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Very quick overview of various types of 
Quantum Hall Effects (for electrons).

Before considering the Quantum 
Spin Hall Effect (QSHE) for light.



Quantum Hall trio: For all three quantum Hall effects, electrons flow 
through the lossless edge channels, with the rest of the system insulating.





The quantum spin Hall effect means the presence of 
topologically–protected edge modes at the interface 
between two 2D insulators. Such modes are 
characterized by strong spin–momentum locking: 
opposite spins propagate in opposite directions.

QSHE and topological insulators

Kane & Mele, PRL (2005); Bernevig, Hughes, Zhang, Science (2006)

“Spin filtered” or “helical” edge states



A 3D topological insulator is a 3D generalization of such states.

Such insulator exhibits 2D surface modes, which are 
helical massless fermions with spin–momentum locking 
(vortex spin texture):

QSHE and topological insulators

Hiseh et al., Nature (2009);  Hasan & Kane, RMP (2010)



Now let’s look for a
Photonic counterpart

of the electronic
Quantum Spin Hall effect.



It has been suggested that photonic topological 
insulators can be created in complex metamaterials 
structures. 

We have shown that pure free-space light already 
possesses intrinsic QSHE, 

and that simple natural materials (such as metals
supporting surface plasmon-polariton modes) exhibit 
some features that resemble topological insulators. 

We show that the transverse spin in evanescent waves 
(our work from 2012-14) and spin-controlled 
unidirectional excitation of surface modes or 
waveguide modes can be interpreted as manifestations 
of the QSHE of light.



The bulk modes for free light are propagating plane 
waves:

Here is the helicity, and photons carry spin:

Basic spin properties of light

Longitudinal 
helicity–dependent 
spin



The electric field vectors of 
a traveling circularly-polarized 
electromagnetic wave.





Evanescent modes have spin. Let us consider their 
evanescent–wave tails:

Surface modes and transverse spin

Bliokh & Nori, PRA (2012) Bliokh, Bekshaev, Nori, Nature Comm. (2014)

Transverse 
helicity–independent 
spin!



Types of waves

Surface waves (e.g., Rayleigh or ocean waves):





The nature of this transverse spin is similar to the circular motion of water in surface ocean waves:
Surface modes and transverse spin

M. Stone, Science (2015) .  “Perspective” to our paper in the same issue.






Extraordinary Momentum 
and Spin in Evanescent Waves

Bliokh, Bekshaev, Nori
Nature Communications (2014).  

Additional results in:
Physics Reports (2015)

Nature Photonics (2016)
NJP (2018), 
PRL (2018)

Nature Communications (2019)

Early work in:        Bliokh & Nori, PRA (2012).



Well-known textbook statements: 

• Momentum of light is determined by the 
Poynting vector

• Momentum of light is directed along the wave 
vector and is independent of polarization

• Spin angular momentum of light is determined 
by the circular polarization and is directed along 

the wave vector



Our results challenge textbook statements: 

• Momentum of light is determined by the 
Poynting vector

• Momentum of light is directed along the wave 
vector and is independent of polarization

• Spin angular momentum of light is determined 
by the circular polarization and is directed along 

the wave vector



Transverse spin and momentum
Antognozzi, Bermingham, Harniman, Simpson, Senior, Hayward, Hoerber, Dennis, Bekshaev, Bliokh, Nori
Direct measurements of the extraordinary optical momentum and transverse 
spin-dependent force using a nano-cantilever.  Nature Physics (2016).



Transverse spin and momentum



Transverse spin and momentum



Three-Dimensional Measurement of the 
Helicity-Dependent Forces on a Mie Particle

Liu, et al (the group of Federico Capasso)    
Phys. Rev. Lett. 120, 223901 – Published 31 May 2018

They report the simultaneous measurement of all components of this 
polarization-dependent optical force by using a 3D force spectroscopy 
technique with femtonewton sensitivity. 

The vector force fields are compared quantitatively with theoretical 
calculations as the polarization state of the incident light is varied and 
show excellent agreement. 

By plotting the 3D motion of the Mie particle in response to the switched 
force field, they obtained visual evidence of the effect of spin 
momentum on the Poynting vector of an evanescent optical field.



This unusual transverse spin (independent of the 
polarization) survives in the TE or TM surface modes.
Most importantly, opposite directions of propagation 
correspond to opposite transverse spins:

Quantum Spin Hall Effect (= QSHE) of light

Bliokh, Smirnova, Nori, Science (2015)



Quantum Spin Hall Effect (= QSHE) of light

Metal  =  Insulator    (for photons!   Below ωp)

The metal-vacuum interface resembles 
(using a CM analogy) the interface 
between a semi-metal and an insulator. 



Optical spin-momentum locking has been 
observed in many separate experiments.

Some involved Surface Plasmon Polaritons
(SPPs) at metal-vacuum interfaces 
(which resemble the interface between a 
semi-metal and an insulator).

The SSP modes exhibit spin-momentum 
locking, which are typical for electron QSHE 
states.



Since 2013 several groups have independently reported 
experiments on spin–dependent unidirectional excitation of 
surface or waveguided Maxwell waves:

Quantum Spin Hall Effect (= QSHE) of light: experiments

Transversely-incident 
light with usual spin

Scatterer: coupling 
to surface modes

Spin-dependent 
direction of 
surface modes



Quantum Spin Hall Effect (= QSHE) of light: experiments

Petersen et al., Science (2014); Mitsch et al., Nature Commun. (2014)
le Feber et al. Nature Commun. (2015)



Quantum Spin Hall Effect (= QSHE) of light: experiments

O’Connor et al., Nature Commun. (2014)



 We have shown that pure free-space light already possesses intrinsic QSHE, 

 and that simple natural materials (such as metals supporting surface plasmon-
polariton modes) exhibit features that resemble topological insulators. 

 We show that the transverse spin in evanescent waves (our work from 2012-14) 
and spin-controlled unidirectional excitation of surface or waveguide modes can 
be interpreted as manifestations of the QSHE of light.

 Light possesses intrinsic QSHE, i.e., strong spin–momentum locking in surface 
Maxwell modes.

 The transverse polarization–independent spin in evanescent waves (stemming 
from the transversality and SOI of light) is responsible for it. 

 It differs in its origin from the QSHE of electrons (fermions). Spin–momentum 
coupling rather than spinor–momentum coupling. 

 It seems that the dual symmetry between magnetic and electric properties plays 
an important role in the QSHE of light, but this is not fully clarified yet.    



The question

Since 2014, we were considering this question: 

Can the very basic surface waves in Maxwell equations 
be described as topological surface modes?

Do surface plasmons at metal–dielectric interfaces have a 
topological origin?



Topological 
non-Hermitian origin of 
surface Maxwell waves

Konstantin Y. Bliokh, D. Leykam, M. Lein, F. Nori

Nature Communications, 10, 580 (2019)





Surface Maxwell modes

Maxwell equations (isotropic, homogeneous, lossless): 

Surface modes at an interface between two media:



Surface Maxwell modes

“Phase diagram” of surface TE/TM Maxwell modes in 
the plane:

Shadrivov et al. PRE (2004); Kats et al. PRL (2007); Bliokh et al. Nat. Comm. (2019)

Ruppin
(2001)

Alù & 
Engheta
(2003)

Ritchie 
(1957)



Surface Maxwell modes

These diagrams are deformed with deformations of the 
interface (see, e.g., surface plasmons on a sphere), but 
there are some general robust features:

 The TM–mode can exist only at interfaces where the 
permittivity changes sign: .

 The TE–mode can exist only at interfaces where the 
permeability changes sign: .

Why is this so? Is there a fundamental reason for this?





Topological Dirac modes

The Dirac equation (1D, for simplicity): 

The surface mode can appear at an interface between two 
media with different masses:

Jackiw & Rebbi PRD (1976)



Topological Dirac modes

The same mode occurs in 2D and 3D and it has a zero–
mass spectrum: 



Topological Dirac modes

Most importantly, the Dirac surface mode appears only at 
interfaces where the mass changes its sign: .

This is related to the nontrivial Möbius–strip–like (Z2) 
topology of the Dirac Hamiltonian and bulk eigenmodes:  



Topological Dirac modes

Most importantly, the Dirac surface mode appears only at 
interfaces where the mass changes its sign: .

This is related to the nontrivial Möbius–strip–like (Z2) 
topology of the Dirac Hamiltonian and bulk eigenmodes:  



Topological Dirac modes

Hasan & Kane RMP (2010), Qi & Zhang (2010), …



Topological Dirac modes

One can introduce a topological Z2 invariant:

There is a bulk–boundary correspondence, which 
determines the number of surface modes:

Hasan & Kane RMP (2010), Qi & Zhang (2010), …



Topological Dirac modes

Notably, one can present the flip in the mass sign as 
a rotation in the complex–mass plane:

Bliokh et al. Nat. Commun. (2019)





Relativistic Dirac/Weyl–like form of Maxwell equations: 

Here the key operator is helicity:

Maxwell equations and helicity

Majorana, Oppenheimer, Berry, Bialynicki-Birula, …, Alpeggiani et al. PRL (2018)



Helicity is a very important property of light, which is 
determined by the projection of spin     onto the 
momentum direction          .

It is also related to the dual symmetry between     and    .

Free–space light has two helicity eigenstates with 
(e.g., circularly polarized plane waves):

Maxwell equations and helicity

Calkin (1965); QED;…; G. Molina-Terriza et al.; Bliokh et al.



The helicity operator in a lossless medium is generally 
non–Hermitian, and its eigenvalues are complex: .

This makes physical sense: e.g., in metals (           ) the 
momentum (wavevector) becomes imaginary, while the 
spin (polarization rotation) remains real:

Maxwell equations and helicity

Alpeggiani et al. PRL (2018); Bliokh et al. NC (2019)



The helicity operator in a lossless medium is generally 
non–Hermitian, and its eigenvalues are complex:            .

Furthermore, helicity changes its sign in negative-index 
media, :  (because the 
momentum flips):

Maxwell equations and helicity

Alpeggiani et al. PRL (2018); Bliokh et al. NC (2019)



Summarizing this, we obtain properties of the photon 
helicity in the four types of optical isotropic media:

Maxwell equations and helicity

Bliokh et al. Nat. Commun. (2019)



Transitions between these four types of media can be 
regarded as discrete rotations in the complex helicity plane:

Maxwell equations and helicity



This maps the interface helicity properties to the 
Z4=Z2×Z2 (double–Möbius) group:

Maxwell equations and helicity



Comparing this with the Z2 features of the Dirac 
Hamiltonian: 

Maxwell equations and helicity



We introduce the topological Z4 “helicity winding” number: 

or, equivalently, two topological Z2 numbers:

Maxwell equations and helicity

Bliokh et al. Nat. Commun. (2019)



One fundamental novelty should be emphasized:

All previous works on topological insulators considered 
topological properties of the Hamiltonian operator.

In contrast, we consider the topology of the helicity 
operator in Maxwell equations.

This considerably extends the topological approach: 
any conserved–quantity operator can be considered.

Maxwell equations and helicity



Topological Dirac modes

The 1D mode of Rebbi-Jackiw also occurs in 2D and 3D 
and it has a zero–mass spectrum: 



Topological Dirac modes

The Dirac equation (1D, for simplicity): 

The surface mode can appear at an interface between two 
media with different masses:

Jackiw & Rebbi PRD (1976)



Topological Dirac modes

Most importantly, the Dirac surface mode appears only at 
interfaces where the mass changes its sign: .

This is related to the nontrivial Möbius–strip–like (Z2) 
topology of the Dirac Hamiltonian and bulk eigenmodes:  



Topological Dirac modes

One can introduce a topological Z2 invariant: 

There is a bulk–boundary correspondence, which 
determines the number of surface modes:

Hasan & Kane RMP (2010), Qi & Zhang (2010), …



Topological Dirac modes

Notably, one can represent the flip in the mass sign as 
a     rotation in the complex–mass plane:

Bliokh et al. Nat. Commun. (2019)



One fundamental novelty should be emphasized:

All previous works on topological insulators considered 
topological properties of the Hamiltonian operator.

In contrast, we consider the topology of the helicity 
operator in Maxwell equations.

This considerably extends the topological approach: 
any conserved–quantity operator can be considered.

Maxwell equations and helicity





Schematics of topological surface modes in the Dirac and Maxwell 
equations. a The Dirac equation with a finite mass m is characterized 
by the gapped bulk spectrum E(p). An interface between “media” 
with opposite-sign masses ±m, and bulk spectra (schematically 
shown in red and blue), supports topological surface modes with 
massless spectrum (shown in green).



b Maxwell equations possess massless bulk spectra (not shown here), which are 
double-degenerate with respect to opposite helicity states. These bulk helicity 
eigenmodes have opposite circular polarizations, i.e., chiral spatial distributions 
of the electric or magnetic field (shown in red and blue here). An interface 
between two media with different helicity properties (controlled by the signs of 
the permittivity ε and permeability μ of the medium) supports zero-helicity 
surface waves with transverse-electric or transverse-magnetic linear polarizations 
(shown in green).



Winding of the energy and helicity spectra 
in the Dirac and Maxwell equations.



Winding of the energy spectra in the Dirac equation.

a Changing the sign of the mass m in the Dirac equation is 
equivalent to a π rotation (shown by the arrows) of the rest-
energy spectrum E0 ≡ E(0) = m in the complex-mass plane.

This results in a single zero-mass surface mode (shown by the 
star symbol) protected by the topological Z2 winding number. 

The dot and star symbols with their colors correspond to the rest-
energy spectra of the bulk and surface modes shown in Fig. 1a.

https://www.nature.com/articles/s41467-019-08397-6#Fig1




Winding of the helicity spectra in Maxwell equations.

b Changing the signs of the permittivity ε and permeability μ

in Maxwell equations produces ±π/2 and π rotations of 

the helicity spectrum in the complex helicity plane. 

This results in the appearance of one or two zero-helicity 

(transverse-electric and transverse-magnetic) surface modes 

(the star symbols) described by the topological Z4 number.



c The medium-index diagram 

showing the signs of the refractive index n

and impedance Z in four possible types of media.
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Relativistic formalisms for acoustic and Maxwell equations:





Types of waves

Longitudinal (e.g., sound or P–elastic):

Transverse (e.g., S–elastic):



Types of waves

Surface waves (e.g., Rayleigh or ocean waves):



Types of waves

Electromagnetic waves

Bulk electromagnetic: Surface–plasmon:



Analogy with topological insulators

This is analogous to the topological edge/surface 
states in electron topological insulators: 

Kane & Mele PRL (2005); Bernevig, Hughes, Zhang Science (2006)



The question

Since 2014, we were considering this idea: 

Can the very basic surface waves in Maxwell equations 
be described as topological surface modes?

Do surface plasmons at metal–dielectric interfaces have a 
topological origin (Nobel Prize 2016)?





Surface Maxwell modes

Maxwell equations (isotropic, homogeneous, lossless): 

Surface modes at an interface between two media:



Surface Maxwell modes

“Phase diagram” of surface TE/TM Maxwell modes in 
the plane:

Shadrivov et al. PRE (2004); Kats et al. PRL (2007); Bliokh et al. Nat. Comm. (2019)

Ruppin
(2001)

Alù & 
Engheta
(2003)

Ritchie 
(1957)



Surface Maxwell modes

These diagrams are deformed with deformations of the 
interface (see, e.g., surface plasmons on a sphere), but 
there are some general robust features:

 The TM–mode can exist only at interfaces where the 
permittivity changes sign: .

 The TE–mode can exist only at interfaces where the 
permeability changes sign: .



Topological Dirac modes

Most importantly, the Dirac surface mode appears only at 
interfaces where the mass changes its sign: .

This is related to the nontrivial Möbius–strip–like (Z2) 
topology of the Dirac Hamiltonian and bulk eigenmodes:  



Thus, surface electromagnetic waves (e.g., surface 
plasmons) have a topological origin related to the non–
Hermitian helicity operator.

Helicity is ill–defined at          and , which split the
plane into the four topologically–different 

quadrants:

Topological Maxwell modes



These special values          and           correspond to the 
exceptional points (EPs) of the operator

Modern theory of non–Hermitian topological systems: 
the topological transitions happen at EPs.

Topological Maxwell modes

Lee (2016); Leykam et al. (2017); Gong et al. (2018); Kunst et al. (2018); Yao, Wang (2018) 



In our case, we have exceptional points of the helicity 
operator in a lossless system! 

Two eigenstates coalesce in the EP and form a chiral state:

These are electric/magnetic–field states in the   –near–
zero and     –near–zero materials. A completely new 
non–Hermitian twist for this field of research!

Topological Maxwell modes

Silveirinha & Engheta PRL (2006); A. Alù et al. IEEE (2007); Liu et al., PRL (2008); …

−/+



 Surface electromagnetic modes between isotropic lossless 
media (e.g., SPPs) have a topological origin, similar to the 
topological surface modes in the Dirac equation.

 The topology of the helicity rather than Hamiltonian.

 Winding of the complex helicity spectrum.
Z4=Z2×Z2 and            instead of Z2 and m.

 The bulk–boundary correspondence yields the conditions
and  for the TM/TE modes.

 Helicity is non–Hermitian. So are the surface modes. 
Can be “dark” (imaginary frequency/wavevector).

 Exceptional points of the helicity at            and            .
Chiral bulk modes in “index–near–zero” materials.



A new twist for (i) topological systems, (ii) non–Hermitian 
physics, (iii) metamaterials & plasmonics:





Types of waves

Longitudinal (e.g., sound or P–elastic):

Transverse (e.g., S–elastic):



Types of waves

Surface waves (e.g., Rayleigh or ocean waves):



ρ =  mass density

β =  compressibility  =  1 / B (B = bulk modulus)



ρ =  mass density

β =  compressibility  =  1 / B (B = bulk modulus)





Acoustic wave equations (isotropic, lossless): 

Cf. Maxwell equations:

There is an electromagnetic–acoustic analogy: 

For example, energy density and flux:

Acoustic (longitudinal) waves









Longitudinal acoustic waves have inherent vector 
properties and spin AM density described by   :

Acoustic (longitudinal) waves

Shi et al. Nat. Sci. Rev. (2019); Bliokh & Nori PRB (2019), PRB (2019), arXiv (2019) 



Types of waves

Surface waves (e.g., Rayleigh or ocean waves):



There are also acoustic surface waves, analogous to 
surface plasmons. They appear at interfaces with 
negative–density media:                        .  

Acoustic (longitudinal) waves

Ambati et al. PRB (2007); Park et al. PRL (2011); Bliokh & Nori PRB (2019)

Ambati et al.
(2007)



Relativistic formalisms for acoustic and Maxwell equations:



In quantum terms, acoustic waves correspond to 
massless and spinless particles: phonons (              ).

Therefore, the fundamental quantum–relativistic 
representation is the Klein–Gordon theory:

Acoustic (longitudinal) waves

Berestetskii et al. QED



The acoustic to Klein–Gordon mapping is:

The Klein–Gordon wavefunction     is similar to the 
velocity potential:

Acoustic (longitudinal) waves

Bliokh & Nori, PRL (2019)



Most importantly, the symmetry is broken and 
only        appears in this representation. 

Moreover, the key operator of the problem, the four–
momentum, is generally non–Hermitian:

Hence, the          and          zones are topologically 
different: real and imaginary four–momentum 
eigenvalues.           is exceptional.

Acoustic (longitudinal) waves

Bliokh & Nori, PRL (2019)



Entirely similar to the electromagnetic helicity, we 
introduce the topological Z2 number:

and the bulk–boundary correspondence:

which explains the                      condition for acoustic 
surface waves.

Acoustic (longitudinal) waves

Bliokh & Nori, PRL (2019)



Acoustic vs. electromagnetic problems:

Acoustic (longitudinal) waves

Bliokh & Nori PRL (2019)



Akin to the electromagnetic case, the “white spots” in 
the acoustic phase diagrams are filled by “dark” non–
Hermitian modes with imaginary frequency/wavevector:

Acoustic (longitudinal) waves

Bliokh & Nori, PRL (2019)



This can be seen in the explicit solutions of the acoustic 
boundary problem for a planar interface:

Acoustic (longitudinal) waves

Ambati et al. PRB (2007); Bliokh & Nori PRB (2019), PRL (2019)





 Surface acoustic modes between isotropic lossless media 
have a topological origin, similar to the electromagnetic 
surface modes.

 The topology of the four–momentum in the Klein-
Gordon representation rather than helicity.

 Complex four–momentum spectrum.
Z2 and     instead of Z4=Z2×Z2 and  .

 The bulk–boundary correspondence yields the conditions
for the acoustic surface modes.

 The four–momentum is non–Hermitian. So are the 
surface modes. Can be “dark” (imaginary 
frequency/wavevector).





Additional slides





Relativistic formalisms for acoustic and Maxwell equations
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