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Optomechanically-induced transparency (OMIT) and the associated slowing of light provide the basis for
storing photons in nanoscale devices. Here we study OMIT in parity-time (PT)-symmetric microresonators
with a tunable gain-to-loss ratio. This system features a sideband-reversed, non‐amplifying transparency,
i.e., an inverted-OMIT. When the gain-to-loss ratio is varied, the system exhibits a transition from a
PT-symmetric phase to a broken-PT-symmetric phase. This PT-phase transition results in the reversal of
the pump and gain dependence of the transmission rates.Moreover, we show that by tuning the pumppower
at a fixed gain-to-loss ratio, or the gain-to-loss ratio at a fixed pump power, one can switch from slow to fast
light and vice versa. These findings provide new tools for controlling light propagation using nanofabricated
phononic devices.

R ecent advances in steering a macroscopic mechanical object in the deep quantum regime1–3 have motivated
theoretical studies to understand the physics of photon-phonon interactions in cavity optomechanics
(COM), and also led to exciting experimental studies on quantum nanodevices4,5. In particular, the experi-

mental demonstration of OMIT allows the control of light propagation at room temperature using nano- and
micro-mechanical structures6–8. The underlying physics of OMIT is formally similar to that of electromagnet-
ically-induced transparency (EIT) in three-level L-type atoms6–10 and its all-optical analogs demonstrated in
various physical systems10,11. The resulting slow-light propagation provides the basis for a wide range of applica-
tions9. Mechanically-mediated delay (slow-light) and advancement (fast-light) of microwave pulses were also
demonstrated in a superconducting nanocircuit12–15. These experimental realizations offer new prospects for on-
chip solid-state architectures capable of storing, filtering, or synchronizing optical light propagation.

As a natural extension of single-cavity structures, COM with an auxiliary cavity (compound COM: two
cavities) has also attracted intense interest. The interplay between COM interactions and tunable optical tun-
nelling provides a route for implementing a series of important devices, such as phonon lasers16, phononic
processors for controlled gate operations between flying (optical) or stationary (phononic) qubits17,18, and
coherent optical wavelength converters19–21. Enhanced nonlinearities22 and highly-efficient photon-phonon
energy transfer23–25 are other advantages of the compound COM. These studies were performed with passive
(lossy, without optical gain) resonators.

Very recently, an optical system whose behavior is described by PT-symmetric Hamiltonians (i.e., the com-
mutator [H, PT]5 0)26,27 was demonstrated in a system of two coupledmicroresonators, one of which has passive
loss and the other has optical gain (active resonator)28. Observed features include: real eigenvalues in the PT-
symmetric regime despite the non-Hermiticity of the Hamiltonian, spontaneous PT-symmetry breaking, as well
as complex eigenvalues and field localization in the broken PT-symmetry regime. Moreover, nonreciprocal light
transmission due to enhanced optical nonlinearity in the broken PT-symmetry regime was demonstrated26. Such
a PT-symmetric structure provides unique and previously-unattainable control of light and even sound26–32.
Manipulating the photon-phonon interactions in such systems opens new regimes for phonon lasing and
quantum COM control33.

In this paper, we show that a compound COM with PT-symmetric microresonators leads to previously
unobserved features and provides new capabilities for controlling light transmission in micro- and nano-mech-
anical systems. Particularly, we show: (i) a gain-induced reversed transparency (inverted-OMIT), i.e. an optical
spectral dip between two strongly-amplifying sidebands, which is in contrast to the non-absorptive peak between
strongly absorptive sidebands in the conventional passive OMIT; (ii) a reversed pump dependence of the optical
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transmission rate, which is most significant when the gain and loss
are balanced (i.e., optical gain in one subsystem completely compen-
sates the loss in the other); and (iii) a gain-controlled switching from
slow (fast) light to fast (slow) light in the PT-symmetric (PT-break-
ing) regime, within the OMIT window. These features of the active
OMIT enable new applications which are not possible in passive
COM.
The inverted-OMIT observed here in an active COM, composed

of a passive and an active optical microresonator, is reminiscent of
the inverted-EIT observed in all-optical systems, composed of one
active and one passive fiber loop34. In Ref. 34 a non-amplifying
window accompanied with a negative group delay (fast light) was
reported. However, our active OMIT, relies on hybrid photon-pho-
non interactions in a compound COM6. In the PT-symmetric
regime, it provides the first OMIT analog of the optical inverted-
EIT34. Distinct features of the inverted-OMIT that cannot be
observed in the optical inverted-EIT are also revealed in the bro-
ken-PT-symmetric regime.

Results
The active COM system. We consider a system of two coupled
whispering-gallery-mode microtoroid resonators10,16,35,36. One of
the resonators is passive and contains a mechanical mode of
frequency vm and an effective mass m16. We refer to this resonator
as the optomechanical resonator. The second resonator is an active
resonator which is coupled to the first one through an evanescent
field. The coupling strength J between the resonators can be tuned by
changing the distance between them. As in Ref. 28, the active
resonator can be fabricated from Er31-doped silica and can emit
photons in the 1550 nm band, when driven by a laser in the
980 nm or 1450 nm bands. The resonators can exchange energies
only in the emission band of 1550 nm, so the gain photons can tunnel
through the air gap between the resonators and provide a gain k to
compensate the optical loss c in the passive resonator28.
Tuning the gain-to-loss ratio, while keeping J fixed, leads to two

remarkably distinct regimes, i.e. broken- and unbroken-PT -sym-
metry regimes, that are characterized by distinct normal mode-split-
ting and linewidths28,33. Our aim here is to study OMIT in these two
distinct regimes, focusing on the role of k/c. To this end, as in the
conventional OMIT6, both a pump laser of frequency vL and a weak
probe light of frequency vp are applied (see Fig. 1). The field ampli-
tudes of the pump and probe are given by EL 5 (2PLc/�hvL)1/2, ep 5
(2Pinc/�hvp)1/2, where PL and Pin are the pump and probe powers.
The Hamiltonian of this three-mode COM system can be

written as

H~H0zHintzHdr,

H0~�hDL a{1a1za{2a2
� �

z
p2

2m
z

1
2
mv2

mx
2,

Hint~{�hJ a{1a2za{2a1
� �

{�hga{1a1x,

Hdr~i�h ELa
{
1{ELa1zepa

{
1e

{ijt{epa1e
ijt

� �
,

ð1Þ

where a1 and a2 denote the annihilation operators of the bosonic
fields in themicroresonators with resonance frequencyvc and radius
R, g 5 vc/R is the COM coupling rate, x 5 x0(b 1 b{) is the mech-
anical position operator, x0 5 [�h/(2mvm)]1/2, and b corresponds to
the annihilation operator for the phonon mode. The pump-res-
onator, probe-resonator, and probe-pump frequency detunings
are, respectively, denoted by

DL~vc{vL, Dp~vp{vc, j~vp{vL:

The Heisenberg equations of motion (EOM) of this compound
system are (�h 5 1)

€xzCm€xzv2
mx~

g
m
az1 a1, ð2Þ

_a1~ {iDLzigx{cð Þa1ziJa2zELzepe
{ijt , ð3Þ

_a2~ {iDLzkð Þa2ziJa1, ð4Þ
whereCm is the mechanical damping rate. The optical or mechanical
gain and damping terms are added phenomenologically into the
EOM24,33,35; they can also be incorporated into Eq. (1), resulting in
a non-Hermitian Hamiltonian26–33,36. We note that k , 0 in Eq. (4)
corresponds to a passive-passive COM; thus k/c , 0 and k/c . 0
define, respectively, a passive-passive COM and a passive-active
COM.
The steady-state values of the dynamical variables are

xs~
g

mv2
m

a1,sj j2, ð5Þ

a1,s~
EL iDL{kð Þ

iDL{kð Þ cziDL{igxsð ÞzJ2
, ð6Þ

a2,s~
iJEL

iDL{kð Þ cziDL{igxsð ÞzJ2
: ð7Þ

For DL 5 0, by choosing J2 5 kc or k/c R 1 for J 5 c, one can
identify a gain-induced transition from the linear to the nonlinear
regime that significantly enhances COM interactions33. Here we
focus on the effects of the gain-loss balance on the OMIT and the
associated optical group delay, which, to our knowledge, has not been
studied previously.
We proceed by expanding each operator as the sum of its steady-

state value and a small fluctuation around that value, i.e. a1 5 a1,s 1
da1, a2 5 a2,s 1 da2, x5 xs 1 dx. After eliminating the steady-state
values, we obtain the linearized EOM, which can be solved using the
ansatz (see the Method)

da1h i
da2h i
dxh i

0
B@

1
CA~

da1z
da2z
dxz

0
B@

1
CAe{ijtz

da1{
da2{
dx{

0
B@

1
CAeijt : ð8Þ

The optical fluctuation in the optomechanical resonator A ; da11,
the quantity of interest here, is

Figure 1 | OMIT in active-passive-coupled micro-resonators, with a
tunable gain-loss ratio. The similarity of the passive OMITand the three-

level EIT is well-known6; in parallel, the active OMIT provides a COM

analog of the optical inverted-EIT34 (see the energy levels with an input

gain). Here | 0ii5 |n1, n2, nmi, | 11i5 |n1 1 1, n2, nmi, | 12i5 |n1, n21 1,

nmi, | 1mi 5 |n1, n2, nm 1 1i, while n1,2 and nm denote the number of

photons and phonons, respectively.
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A~
v2

m{j2{ijCm
� �G2mzig2n1m{
� �

mzep

v2
m{j2{ijCm

� �G1G2m{ig2n1 G2mz{G1m{
� � , ð9Þ

where n1 5 ja1,sj2 is the intracavity photon number of the passive
resonator, m6 5 2k2ij 6 iDL, and

G1~ iDLzc{igxs{ijð ÞmzzJ2,

G2~ {iDLzczigxs{ijð Þm{zJ2:
ð10Þ

The expectation value of the output field can then be obtained
by using the standard input-output relation, i.e.
aout1 tð Þ~ain1 {

ffiffiffiffiffi
2c

p
a1 tð Þ, where ain1 and aout1 tð Þ are the input and

output field operators. Then the optical transmission rate g(vp)
(i.e., the amplitude square of the ratio of the output field amplitude to

the input probe field amplitude, g vp

� �
: t vp

� �		 		2~ aout1 tð Þ
ain1
		 		2) is

g vp
� �

~ 1{ 2c


ep

� �A		 		2: ð11Þ
We computed Eq. (11) with experimentally-accessible values of the
system parameters28 to better understand the behavior of the COM in
the presence of gain and loss. These parameters areR5 34.5 mm,vc5
1.93 3 105 GHz, vm 5 2p 3 23.4 MHz, m 5 5 3 10211 kg, c 5
6.43 MHz and Cm 5 2.43 105 Hz. The quality factors of the optical
mode and the mechanical mode in the passive resonator areQc5 33
107 and 2Qm/Qc5 1025, respectively. AlsoDL5vm, and thusDp;vp

2 vc 5 j 2 vm. Now we discuss how the gain-loss ratio k/c, the
coupling strength J, and the pump power PL affect theOMIT.Note that
k/c and J are the tunable system parameters that allow one to operate
the system in the broken- or unbroken-PT regimes.

Reversed-gain dependence. Figure 2 depicts the effect of k/c on the
optical transmission rate. By introducing gain into the second
microresonator, one can tune the system to transit from a
conventional OMIT profile, quantified by a transparency window
and two sideband dips, to the inverted-OMIT profile, quantified by a
transmission dip and two sideband peaks (see Fig. 2a).
Increasing the loss ratio k/c, 0 in the passive-passive COM leads

to shallower sidebands. When the amount of gain provided to the
second resonator supersedes its loss and the resonator becomes an
active one (amplifying resonator), increasing k/c . 0 helps to
increase the heights of the sideband peaks until k/c 5 1, where g
at sidebands is maximized. Increasing the gain further leads to the
suppression of both the sideband peaks and the on-resonance (Dp5
0) transmission (Fig. 2b). This is in stark contrast with the obser-
vation of monotonically-increasing sideband peaks in the all-optical
EIT system of Ref. 34.
This can be intuitively explained as follows. Under the condition of

J/c5 1, the system is in thePT-symmetric phase for k/c, 1, whereas
it is in the broken-PT phase for k/c . 1. Thus, for k/c , 1, the
provided gain compensates a portion of the losses, which effectively
reduces the loss in the system and hence increases g28. Increasing the
gain above the phase transition point k/c5 1 puts the system in the
broken-PT phase, with a localized net loss in the passive resonator28

(i.e., the field intensity in the passive resonator is significantly
decreased) which reduces the strength of the COM interactions
and hence the value of g. The reduction of the transmission by
increasing the gain provides a signature of the PT-breaking regime,
and it is very similar to a recent experiment with two coupled-reso-
nators where it was shown that increasing (decreasing) the loss of one
of the resonators above (below) a critical level increases (decreases)
the intracavity field intensity of the other, enhancing (suppressing)
transmission36. Note that increasing (decreasing) loss is similar to
decreasing (increasing) gain. We conclude here that only in the PT-
symmetric regime (k/c , 1, with J/c 5 1), the active OMIT can be
viewed as an analog of the optical inverted-EIT34.

Figure 3 provides the fine features in the transmission rate, by
numerically changed k/c . 0 by very small steps. One interesting
observation in Fig. 3 is that when k 5 0, the second resonator has
neither gain nor loss, and there still exists OMIT-like spectrum, i.e.
small fluctuations around g, 1. In this case, the coupled-resonator
system is still a passive-OMIT because one resonator is lossy while
the other has neither loss nor gain. For k/c 5 0.01, we have a small
resonance peak (see Fig. 3a). When the gain is increased, this peak
tends to disappear (see e.g. Fig. 3b) and then evolves into a dip, e.g. g
, 0 for k/c5 0.2 (see Fig. 3c). This dip can also be manipulated by
increasing the gain further [see Figs. 3(d–f)]. These results imply that
one can tune the system from passive-OMIT to active-OMIT, or vice
versa, by varying the gain-to-loss ratio k/c. Such transient behaviors
have not been revealed previously.

Reversed-pump dependence. For the passive-passive COM, the
transmission rate and the width of the OMIT window increase
with increasing pump power PL6,24 (see also Fig. 4a). For the
passive-active COM, where we observe the inverted-OMIT,
increasing the pump power PL leads to a significant decrease of the
sideband amplifications (Fig. 4b). Here the pump power dependence
of the OMIT profile is shown for k/c 5 1.5 (in the PT-breaking
regime). We have also performed our calculations for k/c 5 1 and
k/c 5 0.5, and similarly found that in these cases the sideband
amplifications are also reduced as the pump is increased from PL
5 10 mW to 20 mW (not shown here). Nevertheless, the sideband
amplification always reaches its maximum value at the gain-loss
balance (see also Fig. 2b). We note that the counterintuitive effect
of reversed pump dependence was also previously demonstrated in
coupled optical systems (i.e., no phonon mode was involved)
operating at the exceptional point36,37.
In addition, we have also studied the effect of the mechanical

damping on the profiles of the conventional and inverted OMIT at
different values of the gain-to-loss ratio. We confirmed that the
profiles of both the conventional and the inverted OMIT are strongly
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affected (i.e., tend to disappear) by increasing the mechanical damp-
ing. This highlights the key role of the mechanical mode in observing
OMIT-like phenomena.

PT-breaking fast light. The light transmitted in an EIT window
experiences a dramatic reduction in its group velocity due to the
rapid variation of the refractive index within the EIT window, and
this is true also for the light transmitted in the OMIT window in a
conventional passive optomechanical resonator6. Specifically, the
optical group delay of the transmitted light is given by

tg~
d arg t vp

� �� �
dvp

				
vp~vc

: ð12Þ

We have confirmed that OMIT in the passive-passive COM leads
only to the slowing (i.e., positive group delay: tg . 0) of the

transmitted light, and that when the coupling J between the
resonators is weak the reduction in the group velocity approaches
to that experienced in a single passive resonator6,24. In contrast, in the
active-passive COM, one can tune the system to switch from slow to
fast light, or vice versa, by controlling PL or k/c, such that the COM
experiences the PT-phase transition (Fig. 5).
In the regime k/c , 1, as PL is increased from zero, the system

first enters into the slow-light regime (tg . 0), and tg increases
until its peak value. Then it decreases, reaching tg 5 0, at a critical
value of PL (Fig. 5a). The higher is the k/c, the sharper is the
decrease. Increasing PL beyond this critical value completes the
transition from slow to fast light and tg becomes negative (tg ,
0). After this transition, the advancement of the pulse increases
with increasing PL until it reaches its maximum value (more nega-
tive tg). Beyond this point, a further increase in PL, again, pushes tg
closer to zero.
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In the regime k/c . 1, increasing PL from zero first pushes the
system into the fast-light regime and increases the advancement of
the pulse (tg , 0) until the maximum advance is reached (Fig. 5b).
After this point, the advance decreases with increasing PL and finally
tg becomes positive, implying a transition to slow light. If PL is
further increased, tg first increases until its peak value, and then
decreases approaching tg 5 0.
The PL value required to observe the transition from slow-to-fast

light (when k/c , 1) or from fast-to-slow light (when k/c . 1)
depends on the gain-to-loss ratio k/c if the coupling strength J is

fixed (Fig. 5). This implies that, when PL is kept fixed, one can also
drive the system from slow-to-fast or fast-to-slow light regimes by
tuning k/c. A simple picture can be given for this numerically-
revealed feature: for DL , 0, j , 0, we simply have
G1~G�

2< J2{kc
� �

zikgxs, which is minimized for J2 5 kc, or k/
c5 1, J/c5 1; therefore, in the vicinity of the gain-loss balance, the
denominator of A is a real number, and Im(A)/Re(A) , (1–c/k)21,
i.e. having reverse signs for k/c. 1 or k/c, 1. Correspondingly, arg
(A) or arg[t(vp)] and hence its first-order derivative tg , (c/k 21)
(for J/k 5 1). Clearly, the sign of tg can be reversed by tuning from
the PT-symmetric regime (with k/c , 1) to the broken-PT regime
(with k/c . 1). We note that the appearance of the fast light in the
PT-breaking regime, where the gain becomes to exceed the loss, is
reminiscent of that observed in a gain-assisted or inverted
medium38.
In order to better visualize and understand how the switching

from the slow-to-fast light and vice versa takes place, when the
gain-to-loss ratio k/c is tuned at a fixed-pump power PL, or when
PL is tuned at a fixed value of k/c, we present the phase of the
transmission function t(vp) in Figs. 6(a–c). For this purpose, we
choose the values of PL and k/c from Fig. 5, where their effects on
the optical group velocity tg were presented. These calculations
clearly show that, near the resonance point (dp 5 0), the slope
of the curves can be tuned from positive to negative or vice versa,
by tuning PL or k/c, which agrees well with the slow-fast light
transitions (see Fig. 5). In sharp contrast, Fig. 6d shows that for
the passive-passive COM (e.g., k/c 5 21), no such type of sign
reversal can be observed for the slope of the phase curves, corres-
ponding to the fact that only the slow light can exist in that specific
situation.

Discussion
In conclusion, we have studied the optomechanically-induced-
transparency (OMIT) in PT-symmetric coupled microresonators
with a tunable gain-loss ratio. In contrast to the conventional
OMIT in passive resonators (a transparency peak arising in the
otherwise strong absorptive spectral region), the active OMIT in
PT-symmetric resonators features an inverted spectrum, with a
transparency dip between two sideband peaks, providing a COM
analog of the all-optical inverted-EIT34. For this active-OMIT sys-
tem, the counterintuitive effects of gain- or pump-induced sup-
pression of the optical transmission rate are revealed. In particular,
the transition from slow-to-fast regimes by tuning the gain-to-loss
ratio or the pump power is also demonstrated. The possibility of
observing the PT-symmetric fast light, by tuning the gain-to-loss
ratio of the coupled microresonators28, has not studied previously.
These exotic features of OMIT in PT-symmetric resonators greatly
widens the range of applications of integrated COM devices for
controlling and engineering optical photons. In addition, our work
can be extended to study e.g. the OMIT in a quasi-PT system36,
the OMIT cooling of mechanical motion39,40, the active-OMIT
with two mechanical modes19, or the gain-assisted nonlinear
OMIT41–43.

Methods
Derivation of the optical transmission rate.Taking the expectation of each operator
given in Eqs. (2)–(4), we find the linearized Heisenberg equations as

da1h i~{ iDLzc{igxsð Þ da1h iziJ da2h iziga1,s dxh izep exp {ijtð Þ,
da2h i~{ iDL{kð Þ da2h iziJ da1h i,

d _xh izCm d _xh izv2
m dxh i~ g

m
a�1,s da1h iza1,s daz1

� �� �
:

ð13Þ

which can be transformed into the following form, by applying the ansatz given in
Eq. (8),
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iDLzc{igxs{ijð Þda1z~iJda2zziga1,sdxzzep,

iDLzc{igxszijð Þda1{~iJda2{ziga1,sdx{,

iDL{k{ijð Þda2z~iJda1z,

iDL{k{ijð Þda2{~iJda1{,

v2
m{j2{ijCm

� �
dxz~

g
m

a�1,sda1zza1,sda
z
1{

� �
,

v2
m{j2{ijCm

� �
dx{~

g
m

a�1,sda1{za1,sda
z
1z

� �
:

ð14Þ

Solving these algebraic equations leads to

dxz~
ga�1,sG2epmz

v2
m{j2{ijCm

� �G1G2m{ig2n1 G2mz{G1m{
� � , ð15Þ

dx{~
ga1,sG�

2epm
�
z

v2
m{j2{ijCm

� �G�
1G�

2m{ig2n1 G�
2m

�
z{G�

1m
�
{

� � , ð16Þ

da1z~
v2

m{j2{ijCm
� �G2mzig2n1m{
� �

mzep

v2
m{j2{ijCm

� �G1G2m{ig2n1 G2mz{G1m{
� � , ð17Þ

da1{~
ig2a21,sm

�
{m�zep

v2
m{j2{ijCm

� �G�
1G�

2m{ig2n1 G�
2m

�
z{G�

1m
�
{

� � , ð18Þ

da2z~
iJ v2

m{j2{ijCm
� �G2mzig2n1m{
� �

ep

v2
m{j2{ijCm

� �G1G2m{ig2n1 G2mz{G1m{
� � , ð19Þ

da2{~
{Jg2a21,sm

�
zep

v2
m{j2{ijCm

� �G�
1G�

2m{ig2n1 G�
2m

�
z{G�

1m
�
{

� � ð20Þ

where we have used ni 5 jai,sj2 (i 5 1, 2) and

m+~{k{ij+iDL,

G1~ iDLzc{igxs{ijð ÞmzzJ2,

G2~ {iDLzc{igxs{ijð Þm{zJ2:

ð21Þ

The expectation value aout1 tð Þ� �
of the output field aout1 tð Þ can be calculated using the

standard input-output relation aout1 tð Þ~ain1 {
ffiffiffiffiffi
2c

p
a1 tð Þ, where ain1 and aout1 are the

input and output field operators, and

aout1 tð Þ� �
~ EL

. ffiffiffiffiffi
2c

p
{

ffiffiffiffiffi
2c

p
a1,szda1{eijt
� �h i

e{ivLtz ep

. ffiffiffiffiffi
2c

p
{

ffiffiffiffiffi
2c

p
da1z

� �
e{i vLzjð Þt : ð22Þ

Hence, the transmission rate of the probe field can be written as g 5 jt(vp)j2, where
t(vp) is the ratio of the output field amplitude to the input field amplitude at the probe
frequency

t vp
� �

~
ep{2cda1z

ep
~1{2cA


ep, ð23Þ

whereA; da11 is given in Eq. (9). In order to receive some analytical estimations, we
takevm/vc, 0,DL,p, 0, which leads to m6,2k, G1,2*J2{ c+igxsð Þk. For xs, 0,
we have

g^ 1z
2kc mv2

m J2{kcð Þ{ig2n1k
� �

mv2
m J2{kcð Þ2

					

					
2

, ð24Þ
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Figure 6 | The phase of the transmission amplitude t(vp) with different parameters. (a-b) With different values of pump power PL. (c) With different

values of gain-to-loss ratio k/c. The specific values of PL and k/c are taken from Fig. 5, corresponding to the slow and fast light regimes. For comparison,

the results for the passive-passive COM system are also plotted in (d) with k/c 5 21.
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i.e. g, (J22 kc)22 or g, (12 k/c)22 (for a fixed value of J/c5 1). This indicates that
the transmission rate g tends to be maximized as the gain-to-loss ratio approaches
one, that is k/c5 1, which was confirmed by our numerical calculations (see Fig. 2b).
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