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We analyze the interference field formed by two electromagnetic plane waves (with the same frequency
but different wave vectors), and find that such a field reveals a rich and highly nontrivial structure of the
local momentum and spin densities. Despite the seemingly planar and extensively studied character of the
two-wave system, we find that it possesses a transverse (out-of-plane) helicity-independent spin density
and also a transverse polarization-dependent momentum density with unusual physical properties. The
polarization-dependent transverse momentum represents the so-called Belinfante spin momentum, which
does not exert the usual optical pressure and is considered as “virtual” in field theory. We perform analytical
estimations and exact numerical simulations of the interaction of the two-wave field with probe Mie
particles. The results of these calculations clearly indicate the straightforward detectability of the unusual
spin and momentum properties in the two-wave field and strongly motivate their future experimental
verifications.
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I. INTRODUCTION

It is well known, since the seminal works by Poynting
[1], that light carries momentum and angular momentum
(AM) [2,3]. Typical plane-wave or Gaussian-beam states
exhibit longitudinal momentum associated with the wave
vector k and also longitudinal (k-directed) spin AM
associated with the degree of circular polarization (helicity)
σ. This is in accordance with the “naive” but intuitively
clear picture of photons as particles carrying momentum
and spin. However, local momentum and angular-
momentum densities in structured (i.e., non-plane-wave)
optical fields can demonstrate unusual features, which have
recently attracted considerable attention. These are “super-
momentum” with values higher than ℏk per photon [4–8],
transverse (i.e., orthogonal to k) helicity-independent spin
AM [9–13], and transverse helicity-dependent momentum
[10,14,15].
Optical momentum and AM are the main dynamical

properties of light, which manifest themselves and play a
crucial role in various light-matter interactions [16], includ-
ing laser cooling [17], optical manipulation of small particles
[18], and optomechanical systems [19]. Importantly,
momentum and AM of light can be transferred to small
absorbing particles or atoms [4,7,8,10,17,18,20–22],

generating a radiation-pressure force and torque on the
particle [10,23–27]. In other words, the local optical
momentum and spin densities can be measured via the
translational and spinning motion of the probe particles.
This was used for the detection of the above-mentioned
extraordinary spin and momentum properties in structured
fields [4,5,7,8,10–13].
In this work, we are interested in the transverse momen-

tum and spin AM [9–15]. Thus far, these unusual quantities
have been noticed only in evanescent waves, i.e., inho-
mogeneous near fields defined in half-space and strongly
localized in the vicinity of sharp interfaces. An important
question is whether the transverse momentum and spin
properties can be observed in freely propagating far fields
in vacuum, e.g., in usual paraxial laser beams. Here, we
find that the simplest propagating non-plane-wave field—
two interfering plane waves—also exhibits these extraor-
dinary spin and momentum properties. Despite the
seemingly planar and thoroughly studied character of the
two-wave system, we discover that such a field possesses a
transverse (i.e., out of the plane formed by the two wave
vectors, see Fig. 1) helicity-independent spin density and
also a transverse polarization-dependent momentum with
nontrivial physical properties.
The transverse (y directed in our geometry) quantities are

not restricted by the planar ðx; zÞ wave vector configuration
because they are determined by the internal polarization
degrees of freedom, which remain truly three dimensional.
Namely, the transverse spin appears due to the phase-
shifted (e.g., imaginary) longitudinal z component of the
field, while the transverse momentum is also related to the
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in-plane x inhomogeneity of the field intensity. In the case
of evanescent waves [10], the imaginary component of
the single complex wave vector k ¼ kzz̄þ iκx̄ provides for
both of these features. In contrast, for propagating waves,
considered here, at least two real wave vectors k1;2 ¼
kzz̄� kxx̄ are needed to generate the truly three-
dimensional field and the in-plane x inhomogeneity from
the interference (see Fig. 1). Therefore, unlike the
evanescent-wave case, where the extraordinary transverse
quantities preserve constant signs in the x > 0 half-space
and only decay exponentially together with the field
intensity, their counterparts in the two-wave field oscillate
and change signs across the interference pattern.
To investigate the manifestations of the transverse

momentum and spin AM in light-matter interactions, we
calculate the optical forces and torques on a Mie particle
immersed in the two-wave interference field. Remarkably,
depending on the particle’s position and wave polariza-
tions, the particle can experience transverse torque about
the out-of-plane axis, even in the case of linearly in-plane
polarized incident waves with zero helicity. Furthermore,
the particle can undergo a transverse force orthogonal to the
wave vectors and strongly dependent on the wave polari-
zation. These intriguing results, supported by both ana-
lytical theory and exact numerical simulations, call for
experimental verification.

II. MOMENTUM AND SPIN IN A TWO-WAVE
INTERFERENCE FIELD

Throughout this paper, we consider monochromatic
electric and magnetic fields, Eðr; tÞ ¼ Re½EðrÞe−iωt� and
Hðr; tÞ ¼ Re½HðrÞe−iωt�, and use Gaussian units. All of
the properties we discuss hold in free space, but to conform
to optical-manipulation experiments using water or oil, we
assume a homogeneous medium with real permittivity ε,
permeability μ, and refractive index n ¼ ffiffiffiffiffi

εμ
p

.
The field we consider is a superposition of two plane

waves with arbitrary polarizations propagating in the ðx; zÞ
plane at an angle 2γ between their wave vectors (see Fig. 1):

k1;2 ¼ kðcos γ z̄� sin γ x̄Þ: ð1Þ

Here, k ¼ nω=c, the two signs correspond to the indices 1
and 2, and, hereafter, x̄, ȳ, and z̄ denote the unit vectors of
the corresponding axes. The complex electric fields of the
two waves can be written as

E1;2 ¼
Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jm1;2j2
q ðcos γ x̄þm1;2 ȳ ∓ sin γ z̄ÞeiΦ1;2 ;

ð2Þ

where Φ1;2 ¼ kðz cos γ � x sin γÞ are the wave phases and
we assume that the two waves have equal real electric-field
amplitudes A. In Eq. (2), m1;2 are the complex parameters
describing the wave polarizations [10,28]. The correspond-
ing normalized Stokes parameters characterizing the
degrees of the vertical (horizontal), diagonal 45° (−45°),
and right-hand (left-hand) circular polarizations on the
Poincaré sphere are, respectively,

τ1;2 ¼
1 − jm1;2j2
1þ jm1;2j2

;

χ1;2 ¼
2Reðm1;2Þ
1þ jm1;2j2

;

σ1;2 ¼
2Imðm1;2Þ
1þ jm1;2j2

: ð3Þ

Thus, σ1;2 are the helicities of the two waves. The wave
magnetic fields H 1;2 corresponding to Eq. (2) are given in
Supplemental Material [29], and the resulting interference
fields are E ¼ E1 þ E2 and H ¼ H1 þH2.
The main local dynamical characteristics of an optical

field are the time-averaged densities of energy W, momen-
tum P, and spin AM S. They are described by the following
equations with separate electric and magnetic contributions
[5,10,27,30]:

W ¼ We þWm ¼ gω
2
ðεjEj2 þ μjHj2Þ; ð4Þ

FIG. 1. Interference of two polarized plane waves. Two waves
having equal amplitudes and wave vectors k1;2 with an angle 2γ
between them propagate and interfere in the ðx; zÞ plane.
The wave polarizations are characterized by complex parameters
m1;2, and here the case of opposite circular polarizations m1 ¼
−m2 ¼ i (i.e., the Stokes parameters σ1 ¼ −σ2 ¼ 1) is shown.
Here and in Figs. 2 and 3, the gray scale plot represents the
distribution of the electric energy densityWeðxÞ, Eqs. (4) and (9).
The in-plane brown arrows show the electric part of the canonical
momentum density of light P eðxÞ, Eqs. (5) and (10). This
canonical momentum determines the energy transport and the
optical pressure, and it is directed along the z axis independently
of the wave polarizations.
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P¼PeþPm ¼ g
2
Im

�
1

μ
E∗ · ð∇ÞEþ1

ε
H∗ · ð∇ÞH

�
; ð5Þ

S ¼ Se þ Sm ¼ g
2
Im

�
1

μ
E� ×Eþ 1

ε
H� ×H

�
; ð6Þ

where g ¼ ð8πωÞ−1 in Gaussian units. It should be empha-
sized that Eq. (5) determines the so-called canonical (or
orbital) momentum of light, which can be associated with the
local phase gradient of the field [5] and which follows from
the Noether theorem and canonical energy-momentum
tensor [30]. This momentum is responsible for the energy
transfer, the radiation pressure, and also appears in quantum
weak measurements of the photon momentum (see
Refs. [5,7–10,27,30–32]). Thus, it is this canonical momen-
tum, but not the Poynting vector, that represents the directly
observable momentum of light. In particular, the momentum
(5) is responsible for the “supermomentum” effects

jPj > W=c [4–8], which are impossible with the Poynting
vector that never exceeds W=c in absolute value [9].
Nonetheless, below we also use the complex Poynting

momentum Π [2], which plays a role in higher-order light-
matter interactions [10] (or interactions with complex
particles [27]):

Π ¼ gk
n
ðE� ×HÞ: ð7Þ

The real part of the Poynting vector (7) differs from the
canonical momentum (5) by the so-called spin momentum
PS, which was introduced in 1939 by Belinfante to explain
the spin AM of quantum particles within field theory
[33–36] (see also Refs. [5,9,10,30,31]):

ReðΠÞ ¼ PþPS;

PS ¼
1

2
∇ × S: ð8Þ

FIG. 2. Transverse helicity-independent spin in the two-wave interference field. Distribution of the electric spin AM density [Eq. (11)]
SeðxÞ is shown here for the simplest case of linearly in-plane polarized waves, m1 ¼ m2 ¼ 0, i.e., the Stokes parameters ðτ; χ; σÞ ¼
ð1; 0; 0Þ (shown schematically in purple). Despite the seemingly ðx; zÞ-planar character of the problem without any helicity, the
transverse y-directed spin AM density appears. The inset panels display instantaneous electric and magnetic field distributions, Eðr; 0Þ
and Hðr; 0Þ, as functions of z at different x positions, indicated by the values of the phase Φ ¼ 2kx sin γ. These distributions show that
the transverse spin arises from the cycloidlike in-plane distribution of the electric field (cf. the evanescent-wave case [9–12]) with the
direction of rotation dependent on Φ. An absorbing probe particle is shown here at the position corresponding to Φ ¼ π=2, and the
optical forces and torques are indicated schematically. The transverse spin AM is locally transferred to the particle, thereby exerting a
radiation torque [Eq. (15)] T ∝ Se (shown in red) (see Fig. 4 for numerical simulations). The particle also experiences in-plane radiation-
pressure and gradient forces [Eq. (14)] [shown in gray].
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Importantly, the divergenceless spin momentum PS
does not transfer energy, does not exert optical pressure
on spherical dipole particles, and is often considered as
“virtual,” i.e., nonobservable. It is this momentum that
appears as the enigmatic Fedorov-Imbert momentum in
evanescent waves [10,14,15], which is orthogonal to the
wave vector and depends on the polarization helicity.
Substituting electric and magnetic fields of the super-

position of two waves (2) into the general equations (4)–(6),
we calculate the energy, momentum, and spin AM
distributions in the two-wave interference. Formulas
for the generic polarizations m1 and m2 are given in
Supplemental Material [29], while here, for the sake of
simplicity, we consider a particular case of the “mirror-
symmetric” polarizations, m1 ¼ −m2 ≡m, with the
Stokes parameters ðτ1;χ1;σ1Þ¼ ðτ2;−χ2;−σ2Þ≡ ðτ;χ;σÞ.
Omitting the common factor εgA2 in all dynamical
characteristics, this yields

We;m ¼ ω½1þ ðτcos2γ ∓ sin2γÞ cosΦ�; ð9Þ

Pe;m ¼ cos γ
cn

We;m z̄; ð10Þ

Se;m ¼ 1

n2

h
σ sin γð1 ∓ cosΦÞx̄þ τ � 1

2
sin 2γ sinΦ ȳ

þ χ cos γ sinΦ z̄
i
; ð11Þ

where the two signs correspond to the indices e and m,
while Φ ¼ Φ1 − Φ2 ¼ 2kx sin γ is the phase difference
that determines the interference pattern (see Fig. 1). In a
similar way, we also find the spin momentum and
imaginary Poynting vector, Eqs. (7) and (8):

PS ¼
k sin 2γ
n2

½−χ cosΦ ȳ þ τ sin γ cosΦ z̄�; ð12Þ

ImðΠÞ ¼ − 2k sin γ
n2

½sinΦ x̄þ σ cos γ cosΦ ȳ�: ð13Þ

Equations (9)–(13) are the key equations of thiswork. The
energy densities and canonical momenta, Eqs. (9) and (10),
correspondto thepictureof the two-waveinterference,which
is intuitively clear and has been known for decades. Namely,
We;mðxÞ contains the usual interference fringes determined
by cosΦ ¼ cosð2kx sin γÞ, while P e;mðxÞ is naturally
directed along the z axis and corresponds to the group
propagation velocity vg ¼ Pe;m

z c2=We;m ¼ c cos γ=n [7],

T

FF

F F

FIG. 3. Transverse polarization-dependent momenta in the two-wave interference field. (a) Distribution of Belinfante’s spin momentum
density [Eq. (12)]PSðxÞ [“virtual” part of the real Poynting vector ReðΠÞ] in the case of diagonally polarized waves withm1 ¼ −m2 ¼ 1,
i.e., the Stokes parameters ðτ; χ; σÞ ¼ ð0; 1; 0Þ (cf. the Fedorov-Imbert transverse momentum in evanescent waves [10]). (b) Distribution of
the y component of the imaginary Poynting momentum density Im½ΠyðxÞ� [Eq. (13)] for circularly polarized waves with m1 ¼ −m2 ¼ i,
i.e., the Stokes parameters ðτ; χ; σÞ ¼ ð0; 0; 1Þ. Despite the planar two-wave interference, both of these noncanonical momenta have the
transverse y-directed components, which are strongly polarization dependent. Namely, the distributions in (a) and (b) are flipped when the
polarizations are changed to the opposite: χ ¼ −1 and σ ¼ −1. An absorbing probe particle is shown here at the x position corresponding
to Φ ¼ π, and the optical forces and torques are indicated schematically. The spin and imaginary Poynting momenta do not exert radiation
pressure in the dipole-coupling approximation, but do cause a weak polarization-dependent optical force [Eq. (16)] (shown in red),
δFy ∝ ReðΠyÞ ¼ PSy and δFy ∝ ImðΠyÞ in the higher-order approximation (see Fig. 4 for numerical simulations). The particle also
experiences the action of the in-plane radiation-pressure force [Eq. (14)] and torque [Eq. (15)] (shown in gray); the latter corresponds to the
helicity-dependent x-directed spin [Eq. (11)] of the interfering waves with opposite circular polarizations [37].

BEKSHAEV, BLIOKH, AND NORI PHYS. REV. X 5, 011039 (2015)

011039-4



Fig. 1. In contrast, Eqs. (11)–(13) reveal unexpected and
counterintuitive dynamical features in such a primitive
system. Despite the seemingly planar ðx; zÞ geometry of
the problem, the spin AM and the complex Poynting
momentum have transverse out-of-plane y components.
The second term in Eq. (11) describes the transverse

y-directed spin AM, which is independent of the helicity σ
and can appear even for linear in-plane polarization, Fig. 2.
Similar transverse spin was previously described only in
evanescent fields [9–13]. This transverse spin density varies
sinusoidally across the interference fringes, so that the
integral (i.e., Φ-averaged) spin AM vanishes at σ ¼ 0. The
instantaneous t ¼ 0 distribution of the electric and mag-
netic fields, Eðr; tÞ and Hðr; tÞ, shown in Fig. 2, illumi-
nates the origin of this transverse spin Sey. Interference of
the x and z components of the electric wave fields (2),
which arrive at the observation point with different
phases, results in the cycloidal field distributions and
in-plane rotation upon the propagation along the z axis,
cf. Refs. [9–13] (see also Supplemental Material [29]).
Note that the integral spin AM in the chosen polarization

configuration m1 ¼ −m2 originates from the first term in
Eq. (11): hSi ¼ 2σn−2 sin γ x̄. It is proportional to the
helicity σ, as expected, but it is directed along the x axis,
i.e., alsoorthogonally to themainpropagationdirection.This
spinAM is similar to that recently described inRef. [37], and
it can be explained by the summation of the usual spin AM
from the two waves: ðσ1k1 þ σ2k2Þ=k ¼ 2σ sin γ x̄.
Next, the first term in Eq. (12) and the second one in

Eq. (13) describe the real and imaginary parts of the
transverse y directed complex Poynting momentum
[Eq. (7)]: ReðΠyÞ ¼ PSy and ImðΠyÞ, Fig. 3. In contrast
to the longitudinal canonical momentum (10), both of these
transverse parts are strongly polarization dependent (χ and
σ dependent for the chosen configuration m1 ¼ −m2; see
Supplemental Material [29] for other cases). Importantly,
the real part of the transverse Poynting vector is a pure
Belinfante’s spin momentum [Eq. (8)], which is analogous
to the helicity-dependent transverse momentum in evan-
escent waves (first found by Fedorov and Imbert [14,15]
and explained only very recently [10]). It emerges because
of the spatial x inhomogeneity of the usual longitudinal
z-directed spin Sz, Eq. (11), which is in turn produced by
the field rotation in the ðx; yÞ plane, Eq. (6). Both parts of
Πy do not transport energy, do not exert the usual optical
pressure, and have sinusoidal distributions across the
interference fringes, Fig. 3. Nonetheless, below we show
that they do reveal themselves in light-matter interactions,
and, hence, can be detected experimentally.

III. MECHANICAL ACTION ON PROBE
PARTICLES

We now describe manifestations of the unusual dynami-
cal characteristics [Eqs. (9)–(13)] of the two-wave field

in light-matter interactions. For this purpose, we consider
the field interaction with a small spherical probe particle.
This approach is verified in numerous experimental
[18,20–22] and theoretical [10,23–27] studies. The particle
is absorptive and is characterized by subwavelength radius
r and complex electric and magnetic polarizabilities αe;m.
For typical nonmagnetic materials, the electric polar-

izability is much higher than the magnetic one, because
αe ∝ ðkrÞ3 and αm ∝ ðkrÞ5 for kr ≪ 1 (see the Appendix
and Supplemental Material [29]). Therefore, for Rayleigh
particles, the leading-order light-matter interaction is the
electric-dipole coupling. It results in the following optical
force F and torque T on the particle [10,23–27]:

F ¼ g−1
�

1

2ωε
ReðαeÞ∇We þ μImðαeÞPe

�
≡ Fgrad þ Fpress;

ð14Þ

T ¼ g−1ImðαeÞSe; ð15Þ

where the force consists of the gradient and radiation-
pressure contributions. The radiation-pressure force in
Eq. (14) and torque [Eq. (15)], both proportional to
ImðαeÞ, characterize the rate of the momentum and AM
transfer from light to the particle via the photon-absorption
mechanism.
Being proportional to the electric parts of the canonical

momentum density P e [Eq. (5)] and spin AM density Se

[Eq. (6)], the radiation-pressure force and torque on the
particle naturally measure these local characteristics of the
field [7,10,21,22,27], including the transverse spin SeyðxÞ.
In addition to the asymptotic analytical results [Eq. (15)],
Fig. 4(a) shows exact numerical calculations of the torque
on a gold Mie particle, with 0 < kr < 4, suspended in
water (see the Appendix) and interacting with the two-wave
interference field with linear polarizations m ¼ 0 and m ¼
∞ (Stokes parameter τ ¼ �1) at the x position correspond-
ing to Φ ¼ π=2. One can clearly see the transverse torque
Ty about the y axis revealing the transverse spin AM
density SeyðxÞ [Eq. (11)], see Fig. 2, which will change the
sign for the x position, corresponding to Φ ¼ 3π=2. The
particle simultaneously experiences the action of the in-
plane radiation-pressure and gradient forces in this loca-
tion, but these could be balanced in experiments trapping
the particle at a desired ðx; zÞ point.
Remarkably, in the above dipole-coupling approxima-

tion, the transverse components of the complex Poynting
momentum, Eqs. (12) and (13), have no effect on the
particle. However, they do appear in the higher-order
interaction involving cross electric-magnetic dipole-dipole
terms proportional to αeαm� ∝ ðkrÞ8 [10]. Such weak
interaction is negligible for Rayleigh particles, but it
becomes noticeable for larger Mie particles with kr ∼ 1.
This results in the weak force correction [10,24,25]:
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δF ¼ g−1 k
3

3
½−Reðαeαm�ÞReðΠÞ þ Imðαeαm�ÞImðΠÞ�:

ð16Þ
The in-plane ðx; zÞ components of this force are negli-

gible compared to the radiation-pressure and gradient
forces (14), but the transverse component δFy is the only
force in the y direction. It has two contributions, propor-
tional to the transverse Belinfante’s spin momentum (12),

ReðΠyÞ ¼ PSy, and to the imaginary Poynting momentum
ImðΠyÞ [Eq. (13)]. Therefore, both of these transverse-
force components are strongly polarization dependent, and
are proportional to the Stokes parameters χ and σ,
respectively.
Figures 4(b) and 4(c) depict the results of the exact

numerical calculations of the forces exerted on the same
golden Mie particle (see the Appendix) in the two-wave
interference fields with polarizations m ¼ �1 and m ¼ �i

FIG. 4. Optical forces and torques on a gold Mie particle in the two-wave interference field. Exact numerical calculations of the forces
and torques exerted by the two-wave interference field [Eq. (2)] with γ ¼ 0.1 and different polarizations on a gold Mie particle
suspended in water (see the Appendix). The forces and torques (normalized by the factors F0 ¼ gr2A2 and T0 ¼ F0=k) are plotted as
functions of the dimensionless radius of the particle, kr. The light gray areas schematically indicate the Rayleigh dipole-approximation
range kr ≪ 1. (a) Optical torques for the simplest case of linear polarizations m ¼ 0 and m ¼ ∞, i.e., the Stokes parameters τ ¼ �1,
and particle’s x position corresponding to Φ ¼ π=2. The strong transverse torque clearly indicates the presence of a transverse helicity-
independent spin AM: Ty ∝ Sey ¼ Sy for the in-plane polarization τ ¼ 1; see Eqs. (11) and (15) and Fig. 2. The same torque becomes
weak and negative for the τ ¼ −1 polarization, because in this case the transverse spin has magnetic origin, Sy ¼ Smy , and it is weakly
coupled to the nonmagnetic gold particle. (b),(c) Optical forces for the diagonal and circular wave polarizations m ¼ �1 and m ¼ �i,
i.e., the Stokes parameters χ ¼ �1 and σ ¼ �1, and particle’s x position corresponding to Φ ¼ π. The strongest force is the longitudinal
radiation-pressure force proportional to the z-directed canonical momentum of light, Fz ∝ Pe

z , Eqs. (10) and (14). The gradient force is
absent because the particle is located in the maximum of the electric-field intensity: Fx ∝ ∇xWe ¼ 0. Importantly, a weak polarization-
dependent transverse force Fy appears beyond the Rayleigh dipole approximation, i.e., at kr ∼ 1. This force [Eq. (16)] indicates the
presence of the transverse χ-dependent Belinfante spin momentum δFy ∝ ReðΠ yÞ ¼ PSy and σ-dependent imaginary Poynting
momentum δFy ∝ ImðΠyÞ, Eqs. (12) and (13) and Fig. 3.
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(Stokes parameters χ ¼ �1 and σ ¼ �1) at the x position,
corresponding toΦ ¼ π. Alongside the strong polarization-
independent radiation-pressure force Fz, one can see
extraordinary transverse forces Fy changing their signs
upon the flip of the Stokes parameters χ and σ (these forces
also have the opposite signs at the x position, correspond-
ing to Φ ¼ 0). Importantly, for Mie particles with kr ∼ 1,
the weak force Fy is only 1 order of magnitude below the
usual radiation-pressure force Fz, and, therefore, it is
clearly detectable in standard optical-manipulation experi-
ments. This proves the observability of the transverse spin
momentum [Eq. (12)] and imaginary Poynting momentum
[Eq. (13)], Fig. 3.
It is worth remarking that the directions of the forces

depend on the parameters of the particle, and Figs. 4(b) and
4(c) show the transverse forces Fy corresponding to the
negative factors Reðαeαm�Þ < 0 and Imðαeαm�Þ < 0 for the
chosen gold particle (see the Appendix). Note also that
there is no gradient force atΦ ¼ 0; π, which offers a natural
trapping of the particle in the x positions with maximum
transverse forces. (The stable or unstable character of these
positions depends on the sign of the gradient forces in their
vicinity, which in turn is determined by the parameters of
the particle [18].)
Strikingly, the field characteristics [Eqs. (9)–(13)], dipole

interactions [Eqs. (14) and (15)], and the weak force
correction [Eq. (16)] are not merely leading-order terms
in a series of multiple light-matter interaction orders. Being
asymptotic with respect to the particle size kr at kr ≪ 1,
Eqs. (9)–(16) precisely keep the dependencies of optical
forces and torques on wave polarizations ðτ; χ; σÞ and
phases Φ even for larger Mie particles with kr > 1. This
can be seen in detailed numerical analysis given in the
Supplemental Material [29]. Thus, the above description is
indeed fundamental and complete.
We also note from Eqs. (11)–(13) that all of the trans-

verse spin and momentum phenomena discussed here
depend on the angle γ as ∝ sin 2γ, which enters as an
overall scaling factor for these phenomena. For the numeri-
cal simulations, we chose the reasonably small angle
γ ¼ 0.1 (paraxial propagation), which provides the period
of the fringes, π=ðk sin γÞ, of about five wavelengths. This
is sufficient for placing a wavelength-order probe in the
required x position between the fringes.

IV. CONCLUSIONS

To summarize, we show that one of the simplest optical
systems—two interfering plane waves—still provides sur-
prises, exhibiting rather rich and unexpected local dynami-
cal properties. Despite the seemingly planar character of the
system (which can also reveal remarkable fine features in
wave reflection or refraction [38]), we find that the two-
wave field carries a nonzero transverse (out-of-plane) spin
and momentum densities. These quantities appear because
the planar wave vectors determine only the extrinsic

degrees of freedom of the wave field, while the polarization
degrees of freedom and their associated properties remain
truly three dimensional.
Remarkably, the transverse spin AM is independent of

the wave helicity and appears even for linearly polarized
waves. On the contrary, the transverse component of the
complex Poynting momentum is strongly polarization
dependent, the real part of this transverse momentum being
Belinfante’s spin momentum. The transverse Poynting
momentum does not exert radiation pressure in dipole-
coupling interactions, but it appears in the higher-order
interactions with larger Mie particles and can be detected.
We perform exact numerical calculations of the forces and
torques exerted on a particle in the interference field and
prove the straightforward observability of the above
extraordinary dynamical features.
The fact that the transverse spin and momentum can be

obtained from simple planar propagating fields is very
important for experiments, as the latter are much easier to
generate and design than evanescent fields considered in
previous works [9–15]. Our findings offer a new vision for
the fundamental properties of propagating optical fields and
pave the way for nontrivial optical manipulations of small
particles.
Note added in proof.—After this work was accepted, we

became aware of two experimental papers [39,40], which
confirm our theoretical findings. First, a weak helicity-
dependent transverse force was detected in [39] for a Mie
particle in interference of the orthogonal linear- and circu-
larly-polarized plane waves. Although this force was inter-
preted there using “Aharonov-Bohm effect” arguments, it
can be clearly explained as the force (16) proportional to the
transverse imaginary part of the Poynting vector. The second
term in Eq. (S10) in the Supplemental Material [29], with
2γ ¼ π=2, m1 ¼ iσ, and m2 ¼ 0, describes this transverse
Poynting-vector component. Second, the transverse helicity-
independent spin AM density was measured in [40] in a
focused radially-polarized Gaussian beam. Since the beam is
produced by interference of multiple plane waves, our two-
wave system can be considered as a toy model for the
interference phenomena in the beam [38].
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APPENDIX: CALCULATIONS OF OPTICAL
FORCES AND TORQUES ON MIE PARTICLES

For numerical simulations, we consider the two-wave
interference field [Eq. (2)] with the vacuum wavelength
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λ0 ¼ 2πc=ω ¼ 650 μm and angle γ ¼ 0.1 interacting with
a spherical gold particle of radius r suspended in water.
Accordingly, the medium (water) is characterized by ε ¼
1.77 and μ ¼ 1, whereas the particle electric and magnetic
constants are εp ¼ −12.2þ 3.0i and μp ¼ 1.
To estimate the magnitudes of the optical forces and

torques in the small-particle approximation kr ≪ 1,
Eqs. (14)–(16), one can use Eq. (S26) of the
Supplemental Material [29], which describes the effective
electric and magnetic polarizabilities of a nonmagnetic
particle in the leading order in kr. With the above
parameters, this yields

αe ≃ ð1.28 × 10−3 þ 1.56 × 10−4iÞðkrÞ3 μm3;

αm ≃ ð−1.24 × 10−4 þ 2.66 × 10−5iÞðkrÞ5 μm3;

αeαm� ≃ ð−1.55 × 10−7 − 5.37 × 10−8iÞðkrÞ8 μm6:

ðA1Þ
For exact calculations with a particle of arbitrary radius

r, we use the standard Mie theory [41], generalized for the
case of two incident plane waves. Namely, using the Mie
solution for a single plane wave, we determine the scattered
electromagnetic fields ðEs

1;H
s
1Þ and ðEs

2;H
s
2Þ for each of

the incident waves, ðE1;H1Þ and ðE2;H2Þ. Hence, the total
field, perturbed by the interaction with the particle, is

Etot ¼ E1 þ E2 þ Es
1 þ Es

2;

Htot ¼ H1 þH2 þHs
1 þHs

2: ðA2Þ

Once the total field is known, its mechanical action on the
particle is calculated via the standard procedures using the
Maxwell stress tensor [2] Q̂ ¼ fQijg, i; j ¼ x; y; z,

Qij ¼ gωRe

�
εEtot�

i Etot
j þ μHtot�

i Htot
j

− 1

2
δijðεjEtotj2 þ μjHtotj2Þ

�
; ðA3Þ

and the corresponding AM flux tensor M̂ ¼ fMijg,
Mij ¼ ejklxkQli. Here, δij is the Kronecker delta, ejkl is
the Levi-Civita symbol, and fxig ¼ fx; y; zg. Integrating
the stress tensor and the AM flux tensor components over
any surface Σ enclosing the particle (e.g., a sphere with
radius R > r), we obtain the optical force and torque
exerted on the particle:

F ¼
I
Σ
Q̂n dΣ ¼ R2

Z
Ω
Q̂n dΩ;

T ¼
I
Σ
M̂ n dΣ ¼ R2

Z
Ω
M̂ n dΩ: ðA4Þ

Here, dΩ ¼ sin θdθdϕ is the elementary solid angle and
n ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞT is the unit vector of the

outer normal to the surface of the sphere. Finally, the forces
and torques calculated using the above method are nor-
malized by the factors F0 ¼ gr2A2 and T0 ¼ F0=k, and
are plotted in Fig. 4 as well as in Figs. S2 and S3 in the
Supplemental Material [29]. Since αe ∝ ðkrÞ3 in the
Rayleigh limit kr ≪ 1, such normalization implies linear
growth with kr, at kr ≪ 1, for the electric-dipole quantities
[Eqs. (14) and (15)].

[1] R. Loudon and C. Baxter, Contribution of John Henry
Poynting to the Understanding of Radiation Pressure, Proc.
R. Soc. A 468, 1825 (2012).

[2] J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley,
New York, 1999).

[3] L. Allen, S. M. Barnett, and M. J. Padgett, Optical Angular
Momentum (Institute of Physics Publishing, Bristol, 2003).

[4] S. Huard and C. Imbert, Measurement of Exchanged
Momentum during Interaction between Surface-Wave and
Moving Atom, Opt. Commun. 24, 185 (1978).

[5] M. V. Berry, Optical Currents, J. Opt. A 11, 094001 (2009).
[6] M. R. Dennis, A. C. Hamilton, and J. Courtial, Super-

oscillations in Speckle Patterns, Opt. Lett. 33, 2976 (2008).
[7] K. Y. Bliokh, A. Y. Bekshaev, A. G. Kofman, and F. Nori,

Photon Trajectories, Anomalous Velocities, and Weak
Measurements: A Classical Interpretation, New J. Phys.
15, 073022 (2013).

[8] S. M. Barnett and M. V. Berry, Superweak Momentum
Transfer near Optical Vortices, J. Opt. 15, 125701 (2013).

[9] K. Y. Bliokh and F. Nori, Transverse Spin of a Surface
Polariton, Phys. Rev. A 85, 061801(R) (2012).

[10] K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, Extraordinary
Momentum and Spin in Evanescent Waves, Nat. Commun.
5, 3300 (2014).

[11] A. Canaguier-Durand and C. Genet, Transverse Spinning of a
Sphere in Plasmonic Field, Phys. Rev. A 89, 033841 (2014).

[12] C. Junge, D. O’Shea, J. Volz, and A. Rauschenbeutel,
Strong Coupling between Single Atoms and Nontransversal
Photons, Phys. Rev. Lett. 110, 213604 (2013); M.
Neugebauer, T. Bauer, P. Banzer, and G. Leuchs, Polari-
zation Tailored Light Driven Directional Optical Nano-
beacon, Nano Lett. 14, 2546 (2014).

[13] J. Petersen, J. Volz, and A. Rauschenbeutel, Chiral Nano-
photonic Waveguide Interface Based on Spin-Orbit Cou-
pling of Light, Science 346, 67 (2014); D. O’Connor, P.
Ginzburg, F. J. Rodriguez-Fortuno, G. A. Wurtz, and A. V.
Zayats, Spin-orbit Coupling in Surface Plasmon Scattering
by Nanostructures, Nat. Commun. 5, 5327 (2014).

[14] F. I. Fedorov, To the Theory of Total Reflection, Dokl. Akad.
Nauk SSSR 105, 465 (1955); J. Opt. 15, 014002 (2013).

[15] C. Imbert, Calculation and Experimental Proof of the
Transverse Shift Induced by Total Internal Reflection of
a Circularly Polarized Light Beam, Phys. Rev. D 5, 787
(1972).

[16] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg,
Atom-Photon Interactions (Wiley-VCH, New York, 2004).

[17] S. Stenholm, The Semiclassical Theory of Laser Cooling,
Rev. Mod. Phys. 58, 699 (1986).

BEKSHAEV, BLIOKH, AND NORI PHYS. REV. X 5, 011039 (2015)

011039-8

http://dx.doi.org/10.1098/rspa.2011.0573
http://dx.doi.org/10.1098/rspa.2011.0573
http://dx.doi.org/10.1016/0030-4018(78)90115-3
http://dx.doi.org/10.1088/1464-4258/11/9/094001
http://dx.doi.org/10.1364/OL.33.002976
http://dx.doi.org/10.1088/1367-2630/15/7/073022
http://dx.doi.org/10.1088/1367-2630/15/7/073022
http://dx.doi.org/10.1088/2040-8978/15/12/125701
http://dx.doi.org/10.1103/PhysRevA.85.061801
http://dx.doi.org/10.1038/ncomms4300
http://dx.doi.org/10.1038/ncomms4300
http://dx.doi.org/10.1103/PhysRevA.89.033841
http://dx.doi.org/10.1103/PhysRevLett.110.213604
http://dx.doi.org/10.1021/nl5003526
http://dx.doi.org/10.1126/science.1257671
http://dx.doi.org/10.1038/ncomms6327
http://dx.doi.org/10.1088/2040-8978/15/1/014002
http://dx.doi.org/10.1103/PhysRevD.5.787
http://dx.doi.org/10.1103/PhysRevD.5.787
http://dx.doi.org/10.1103/RevModPhys.58.699


[18] D. G. Grier, A Revolution in Optical Manipulation, Nature
(London) 424, 810 (2003).

[19] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity
Optomechanics, Rev. Mod. Phys. 86, 1391 (2014).

[20] M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and
H. Rubinsztein-Dunlop, Optical Alignment and Spinning
of Laser-Trapped Microscopic Particles, Nature (London)
394, 348 (1998).

[21] A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett,
Intrinsic and Extrinsic Nature of the Orbital Angular
Momentum of a Light Beam, Phys. Rev. Lett. 88, 053601
(2002).

[22] V. Garcés-Chavéz, D. McGloin, M. J. Padgett, W. Dultz, H.
Schmitzer, and K. Dholakia, Observation of the Transfer of
the Local Angular Momentum Density of a Multiringed
Light Beam to an Optically Trapped Particle, Phys. Rev.
Lett. 91, 093602 (2003).

[23] A. Ashkin and J. P. Gordon, Stability of Radiation-Pressure
Particle Traps: An Optical Earnshaw Theorem, Opt. Lett. 8,
511 (1983).

[24] M. Nieto-Vesperinas, J. J. Saenz, R. Gomez-Medina, and
L. Chantada, Optical Forces on Small Magnetodielectric
Particles, Opt. Express 18, 11428 (2010).

[25] A. Y. Bekshaev, Subwavelength Particles in an Inhomo-
geneous Light Field: Optical Forces Associated with the
Spin and Orbital Energy Flows, J. Opt. 15, 044004 (2013).

[26] A. Canaguier-Durand, A. Cuche, C. Genet, and T.W.
Ebbesen, Force and Torque on an Electric Dipole by
Spinning Light Fields, Phys. Rev. A 88, 033831 (2013).

[27] K. Y. Bliokh, Y. S. Kivshar, and F. Nori, Magnetoelectric
Effects in Local Light-Matter Interactions, Phys. Rev. Lett.
113, 033601 (2014).

[28] R. M. A. Azzam and N. M. Bashara, Ellipsometry and
Polarized Light (North-Holland, Amsterdam, 1977).

[29] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevX.5.011039 for
distributions of the interference wave fields with different
polarizations, dynamical characteristics of the interference

field with arbitrary polarizations of the two waves, and a
detailed analysis of all the optical force and torque compo-
nents for different polarizations of the field.

[30] K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, Dual
Electromagnetism: Helicity, Spin, Momentum, and
Angular Momentum, New J. Phys. 15, 033026 (2013).

[31] A. Bekshaev, K. Y. Bliokh, and M. Soskin, Internal Flows
and Energy Circulation in Light Beams, J. Opt. 13, 053001
(2011).

[32] S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P.
Mirin, L. K. Shalm, and A.M. Steinberg, Observing the
Average Trajectories of Single Photons in a Two-Slit
Interferometer, Science 332, 1170 (2011).

[33] D. E. Soper, Classical Field Theory (Wiley, New York,
1976).

[34] F. J. Belinfante, On the Current and the Density of the
Electric Charge, the Energy, the Linear Momentum and
the Angular Momentum of Arbitrary Fields, Physica
(Amsterdam) 7, 449 (1940).

[35] H. C. Ohanian, What is Spin?, Am. J. Phys. 54, 500 (1986).
[36] K. Mita, Virtual Probability Current Associated with the

Spin, Am. J. Phys. 68, 259 (2000).
[37] P. Banzer, M. Neugebauer, A. Aiello, C. Marquardt,

N. Lindlein, T. Bauer, and G. Leuchs, The Photonic
Wheel—Demonstration of a State of Light with Purely
Transverse Angular Momentum, J. Eur. Opt. Soc. 8, 13032
(2013).

[38] M. R. Dennis and J. B. Gotte, Beam Shifts for Pairs of
Plane Waves, J. Opt. 15, 014015 (2013).

[39] S. Sukhov, V. Kajorndejnukul, J. Broky, and A. Dogariu,
Forces in Aharonov-Bohm Optical Setting, Optica 1, 383
(2014).

[40] M. Neugebauer, T. Bauer, A. Aiello, and P. Banzer,
Measuring the Transverse Spin Density of Light, Phys.
Rev. Lett. 114, 063901 (2015).

[41] C. F. Bohren and D. R. Huffman, Absorption and
Scattering of Light by Small Particles (Wiley, New York,
1983).

TRANSVERSE SPIN AND MOMENTUM IN TWO-WAVE … PHYS. REV. X 5, 011039 (2015)

011039-9

http://dx.doi.org/10.1038/nature01935
http://dx.doi.org/10.1038/nature01935
http://dx.doi.org/10.1103/RevModPhys.86.1391
http://dx.doi.org/10.1038/28566
http://dx.doi.org/10.1038/28566
http://dx.doi.org/10.1103/PhysRevLett.88.053601
http://dx.doi.org/10.1103/PhysRevLett.88.053601
http://dx.doi.org/10.1103/PhysRevLett.91.093602
http://dx.doi.org/10.1103/PhysRevLett.91.093602
http://dx.doi.org/10.1364/OL.8.000511
http://dx.doi.org/10.1364/OL.8.000511
http://dx.doi.org/10.1364/OE.18.011428
http://dx.doi.org/10.1088/2040-8978/15/4/044004
http://dx.doi.org/10.1103/PhysRevA.88.033831
http://dx.doi.org/10.1103/PhysRevLett.113.033601
http://dx.doi.org/10.1103/PhysRevLett.113.033601
http://link.aps.org/supplemental/10.1103/PhysRevX.5.011039
http://link.aps.org/supplemental/10.1103/PhysRevX.5.011039
http://link.aps.org/supplemental/10.1103/PhysRevX.5.011039
http://link.aps.org/supplemental/10.1103/PhysRevX.5.011039
http://link.aps.org/supplemental/10.1103/PhysRevX.5.011039
http://link.aps.org/supplemental/10.1103/PhysRevX.5.011039
http://link.aps.org/supplemental/10.1103/PhysRevX.5.011039
http://dx.doi.org/10.1088/1367-2630/15/3/033026
http://dx.doi.org/10.1088/2040-8978/13/5/053001
http://dx.doi.org/10.1088/2040-8978/13/5/053001
http://dx.doi.org/10.1126/science.1202218
http://dx.doi.org/10.1016/S0031-8914(40)90091-X
http://dx.doi.org/10.1016/S0031-8914(40)90091-X
http://dx.doi.org/10.1119/1.14580
http://dx.doi.org/10.1119/1.19421
http://dx.doi.org/10.2971/jeos.2013.13032
http://dx.doi.org/10.2971/jeos.2013.13032
http://dx.doi.org/10.1088/2040-8978/15/1/014015
http://dx.doi.org/10.1364/OPTICA.1.000383
http://dx.doi.org/10.1364/OPTICA.1.000383
http://dx.doi.org/10.1103/PhysRevLett.114.063901
http://dx.doi.org/10.1103/PhysRevLett.114.063901

