Liu et al., PRL (2008); ...




v Surface electromagnetic modes between isotropic lossless
media (e.g., SPPs) have a topological origin, similar to the
topological surface modes in the Dirac equation.

v' The topology of the helicity rather than Hamiltonian.

v Winding of the complex helicity spectrum.
Z,=7,xZ, and (E,ﬂ)instead of Z, and m.

v" The bulk—boundary correspondence yields the conditions
Sgn(gr) =—1 and sgn(,ur) =—] for the TM/TE modes.

v' Helicity is . So are the surface modes.
Can be “dark” (imaginary frequency/wavevector).

v of the helicityat g=0 and uz=0.
Chiral bulk modes in “index—-near-zero” materials.



A new twist for (i) topological systems, (ii) non-Hermitian
physics, (iii) metamaterials & plasmonics:

3
u
positive-index positive-index 2l one mode
‘metal” | medium ™ no modes
| (TM)
n= IH‘ ﬂr
0
. E =
n=—|n | n=-iln| two modes | one mode
2| (TM & TE) (TE)
negative-index negative-index
medium “‘metal” -3




Acoustic (sound) waves




(e.g., sound or P-elastic):

©2011. Dan Russell

Transverse (e.g., S—elastic):
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Types of waves

Surface waves (e.g., Rayleigh or ocean waves):
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V.-v=iBwP, VP =ipwv.

£ = mass density

compressibility = 1 /B (B = bulk modulus)

e
1



II. TRANSVERSE SPIN IN EVANESCENT
ACOUSTIC WAVES

We start with the equations for monochromatic acoustic
waves of frequency w 1n a dense medium:

V.v=iBwP, VP =ipwv. (1)

Here the variables are the complex velocity v(r) and the pres-
sure P(r) fields, while the real-valued medium parameters are
the mass density p and the compressibility 8 = 1/B (B 1s the
bulk modulus).

£ = mass density

p

compressibility = 1 /B (B = bulk modulus)



V.v=iBwP, VP =ipwv. (1)

Equations (1) support only longitudinal (i.e., curl-free)
waves, which follows from the second expression in Egs. (1):
V xv = 0. Importantly, these are not scalar waves. Indeed,
the velocity v determines vector properties of acoustic waves,
even though these are longitudinal. For plane waves with
the wave vector k, V — ik, the dispersion relation and the
“longitudinality” condition follow from Egs. (1):

k2
o =k’c* = —, kxv=0. (2)
pp

Evanescent waves can be presented as plane waves with
a complex wave vector kK = Rek + iImk [4,6,16].



Acoustic wave equations (isotropic, lossless):

V.-v=-00 P, VP=-pov, Vxv=0
Cf. Maxwell equations:
VxE=-uoH, VxH=¢0E, V-H=V:-E=0
There is an electromagnetic-acoustic analogy:
(EH)o(v.P), (54)0(pf)

For example, energy density and flux:

%(5E2+uH2)<—>%(pV2+ﬁP2)s ExHe Py



TABLE I. Comparison of electromagnetic and acoustic quantities and properties.

Electromagnetism

Acoustics

Fields
Constraints

Medium parameters

Energy density
Spin AM density
Transverse spin density in an evanescent wave

Surface waves

Dispersive corrections

Electric E, magnetic H
V.-E=0,V-H=0
Permittivity &, permeability

1
Z<8'E'2 + uHP)

1
Z[elm(E* xE) + uIlm(H* xH)]
oS  RekxImk
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€1 23
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Velocity v, pressure P
Vxv=0(
Density p, compressibility 3

1
Z(PIV|2+/3|P|2)

5 pIm(v* xv)
wS _,RekxImk
W 7 (Rek)

P2 0 (TM-like)
P1

(0, )~ (5, B)




The general expression for the time-averaged spin AM
density S can be written by noticing that the medium particles
with mass density p experience complex displacements a,
V=—iwa:

S = PRe(a* xv) = L Im(v*xv). (4)
2 2w

Notably, the entirely similar contribution of oscillating elec-
trons in optical media provides the material contribution to
the electromagnetic spin AM [31].



Electromagnetic: Acoustic:

(a) x* x)
E
v
\
% e 2
b) x| x}

O e

S
L T Rek _ S ___ Rek

-y Z Yy Z

FIG. 1. Appearance of the transverse spin AM in transversal
(electromagnetic) and longitudinal (acoustic) waves. (a) Plane waves
of these types have linear polarizations orthogonal and parallel to
the wave vector, respectively. (b) Evanescent waves with orthogonal
real and imaginary parts of the wave vector inevitably have elliptical
in-plane polarization because of the transversality (k - E = 0) and
longitudinality (kxv = 0) conditions. These elliptical polarizations
generate the transverse spin S.



Longitudinal acoustic waves have inherent vector
properties and spin AM density described bw :

Electromagnetic: Acoustic:

(@ x| IE x| S— %Im(v* 9 V)

‘\"TL
/ Kk p \‘J‘
{f,:f / Q‘ 5 V. \
4 .5’;
{h} A i I‘ - *‘
o e ¥ : RE: k ) J{f{,f”
S\E: L S Ru l{ y ’ . :‘_-'—'_—___.':_':::::_—_—_—_—_- ,x'{fﬁ )
| ) ' .{}_é ,,H"J/ —1-- _pjiﬁz— iy
/ /;/ f"'f \ _/ '*
o o .

Shi et al. Nat. Sci. Rev. (2019); Bliokh & Nori PRB (2019), PRB (2019), arXiv (2019)



Types of waves

Surface waves (e.g., Rayleigh or ocean waves):

©2016, Dan Russell




There are also acoustic surface waves, analogous to
surface plasmons. They appear at interfaces with
negative-density media: sgn(pr) =-—1.

3 3
2 P >0 2 pp <0
1 1
B g
-1 \ Ambati et al. -1
R (2007) B
-3 -3
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
p, p,

Ambati et al. PRB (2007); Park et al. PRL (2011); Bliokh & Nori PRB (2019)



Relativistic formalisms for acoustic and Maxwell equations:
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In quantum terms, acoustic waves correspond to
massless and spinless particles: phonons (<S> =0).

Therefore, the fundamental quantum-relativistic
representation is the Klein-Gordon theory:

: c=—{(0u) ~(Vv) B

2

(j}”ﬁﬂ)y/ = (—c‘2 0"+ Vz)w =0

(W,H):(%[c2(8t1//)2+(V1//)2},—8t1//V1//)

Berestetskii et al. QED



The iS:

b 48 =(P,v)= ip“v c’ =(p,8)_1

aﬂbﬂ — ﬁa(P)b(P) _ pa(V).b(V)
% =[i\/;61,—(i/\/;)V}

The Klein—-Gordon wavefunction ¥is similar to the
velocity potential:

V=(1/\/;)Vl//

Bliokh & Nori, PRL (2019)



Most importantly, the p <> fsymmetry is broken and
only \/;appears in this representation.

Moreover, the key operator of the problem, the four-
momentum, is generally non-Hermitian:

[ % =[i\/;at,—(i/\/;)vﬂ

Hence, the p>0andp <0zones are
: real and imaginary four-momentum
eigenvalues. p =0 is exceptional.

Bliokh & Nori, PRL (2019)



Entirely similar to the electromagnetic helicity, we
introduce the topological Z, number:

(" )

W(p)=3[1-sen()]= (0.1

\_ J

and the bulk-boundary correspondence:

N =Pufn)w(n) =) -(01)

which explains the Sgn(pr) — —]condition for acoustic
surface waves.

Bliokh & Nori, PRL (2019)



Acoustic (longitudinal) waves

Acoustic vs. electromagnetic problems:

[ topology of p" <« topology of S ]

no modes

-3 =2 -1 0

Bliokh & Nori PRL (2019)



Akin to the electromagnetic case, the “white spots” in
the acoustic phase diagrams are filled by “dark” non-
Hermitian modes with imaginary frequency/wavevector:

c;}ﬂ

‘0| one mode

Bliokh & Nori, PRL (2019)



This can be seen in the explicit solutions of the acoustic
boundary problem for a planar interface:

real or imagnary

Ambati et al. PRB (2007); Bliokh & Nori PRB (2019), PRL (2019)



Conclusions




v’ Surface acoustic modes between isotropic lossless media
have a topological origin, similar to the electromagnetic
surface modes.

v The topology of the four-momentum in the Klein-
Gordon representation rather than helicity.

v' Complex four-momentum spectrum.

Z, and p instead of 7,=7,%7Z, and (g, ﬂ).

v The bulk-boundary correspondence yields the conditions
Sgn( 0 ): —1 for the acoustic surface modes.

v' The four-momentum is non-Hermitian. So are the
surface modes. Can be “dark” (imaginary
frequency/wavevector).



Thank you!




Additional slides



Acoustics Electromagnetism
Real fields wi =(P,v) ¥ =(E,H)
: W—I‘P“ ‘P“—l P’ 2 W—l\lf l11—1 E*+ uH*
Energy density Tyt T E(,B T pv ) =St 5(8 +u )
and flux | i
HZETu®Tu=PV HZE\P@)\P:EXH
Connection VY =ipty Rey Imy
with “relativistic
wavefunctions” \/_ \/7

Relativistic wave
equations

(5‘“15#)1// =0

Four-momentum
operator

5 =(z\/§at,—iv)

Topological
indices

w(e,/,t) = %[1— sgn(e),l — sgn(u)}




Relativistic formalisms for acoustic and Maxwell equations

Acoustics Electromagnetism
Real fields PH — (p,v) |\ /g (E,H)
W—l‘P“ ‘P“—l P’ ? W—I\P \P—l E’ + uH’
Energy density Tyt T E(ﬁ +pv ) B 5(8 + U )
and flux | |
H:E\Pu(@\{’u:PV HZE\P@)\P:EXH
Connection Y =ipty Rey Imy
with “relativistic Y= ,
wavefunctions” @ @

Relativistic wave
equations

Four-momentum
operator

Topological
indices




II. General properties of acoustic wave fields

We start with the linear equations for acoustic (sound)
waves in a homogeneous dense medium, fluid or gas [41]:
A

58P Y, VP (1)
— =—V .v, — = —VP.
ot ot



Here the variables are the velocity v(r, ) and the pressure
P(r,t) fields, while the real-valued medium parameters are
the mass density p and the compressibility § = 1/B (B is the
bulk modulus). Equations (1) obey the energy conservation
law, an acoustic analog of the electromagnetic Poynting theo-
rem:

d (BP?  pv? .
5( >+t )-i—V'(PV)—O, 2)

where the expressions in the first and second parentheses
determine the acoustic energy density and energy flux density,
respectively [41].

From now on, we consider monochromatic acoustic
waves of frequency w. Making the substitution v(r,?) —
Re[v(r)e '] and P(r,t) — Re[P(r)e '], Egs. (1) are re-
duced to the following equations for the complex velocity and
pressure fields v(r) and P(r):

V.-v=iBwP, VP=ipwyv. (3)

Equations (1) or (3) support only longitudinal (i.e., curl-free)
waves: V x v =0. For plane waves with the wave vector
k, V — ik, the dispersion relation and the “longitudinality”
condition follow from Egs. (3):
k2
0 =kcr=—, kxv=0, (4)
PP

where c is the speed of sound.



TABLE I. Comparison of acoustic and electromagnetic quantities and properties.

Acoustics

Electromagnetism
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Constraints

Energy density
Canonical momentum density
Kinetic momentum density

Spin AM density

Orbital AM density
Integral AM values
Helicity

Velocity v, pressure P
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TABLE I. Comparison of acoustic and electromagnetic quantities and properties.

Acoustics

Electromagnetism

Fields

Constraints

Energy density
Canonical momentum density
Kinetic momentum density

Spin AM density

Orbital AM density
Integral AM values
Helicity

Velocity v, pressure P

Vxv=0
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1(,0|V|2 +BIP)

1
EIm[,ﬁ P*VP + pv* - (V)V]

1 1
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1
— o Im(Vv* x
20" (

V)

Electric E, magnetic H
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1
Z(SIEI2 + uHJ?)
1
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1 1

1
4—[8 Im(E* x E) + p Im(H* x H)]
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FIG. 1. Schematics of the acoustic Bessel beams. (a) The momentum (plane-wave) spectrum of the beam is a circle with fixed polar angle
6. The mutual phases of the plane waves (color-marked) have an azimuthal gradient and the 277 £ increment around the circle (¢ = 2 is shown
here). (b) The real-space field forms a cylindrically symmetric vortex beam possessing the helical phase front and carrying the orbital AM
(L) o< £Z. This angular momentum is produced by the spiraling canonical momentum density p in the beam (shown in cyan). Although all
plane waves in the spectrum (a) are longitudinally polarized (i.e., the Fourier components of the velocity Vv(k) || k), the local polarization in
real space, v(r), becomes elliptical, which produces a nonzero spin AM density S o« Im(v* x v) (shown by red arrows).



Importantly, although commonly classified as “scalar
waves”’, sound waves also have inherent vector properties
[38—40]. Indeed, these waves are described by one scalar
(pressure) and one vector (velocity) fields, which determine
the qualitatively different degrees of freedom in the acoustic
field. These scalar and vector degrees of freedom are equally
important, as can be seen from their equal contributions
to the energy conservation law (2). In quantum-like terms,
one can say that acoustic waves are described by the four-
component “wave function” ¥ = (P, v)!. In what follows,
we will use a fruitful analogy with electromagnetic waves
described by Maxwell equations. The main difference is that
Maxwell waves are described by two vector fields (electric
and magnetic), ¥ = (E, H)!, and these are transverse (i.e.,
divergence-free) rather than longitudinal: V. E =V -H = 0.



Similarly to electromagnetic waves [5,6,42,43], the main
dynamical properties of acoustic wave fields are the energy,
momentum, and angular momentum. The time-averaged en-
ergy density and energy flux density (an acoustic counterpart
of the Poynting vector) in a monochromatic acoustic field
follow from Eq. (2):

] ]
W = Z(,8|P|2 +plv|?), M= ERe(P*v). (5)
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Employing the quantum-like formalism [5,42,43], the energy
density can be regarded as the local expectation value of
the energy (frequency) operator w, W = (¥|w|y), where
the inner product (y|yr) 1s defined with the scaling coeffi-
cients B/4w and p/4w at the pressure and velocity degrees
of freedom, respectively. Using this formalism, similarly to
the electromagnetic case [5,6,8,10,42—44], we introduce the

canonical momentum density of the acoustic field as the local
expectation value of the momentum operator p = —iV:

1
4w

where [v* - (V)V]; = ) j v;‘ V;v;. The momentum density (6)
represents the natural definition of the local phase gradient
(1.e., the local wave vector) in a multicomponent field {» (for
a single-component scalar field it would be proportional to

VArg(y)) [44].



In analogy with electromagnetism, the energy flux den-
sity (5) can also be associated with the momentum density
(multiplied by ¢?), but this should be regarded as the kinetic
momentum density I1/c* [41]. Using some vector algebra
involving the “longitudinality” condition V x v = 0, the dif-
ference between the kinetic and canonical momentum can be
written as

I1 1
— =p+ -V x8, Szﬁlm(v*xv). (7)
c2 4 2w



Here, S 1s the spin AM density of the acoustic waves
[39,40]. Thus, entirely similar to the electromagnetic case
[5,6,8,10,42,43], the difference between the kinetic and
canonical momentum densities in the acoustic field is related
to the presence of the spin AM density. This difference can
be regarded as the spin momentum density ps = %V X S
[8,10,42,44,45]. The only distinction as compared to electro-
magnetism 1s the prefactor 1/4 instead of 1/2; this is because
the scalar (pressure) part of the “wave function” ¥ does not
contribute to the difference between the kinetic and canonical
momentum. Remarkably, the spin density (7) can also be
presented as the local expectation value of the spin-1 operator
S acting on the vector (velocity) degrees of freedom such
that v* - (S)v = Im(v* x v) [5,42-44]: S = 2(y|S|Yr), where
a factor of 2 originates from the same asymmetry between the
scalar and vector degrees of freedom [40].
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