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I. DEVICE AND MEASUREMENT CIRCUIT

The samples are fabricated as follows. First we me-
chanically exfoliated the graphene from its bulk, KISH
graphite (Kyocera. Inc), to an undoped silicon chip with
285 nm oxide. Second, electron beam lithography (E-
BL) was employed several times, starting with the fab-
rication of alignment marks, then plasma-etching masks
and electrode patterns. The EBL resists used were PM-
MA 950k A4 for the first step and double-layered PMMA
950k A2 for the latter two steps. We developed the sub-
micrometer patterns under 0 to establish a better control
of the device specifications. Through etching out all the
undesired part of the graphene sheet to realize the de-
signed device, we strove for the all-metal-side-gated con-
figuration, to avoid unstable gate terminals. This etch-
ing was carried out by inductively-coupled plasma (ICP),
using a 4:1 gas mixture of Oxygen to Argon. For mark-

FIG. S1. Schematic diagram of the hybrid DQD-
resonator device. (a) Schematic of the measurement set-
up and photograph of the high-frequency sample holder. (b)
Photograph of the reflection-line-resonator. (c) Schematic of
the measured device, the scale bars are used for resonator
only (not for the DQDs).
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s and electrodes we deposited 5 nm Ti and 45 nm Au
with an electron-beam evaporator. Finally, the resonator
was fabricated by optical lithography followed by metal
deposition in a thermal evaporator. The reflection-line
resonator (RLR)[1–3] consists of two coupled differential
microstrip lines. A stable electromagnetic field is formed
between the two microstrips when a microwave field with
equal magnitude but opposite phase is applied to the
resonator through the 180-degree hybrid [Fig. S1(a)] [1].
The reflected signal S11 is measured by a network ana-
lyzer (NA). The resonator was patterned using optical
lithography with a 2 µm thick layer of photoresist. The
wafer was subsequently deposited with a 200 nm thick
layer of aluminum (Al), thermally evaporated at the rate
of 1 Å/s, and lifted-off in acetone. Aluminum is super-
conducting under about 26 mK and the internal loss of
the resonator can be neglected. The amplitude and phase
spectra are obtained from the NA and can be fitted with
the model of a λ/2 open-ended microstrip resonator [1],
from which the resonance frequency and quality factor,
Q, can be extracted. Most of our resonators have a reso-
nance frequency near 6.3 GHz, and Q can be varied large-
ly from several hundred up to several tens of thousands by
changing the coupling capacitance. As a resonator with
large Q can be used as quantum storage and one with
low Q is suitable for readout, we design the coupling ca-
pacitance so that the Q is about 5000 without coupling
to a quantum dot (QD). When the resonator is coupled
to the double quantum dot (DQD), the Q is about 3000
for our device. This decrease of Q may be caused by cur-
rent leakage through the quantum dot at the end of the
resonator. Left and right plunger gates (LP and RP) are
directly connected to the two striplines of the resonator.
Computer simulations of this design, using the software
High Frequency Structure Simulator (HFSS), show that
the dc bias and ac microwave signals do not interfere,
and this has also been verified experimentally in several
test samples. The input and output ports of the NA are
connected to the resonator via a PE-8402 circulator and
a 180-degree hybrid, which direct the signal reflected by
the resonator back to the NA. Furthermore, two 30 dB
attenuators are connected between the NA output port
and the circulator, reducing the lower limit of the power
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FIG. S2. Temperature dependence measurement. (a)
The charge-stability diagram of the graphene DQD, obtained
using a QPC charge-sensing measurement at the base temper-
ature. (b) The full width at half maximum (FWHM) of the
QPC signal as a function of ε. The FWHM is extracted from
the data using a Lorentzian fit. The temperature is varied
from the base temperature up to 1 K, and here we show the
result at the base temperature. (c) The FWHM as a function
of the lattice temperature. The dashed line is the best linear
fit for the high temperature region.

applied to the resonator to -130 dBm. The reflected sig-
nal is amplified at 4 K and at room temperature, and an
isolator is used to prevent noise from the amplifiers and
the environment from reaching the sample.

II. MEASUREMENTS OF THE GRAPHENE
QUANTUM DOT

Using a QPC we were able to perform charge-sensing
measurements and obtained the charge-stability diagram
of the device, typical result of a DQD is shown in Fig. S2.
In order to prevent the microwave power from being ab-
sorbed by the substrate, we choose undoped silicon with
a 300 nm thermal oxide as substrate. The back gate is
grounded during the measurement. For varying lattice
temperature, we measured the full width at half max-
imum (FWHM) of the QPC signal as a function of ε.

FIG. S3. Capacitance model for the hybrid system. (a)
Equivalent circuit diagram of the hybrid system. +V and −V
represent the equivalent voltage produced by the microwave
from the two strips of RLR. CLP is the coupling capacitance
between the LP gate and the left dot, and similarly for CRP.
Cm is the capacitance between the two dots. CdL is the total
capacitance of left dot except CgL and Cm, also similarly for
CdR. VL and VR are the effective voltages induced by +V and
−V . (b)A typical charge stability diagram and definition of
specify parameters.

FIG. S4. Phase responses. The phase response of the res-
onator as a function of the applied microwave frequency, to-
gether with a theoretical fit. Here we show results for the
two cases of κe < κi (a) and κe > κi (b), corresponding to
two typical resonators. The phase response as a function of
probe frequency have different shapes depending on whether
the internal or external dissipation dominates.

Here 2tC , Te, and the FWHM are related as [4] :
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where kB is the Boltzmann constant, Te is the electron
temperature and FWHM(eV) is the FWHM in energy
unit, which can be transformed from the gate voltage
by the plunger gate lever arm. Lever arm is defined as
αL = CLP /CL, where CL is the total capacitance of the
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FIG. S5. Resonator responses under different DQD
conditions. (a) Typical DQD charge stability diagram. (b)
Amplitude response as a function of driving frequency for two
points denoted in (a). ∆A is the measured amplitude change
when fixing the probe frequency at 6.35086 GHz and ∆A1

is caused by the addition of dissipation. Amplitude (c) and
phase (d) responses for different DQD bias voltages. The
large ∆A1 means that the dissipation is the main effect in
large bias condition.

left dot (the definition of the capacitance can be seen in
Fig. S3), and the same with αR.

By fitting the FWHM as a function of temperature,
we extract 2tC , Te, and the lever arm α of the plunger
gates. Here different values of 2tC can be obtained at
different interdot charge transition states as it cannot be
tuned in-situ, Te is about 150 mK in our device, and the
lever arm is about 6%.

III. CAPACITANCE MODEL FOR THE
HYBRID SYSTEM

The coupling between the graphene DQD and the RL-
R can be described by an equivalent circuit, shown in
Fig. S3(a). We define

ν =
VL − VR

+V − (−V )
=
VL − VR

2V
, (2)

where ν can be understood as the lever arm between
microwave energy in RLR and the graphene DQD. The

coupling strength is then given by gC = ω0ν
√

2Z0

RQ
[5],

where RQ ≈ 26 kΩ is the quantum resistance and Z0 =
50 Ω is the characteristic impedance. By simple circuit
analysis and the constant interaction model [6], we obtain
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The slopes k1, k2 and VLP, VRP are shown in Fig. S3.
For the interdot transition line near the region VLP = 310
mV, VRP = 220 mV, we calculate gC to be about 12 MHz.
This coupling strength is comparable to the previously
reported values for semiconductor QDs coupled to TLR
[7, 8]. With h̄gC = Ed, and the photon-induced electric
field E of the order of 10−1 V/m, we estimate that the
dipole moment of the DQD system is of the order of
d = 1000 ea0, where a0 is the Bohr radius.

IV. QUANTUM MODEL

The double quantum dot can be modeled as a quan-
tum two-level system that couples to the resonator via a
dipole interaction, described by the hamiltonian [9]

H = h̄∆0a
+a+

1

2
h̄∆σz + h̄geff(σ+a+ σ−a

†), (4)

which is written in the qubit eigenbasis and in the
rotating-frame with respect to the probe frequency ωR

and under the rotating wave approximation. Here geff =
gC

2tC
Ω , ∆0 = ω0−ωR, ∆ = Ω−ωR, ω0 is the resonance fre-

quency of the resonator, Ω =
√

(2tC)2 + ε2, Ω± = ±Ω/2
are the eigenenergies of the quantum dot two level sys-
tem. Here σz is the standard Pauli z-operator, σ− (σ+)
and a (a†) are the annihilation (creation) operators for
the quantum dot and resonator photons, respectively. To
model the internal κi and external κe dissipation rates of
the resonator, and the qubit relaxation rate γ1 and de-
phasing rate γ2, we first consider the Lindblad master
equation

ρ̇ = −i[H, ρ] + κD[a]ρ+ γ1D[σ−]ρ+
1

2
γ2D[σz]ρ, (5)

where D[a]ρ = aρa†− 1
2a
†aρ− 1

2ρa
†a is the Lindblad dis-

sipator. We then include the input-output theory [10],
where κ = κe + κi is the total dissipation rate of the res-
onator. The corresponding Heisenberg-Langevin equa-
tions of motion for the operators a, σ− and σz are

ȧ = −i∆0a− igeffσ− −
1

2
κa+

√
κeain, (6)

σ̇− = −i∆σ− + igeffaσz −
1

2
γ1σ− − γ2σ−, (7)

where we have neglected the quantum noise terms for
the quantum dot operators. For simplicity, we will also
assume that the quantum dot remains in its ground state
[11, 12], σz → −1. The boundary condition from the
coupling of the external transmission line to our single-
sided resonator is ain + aout =

√
κea. Combining these

results we finally obtain the reflection coefficient

S11 =
aout

ain
= −
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2
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2

, (8)
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i(Ω− ω) + 1
2γ1 + γ2

. (9)
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FIG. S6. Parameter extraction. (a) Best fit of the phase
versus frequency curve. Quality factor and resonance center
can be obtained. (b) γ2 sensitivity of the fit. The purple line
is the best fit curve of the experimental data (blue dots). To
slightly increase/decrease the γ2 by 0.05 GHz from its best fit
value, the red and green lines, then ,show obvious deviation
from the data, suggesting that such fit-obtained γ2 value is of
high accuracy. (c) A typical charge stability diagram of the
graphene DQD, where the interdot transition lines are labeled
from 1 to 7 in corresponding with the marked data in (e). (d)
γ2 dependence of 2tC (blue) and gC (red). (e) Experimental
data of the phase shift ∆φ, as a function of the DQD detuning
ε, collected from different interdot transition lines as shown
in (c). Each measurement is taken at a fixed probe frequen-
cy fR, which is close to the cavity resonance frequency f0.
The theoretical model used in the fitting is described in the
supplementary materials. The free fitting parameters were
2tC , gC and γ2, while other DQD and resonator parameter-
s were assumed to be known from other measurements and
calibrations.

FIG. S7. Simulation of the fitting procedure. (a) φerror

as a function of γ2 for a giving curve without noise. Here γ2,
2tC, and gC are ergodic values in giving intervals. (b) φerror

as a function of γ2 with a 0.5 degree Gaussian type noise noise.

V. FITTING THE FREE PARAMETERS

Figure S4 shows the phase response as a function of
probe frequency and the best fit for two typical resonators
with κe < κi and κe > κi, respectively. After obtaining
the parameters ω0, κi, and κe, we can extract the re-
maining parameters gC, 2tC, and γ2 by further fitting ∆φ
as a function of ε with a least-square method. The pa-
rameters except γ2 can be extracted independently: 2tC
can be obtained by a temperature dependence measure-
ment, gC can be obtained by a capacitive model, where

gC = ω0ν
√

2Z0/RQ). Here RQ ≈ 26KΩ is the quan-
tum resistance and Z0 = 50Ω is the characteristic, ν is
the lever arm between microwave energy in RLR and the
DQD. Here in our fitting, the dissipation is neglected be-
cause the dissipation is much smaller than the dispersive
effect in our experiment [see Fig. S5(b)]. Dissipation in-
creases obviously when the DQD bias increases [13] [see
Fig. S5(c,d)]. Figure S6 shows the fitting results of a typ-
ical sample in our experiment, where 7 charge states are
included. Figure S6(e) indicates perfect fit of each points.
When we used the fitting procedures, we have made fol-
lowing simulations to test the reliability of the fitting
method: First, we compare the gC and 2tC fitted from
individual fitting procedure and fitting with gC, 2tC and
γ2 all three as free parameters, finding that the values ob-
tained from the two method can be in consistence with
each other [14]. Second, after the fitting with gC, 2tC
and γ2 all three as free parameters, we replace one of the
parameters by another value, for example 2tC, and refit
with the other two as free parameters. The least-square
method cannot fit the curve very well, which indicates
that the three parameters contribute to different parts of
the curve and the variation will not be absorbed by the
other. Third, to further test whether the variation will be
absorbed by one of the other parameters, we use a simula-
tion as following. Starting from a giving theoretical curve
φ0 = φ(γ2 = 1GHz, 2tC = 6.3GHz, gC = 15MHz), we
define φeorr = φ(γ2, 2tC, gC) − φ0, where γ2, 2tC, and
gC can be ergodic values in giving intervals. The fitting
procedure is equivalent to finding a smallest φeorr. Of
cause the curve will be convergent to φ0. We show φeorr
as a function of γ2 in Fig. S7. The discrete curves in
Fig. S7(a) indicate a fixed wrong 2tC, and gC will lead
to a wrong γ2. The variation of 2tC, and gC cannot be
compensated by γ2, in other words, the variation will
not be absorbed by one of the other parameters. Howev-
er, for large noise system, the case is more complicated.
We mode the noise by applying a Gaussian type noise to
the theoretical curve φ0 = φ(γ2 = 1G, 2tC = 6.3G, gC =
15M), we find for small noise case, the curve will be con-
vergent to the right value. However, if the phase noise is
very large, the curve (φeorr) will convergent to two differ-
ent values (Fig. S7(b) is obtained by a phase noise of 0.5
degree). In our fitting procedure, we used several times
average to decrease the noise, the measured phase noise
in our system is below 0.1 degree. For this order of noise,
the curve is hardly to be convergent to two values, in our
many times simulation. For the above three reasons, we
are confident that our fitting procedure is accurate.

VI. INTERDOT TUNNELING RATES AND
CHARGING ENERGY DEPENDENCE

Figure S8 shows the interdot tunneling rates depend
on the charge number in the right dot of device A, cor-
responding one-to-one with Fig. 3(c) in the main text.
The value of 2tC in our device is around 6-8 GHz. Fig-
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FIG. S8. Interdot tunneling rates dependence. Interdot
tunneling rates as functions of the charge number in the right
dot, where five columns are studied, which has a one-to-one
correspondence with Fig. 3(c) in the main text.

ure S6(c) shows the charging energy EC dependence of
the charge number in the right dot. Four-fold degeneracy
manifested in EC [15] is not observed in our device. Here

EC is measured by the Coulomb diamond of the right
dot [see Fig. S9(b)], corresponding to the four-fold pe-
riodicity in the dephasing rates [see Fig. S9(a)]. Charge
number dependence in the left dot is shown in Fig. S9(d);
however, the well-shaped honeycomb cells are only 5, and
a reliable conclusion is difficult to reach.

VII. CHARGE NUMBER DEPENDENCE OF
DEVICE B AND C

Figure S10 shows the charge number dependence of
the dephasing rate in device B and C. We studied 3× 10
ordered cells in device B and two periodicity in the de-
phasing rate depend on charge number in one dot was
found [Fig. S10(a,b)]. However, only 3× 6 ordered cells
were found in device C and one periodicity was studied
[Fig. S10(c,d)]. The reason why we cannot find a very
large ordered cells may be due to the puddle and edge
states. The ordered cells show similar periodicity with
device A shown in the main text, proving this spin and
valley degree induced periodicity is not sample depen-
dent.

To be noted, a large portion of the materials, presented
in the first three sections, regarding the measurement and
circuit analysis details of the hybrid system, come from
our previous preprint [16].
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FIG. S9. Charging energy dependence of device A. (a)
Charge stability diagram of the DQD, which is the same as
Fig. 3(b) in the main text. (b) Coulomb diamond diagram
of the right dot. It was obtained along the dashed black line
in (a), while the horizontal axis only denotes the RP gate
voltage. The charging energy of an addition electron can be
obtained from the diamond size, shown by the solid arrow.
(c) Charging energy EC as a function of charge number in
the right dot, where five columns are studied, which has a
one-to-one correspondence with Fig. 3(c) in the main text.
(d) Dephsing rates as a function of electron number in the
left dot. The data is the same as in Fig. 3(c) in the main
text, but are here shown as a function of the left dot charge
number.
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FIG. S10. Dephasing rate dependence of device B and
C. (a) Charge stability diagram of device B. Here 3 × 10 or-
dered cells are studied (8 rows are shown in this diagram).
(b) The dephasing rates as a function of hole number in the
right dot for 12 consecutive holes (from n to n+9), which are
denoted in (a). Three columns (from m to m + 2) are stud-
ied. To assist readers, the approximate periodicity has been
guided by different background colors. (c) Charge stability
diagram of device C, where 3 × 6 ordered cells are studied.
(d) Dephasing rate dependence of device C.


