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Giant nonlinearity via breaking parity-time symmetry: A route to low-threshold phonon diodes
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Nonreciprocal devices that permit wave transmission in only one direction are indispensible in many fields
of science including, e.g., electronics, optics, acoustics, and thermodynamics. Manipulating phonons using such
nonreciprocal devices may have a range of applications such as phonon diodes, transistors, switches, etc. One
way of achieving nonreciprocal phononic devices is to use materials with strong nonlinear response to phonons.
However, it is not easy to obtain the required strong mechanical nonlinearity, especially for few-phonon situations.
Here we present a general mechanism to amplify nonlinearity using parity-time (PT )-symmetric structures, and
show that an on-chip microscale phonon diode can be fabricated using a PT -symmetric mechanical system, in
which a lossy mechanical resonator with very weak mechanical nonlinearity is coupled to a mechanical resonator
with mechanical gain but no mechanical nonlinearity. When this coupled system transits from the PT -symmetric
regime to the broken-PT -symmetric regime, the mechanical nonlinearity is transferred from the lossy resonator to
the one with gain, and the effective nonlinearity of the system is significantly enhanced. This enhanced mechanical
nonlinearity is almost lossless because of the gain-loss balance induced by the PT -symmetric structure. Such
an enhanced lossless mechanical nonlinearity is then used to control the direction of phonon propagation, and
can greatly decrease (by over three orders of magnitude) the threshold of the input-field intensity necessary
to observe the unidirectional phonon transport. We propose an experimentally realizable lossless low-threshold
phonon diode of this type. Our study opens up perspectives for constructing on-chip few-phonon devices and
hybrid phonon-photon components.
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I. INTRODUCTION

Owing to recent progress in nanotechnology and materials
science, nano- and micromechanics [1–7] have emerged as
subjects of great interest due to their potential use in demon-
strating macroscopic quantum phenomena, and possible ap-
plications in precision measurements, detecting gravitational
waves, building filters, signal amplification, as well as switches
and logic gates. In particular, on-chip single- or few-phonon
devices are ideal candidates for hybrid quantum information
processing, due to the ability of phonons to interact and
rapidly switch between optical fields and microwave fields
[8,9]. Fabrication of high-frequency mechanical resonators
[10], demonstration of coherent phonon coupling between
nanomechanical resonators [11], ground-state cooling [12,13],
and optomechanics (in microtoroids [14,15], microspheres
[16–18], microdisks [19–21], microring [22], photonic crystals
[11], doubly or singly clamped cantilevers [23,24], and mem-
branes [25]) have opened new directions [5] and provided new
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tools to control and manipulate phonons in on-chip devices.
One possible obstacle to further develop this field is the ability
to control the flow of phonons, allowing transport in one
direction but not the opposite direction [26], i.e., nonreciprocal
phonon transport. There have been several attempts to fabricate
nonreciprocal devices for phonons [27–32], but these are
almost exclusively based on asymmetric linear structures
which indeed cannot break Lorentz reciprocity: a static linear
structure cannot break reciprocity [27]. These proposed linear
structures do obey the reflection-transmission reciprocity and
thus cannot be considered as “phonon diodes.” Diodelike
behavior was observed in these linear acoustic structures
because the input-output channels were not properly switched
[27].

Nonreciprocal phonon transmission inevitably requires
magnetoacoustic materials, strong nonlinearity, or a time-
dependent modulation of the parameters of a structure.
Although already demonstrated in optics [33], the time-
dependent modulation of acoustic parameters of a phononic
structure has not been probed yet. Magnetoacoustic materials
require high magnetic fields to operate and have been studied
[34]; however, a magnetic-free nonreciprocal device is critical
for building on-chip and small-scale phononic processors and
circuits. Nonlinearity-based nonreciprocity seems to be the
most viable approach for creating micro- or nanoscale nonre-
ciprocal devices for controlling and manipulating phonons.
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Recently there have been several reports on nonlinear
mechanical structures and materials [35–38]. However, the
weak nonlinearity of those acoustic/phononic materials hin-
ders progress in this direction due to the high input powers
required to observe the nonlinear effects [39,40]. In order
to circumvent this problem, coupling a weakly nonlinear
structure to an auxiliary system, such as a quantum bit [41],
has been proposed to engineer effective giant mechanical
nonlinearities.

In order to achieve the required nonlinearity for nonrecip-
rocal phonon transport and to study nonlinear phononics, here
we introduce a method based on parity-time (PT ) symmetry
[42], which has attracted much attention recently due to their
interesting and generally counterintuitive physics [43–68].
Parity-time symmetry and its breaking (broken PT phase)
have been demonstrated in various physical systems [52–64],
such as optical waveguides [52–55], microcavities [62], and
electrical circuits [57]. However, mechanical PT -symmetric
systems have only been considered quite recently [64–68].

In our proposed mechanical PT -symmetric system, a lossy
mechanical resonator (passive resonator) which has a weak
mechanical nonlinearity is coupled to a mechanical resonator
with mechanical gain (active resonator) that balances the loss
of the passive resonator. The active resonator here works
as a dynamical amplifier. In the vicinity of the PT -phase
transition, the weak nonlinearity is first distributed between
the mechanically coupled resonators and then significantly
enhanced due to the localization of the mechanical supermodes
in the active resonator. In this way, the effective nonlinear Kerr
coefficient is increased by over three orders of magnitude. This
strong nonlinearity, localized in the active resonator, blocks
the phonon transport from the active resonator to the lossy
resonator but permits the transport in the opposite direction.

For the experimental realization of the proposed
nonlinearity-based phonon diode, we provide a system in
which a mechanical beam with weak mechanical nonlinearity
is coupled to another mechanical beam with gain. We show that
this microscale system can be switched from a bidirectional
transport regime to a unidirectional transport regime, and
vice versa, by properly adjusting the detuning between the
mechanical frequency of the resonators and the frequency of
the driving phononic field, or by varying the amplitude of the
input phononic field.

II. PARITY-TIME (PT -) SYMMETRIC MECHANICAL
SYSTEM

The system we consider here consists of two mechanical
resonators, one of which has mechanical loss (passive res-
onator) and weak nonlinearity, and the other has mechanical
gain (active resonator) but no nonlinearity (see Fig. 1). The
mechanical coupling between the resonators is linear and it
gives rise to the mechanical supermodes b± with complex
eigenfrequencies

ω± = �± − i�±, (1)

given by

ω± = �0 − iχ ± β. (2)

FIG. 1. (Color online) Schematic diagram of the proposed PT -
symmetric mechanical system. The PT -symmetric mechanical sys-
tem has a linear mechanical coupling between a passive mechanical
resonator (having mechanical loss and very weak mechanical nonlin-
earity) and an active mechanical resonator (having mechanical gain
but no nonlinearity). Here bl

in and bg
in are the input fields to the passive

and active resonators, respectively, and bl
out and b

g
out are the output

fields, respectively, leaving the passive and active resonators. b1 and
b2 denote the movable resonators.

Here �0 is the mechanical frequency of the solitary mechanical
resonators (i.e., both resonators are degenerate),

χ = (�l − �g)/2, (3)

β = √
g2

mm − �2, (4)

� = (�l + �g)/2, (5)

where �l and �g denote, respectively, the damping rate of
the lossy mechanical resonator and the gain rate of the
active mechanical resonator, and gmm is the coupling strength
between the mechanical modes. When � � gmm, the system
is in the PT -symmetric regime, and the supermodes are
nondegenerate with

�± = �0 ± β (6)

and have the same damping rate χ [see Figs. 2(a) and 2(b)].
However, when � > gmm, the system is in the broken-PT -
symmetric regime, the supermodes are frequency degenerate
with �± = �0 [see Figs. 2(a) and 2(b)] and have different
damping rates

�± = χ ∓ iβ. (7)

At � = gmm, the two supermodes are degenerate with the
same damping rate, indicating a transition between the PT -
symmetric regime and the broken-PT -symmetry regime. This
point is generally referred to as the PT -transition point.
It is seen that the two supermodes will be lossless in the
PT -symmetric regime if the gain and loss are well balanced,
such that �l = �g .

III. ENHANCING MECHANICAL NONLINEARITY BY
BREAKING PT SYMMETRY

Let us assume that the passive resonator is made from
a nonlinear acoustic material [35] with a small nonlinear
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FIG. 2. (Color online) Amplification of mechanical nonlinearity
via PT -symmetry breaking. (a) Effective damping rates and (b)
frequencies of the mechanical supermodes as functions of the
normalized mechanical coupling strength gmm/�. (c) The effective
nonlinear coefficients μ′

b in the PT -breaking regime and μ′
s in

the PT -symmetric regime. The PT -phase transition takes place
at gmm = �. In the vicinity of this transition point, the nonlinear
coefficients μ′

b and μ′
s are enhanced by more than three orders of

magnitude (more than 35 dB increase compared to the baseline).

Kerr coefficient μ. This nonlinearity mediates a cross-Kerr
interaction between the two mechanical supermodes, which
leads to the effective nonlinear coefficients μ′

b and μ′
s , in the

broken- and unbroken-PT regimes:

μ′
b = μ

�2g2
mm(

�2 − g2
mm

)2 , μ′
s = μ

g4
mm(

�2 − g2
mm

)2 . (8)

Clearly the effective nonlinear coefficients are significantly
enhanced in the vicinity of the phase transition point � = gmm

[see Fig. 2(c)]. Moreover, if the gain and loss are well balanced,
i.e., �l = �g , the supermodes become almost lossless. This
observation is one of the key contributions of this paper.
Namely, operating the system of two coupled mechanical
resonators in the vicinity of the phase transition point will
significantly enhance the existing very weak nonlinearity with
an extremely small loss rate.

Using the parameter values of μ/�0 = 10−5, �l/�0 =
0.55 × 10−3, and �g/�0 = 0.45 × 10−3, we show in Fig. 2
the evolution of the eigenfrequencies of the system and of the
nonlinear coefficient as a function of gmm/�. The transition
from the broken- to the unbroken-PT -symmetric regime and
vice versa, as the mechanical coupling strength is varied, is
seen in Figs. 2(a) and 2(b) and it is reflected in the bifurcations
of the supermode frequencies and damping rates. Moreover,
the enhancement of the nonlinearity in the vicinity of the
PT -phase transition point is seen in Fig. 2(c). We find that the
nonlinear coefficient is enhanced by more than three orders of
magnitude in the vicinity of the transition point.

More interestingly, in the broken-PT regime, the mechan-
ical energy of the coupled system is localized in the active
resonator, which leads to a nonlinear mechanical mode with
strong self-Kerr nonlinearity localized in the active mechanical
resonator. This can be interpreted intuitively as follows. The
initial weak mechanical nonlinearity is transferred from the
passive resonator to the active resonator and it is enhanced
by field localization in the broken-PT regime. Owing to
the presence of the mechanical gain, the active resonator

FIG. 3. (Color online) Enhancement of mechanical nonlinearity
in a PT -symmetric mechanical system. The coupling between
two mechanical resonators creates two mechanical supermodes
symmetrically distributed between the resonators, and hence both
supermodes experience the weak nonlinearity of the passive resonator.
In the vicinity of thePT -phase transition, which takes place when the
coupling strength between the resonators equals to the total loss in the
system, the mechanical nonlinearity is significantly enhanced due to
localization of the mechanical supermodes in the active mechanical
resonator.

then enjoys an almost lossless mechanical mode with a giant
nonlinearity (see Fig. 3).

Finally, we would like to consider how the mechanical
nonlinearity will affect the PT -symmetric structure of the
system. Generally speaking, a strong nonlinearity will shift the
transition point of a PT -symmetric system or even destroy the
PT symmetry of such a system [69]. However, in our case, we
start from a system in which a gain resonator is coupled to a
lossy resonator with very weak Kerr nonlinearity, and thus we
can omit the shift of the PT -transition point induced by such a
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weak nonlinearity. Although we generate a strong nonlinearity
in the vicinity of the PT -transition point, this is an effective
nonlinearity induced in the supermode picture and thus will
not affect the supermodes and the PT -transition point of the
system.

IV. UNIDIRECTIONAL PHONON TRANSPORT

Here we investigate the effect of the enhanced mechanical
nonlinearity on the phonon transport in the coupled system.
We find that the localized strong mechanical nonlinearity leads
to unidirectional phonon transport from the passive resonator
to the active resonator and blocks phonon transport in the
opposite direction (i.e., phonon transport from the active to
the passive resonator is prevented). The transport is almost
lossless due to the gain-loss balance of the system. When this
system is operated in the vicinity of the PT -phase transition
point, the unidirectional phonon transport is possible within a
region given by

δ ∈
[

g2
mm�0

�2
0 + χ2

,
g2

mm

�0 − √
3χ

]
, (9)

where

δ = �0 − �d (10)

is the detuning between the input (driving) field frequency �d

and the resonance frequency �0 of the mechanical resonators.
Additionally, in order to observe the unidirectional phonon
transport, the amplitude of the input field should satisfy

|εd |2 ∈
[

2
(
δ2 + g2

mm

)3

9μ′
bδ

3
,

2
(
δ2 + g2

mm

)3

9μ′
bg

2
mmδ

]
, (11)

implying that the intensity of the input field required for uni-
directional transport is inversely proportional to the strength
of the mechanical nonlinearity μ′

b. Since the strength of the
mechanical nonlinearity can be enhanced by more than three
orders of magnitude by breaking thePT symmetry, the thresh-
old of the input-field intensity for observing unidirectional
phonon transport can be decreased by at least three orders of
magnitude, allowing a low-threshold phonon diode operation.

To show unidirectional phonon transport in the broken-PT
regime, let us first fix the amplitude of the input field and vary
the detuning δ. We compare the amplitude transmittance

tl→g = b
g
out/b

l
in (12)

and

tg→l = bl
out/b

g
in. (13)

The former, tl→g , denotes the transmission from the passive to
the active resonator, that is, the system is driven by a phononic
input field bl

in of frequency �d at the passive resonator side
and the output b

g
out is measured at the active resonator side.

However, the latter, tg→l , denotes the amplitude transmittance
from the active resonator to the passive resonator when the
system is driven by the field b

g
in of frequency �d at the active

resonator side and the output bl
out is measured at the passive

side. The nonlinearity in the system manifests as a bistability
and hysteresis in the power transmittance,

Tg→l = |tg→l|2 (14)

FIG. 4. (Color online) Unidirectional phonon transport by PT -
symmetry breaking. (a) Unidirectional phonon transport when the
detuning δ is varied. The transmittance from the active to passive
mechanical resonator Tg→l (red dash-dotted curve), and from the
passive to the active mechanical resonator Tl→g (blue solid curve)
versus the detuning δ = �0 − �d shows a strong bistability and
hysteresis effect. The transmittance functions evolve along different
trajectories for increasing and decreasing detuning due to the
nonlinearity-induced bistability. A unidirectional phonon-transport
region (melon-colored shaded region) appears only when the detuning
δ is up-scanned from smaller to larger detunings. Within this regime,
the rectification is ∼30 dB. (b) Unidirectional photon transport
when the amplitude of the input field is varied at fixed detuning
δ/�0 = 2.75 × 10−3. Within the unidirectional transport region
(melon-colored shaded region), rectification is ∼30 dB.

and

Tl→g = |tl→g|2, (15)

obtained as the detuning δ is up-scanned from smaller to larger
detuning and down-scanned from larger to smaller detuning
[see Fig. 4(a)].

We find that during the down-scan, both of the transmit-
tances Tl→g and Tg→l stay at the lower branch with values close
to zero until δ/�0 = 0.5 × 10−3, after which they bifurcate
from each other only slightly and then jump to the stable
points at the upper branch of their respective trajectories [see
Fig. 4(a)]. Further decreasing the detuning leads to an increase
in Tl→g , but a decrease in Tg→l . This implies that there is
no unidirectional phonon transport with the parameter values
used in the numerical simulations. Instead, when the detuning
is below a critical value, the phonon transport is bidirectional;
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whereas when it is above that critical value there is no phonon
transport.

During the up-scan, however, after a short stay on the
stable state, i.e., a regime in which there is no bistability and
hysteresis in the transmittance (during which Tl→g decreases
and Tg→l increases with growing detuning), both of the
transmittances follow the upper branches of their trajectories,
during which a linear increase in Tg→l and a slow-rate decrease
in Tl→g are observed [see Fig. 4(a)]. This behavior continues
until δ/�0 ∼ 2.5 × 10−3 for Tg→l , where it jumps to the lower
branch of its trajectory, and becomes zero as the detuning is
increased [see Fig. 4(a)]. This implies that phonon transport
from the active mechanical resonator to the passive one is
prevented if the detuning is set to δ/�0 > 2.5 × 10−3. The
transmittance Tl→g stays at its upper branch with a value
close to one until δ/�0 ∼ 3 × 10−3, where it jumps to its
lower branch and becomes zero. Thus, for δ/�0 > 3 × 10−3,
phonon transport from the passive to the active resonator
is prevented. Clearly, in the detuning region 2.5 × 10−3 <

δ/�0 < 3 × 10−3, the transmittance Tl→g is close to one,
whereas Tg→l is close to zero in this detuning region, phonon
transport from the active mechanical resonator to the passive
one is forbidden, whereas phonon transport from the passive
mechanical resonator to active one is allowed with almost
no loss. Thus, we conclude that phonon transmission is
nonreciprocal in this detuning region, and the rectification
is ∼30 dB within the nonreciprocal transport region [see
Fig. 4(a)]. For detuning values smaller than the lower bound
of this region, phonon transport is bidirectional. For detuning
values larger than the upper bound of the region, phonon
transport is not possible.

Note that our phonon diode should work only when the
disturbance and perturbation of the system parameters are not
too strong. In fact, within the unidirectional phonon transport
window shown in Fig. 4(a), the transmittance Tl→g has two
different branches of metastable values. When we increase
the detuning δ within this unidirectional phonon transport
window, Tl→g will stay in the upper stable branch if we do
not severely disturb the system and the phonon diode should
operate properly. However, if the disturbance is too strong,
Tl→g will jump from the upper branch to the lower branch and
stay in this stable lower branch, without rectification.

Alternatively, we can fix the detuning and vary the am-
plitude of the input field to show the nonlinearity-induced
bistability and hysteresis. A nonreciprocal phonon transport
region is seen when the amplitude of the input field is
up-scanned [see Fig. 4(b)]. The nonreciprocal transport region
disappears when the amplitude of the input field is down-
scanned. Within the nonreciprocal transport region, when the
input is varied at fixed detuning [see Fig. 4(b)], the rectification
is ∼30 dB. Similarly, in this case, due to the metastability of
the transmittance Tl→g , the disturbance-induced perturbation
of the system parameters may not be too strong otherwise our
design of phonon diode will be invalid.

V. ON-CHIP PHONON DIODE

The unidirectional phonon transport enabled by the PT -
breaking-induced strong mechanical nonlinearity can be used
to fabricate lossless phonon diodes in on-chip systems. This

FIG. 5. (Color online) Schematic diagram of the phonon diode
system with two mechanical beams in which a beam with weak
mechanical nonlinearity is electrically or elastically coupled to
another beam with mechanical gain. The insets show the finite-
element-method (FEM) simulation by Comsol for the mechanical
modes.

may have many applications, such as single-phonon transistors
and routers, on-chip quantum switches, and information-
processing components. One possible way to realize the
proposed phonon diode is to use coupled beams and can-
tilevers [see Fig. 5(a)]. Phonon lasing, and hence an active
mechanical resonator, has been experimentally realized in an
electromechanical beam [70]. Elastically coupled nanobeams
and cantilevers, by which the mechanical supermodes can
be generated, have also been shown in various experiments
[71–74], in which the two mechanical resonators can be
independently driven [72]. Thus our proposal is within the
reach of current experimental techniques of nano-micro-
electromechanical systems.

Let us now consider the design of the phonon diode system
shown in Fig. 5 in which a lossy vibrating beam with damping
rate �l and a weak Kerr nonlinearity [35] of strength μ is
elastically coupled to another vibrating beam with gain �g

[70]. The frequencies of the two beams are both �0 and the
mechanical coupling strength is gmm.

In Fig. 6 we present the numerical results performed with
the system parameters: �0 = 600 kHz, �l = 33 kHz, �g =
30 kHz, δ = 1.65 kHz, μ = 5.7 kHz, and gmm = 1 kHz.
Here we fix the detuning δ and change the amplitude of
the input field. There is a 50 dB background noise which
includes the combined effect of the thermal noise on the
mechanical resonators, the electrical noises induced by the
measurement apparatus, and other possible sources of noise.
The results shown in Fig. 6 for the phonon diode agree well
with the general model discussed in the previous section.
When the amplitude of the input field is increased, it is clearly
seen that there is a nonreciprocal region in which phonon
transport from the active beam to the passive beam is almost
completely suppressed [see Fig. 6(b)(ii)], but phonon transport
from the passive beam to the active beam is allowed [see
Fig. 6(a)(ii)]. A rectification ratio of about 30 dB is obtained.
When the amplitude of the phonon excitation is larger than the
upper bound of the unidirectional phonon transport region, the
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FIG. 6. (Color online) Numerical results demonstrating unidirectional phonon transport in a PT -symmetric mechanical system in the
broken-PT phase. (a) Power spectrum obtained at the output of the active beam without mechanical nonlinearity when the phonon excitation
(input) is at the passive beam with weak nonlinearity. (b) Power spectrum obtained at the output of the passive beam when the phonon
excitation (input) is at the active beam. When the intensity of the phonon excitation is within the region bounded by Eq. (11), phonon transport
is unidirectional. Transport from the passive to the active resonator is allowed [see (a)(ii)], but the transport from the active to the passive
resonator is prevented [(b)(ii)]. The rectification is about 30 dB. If the intensity of the phonon excitation is larger than the upper bound of the
unidirectional transport region, phonon transport is bidirectional [(a)(i) and (b)(i)]. Phonon transport is not allowed in either of the directions
[(a)(iii) and (b)(iii)] if the intensity of the phonon excitation is smaller than the lower bound of the region given in Eq. (11).

transport is bidirectional. In this case, the phonons can freely
move from the active beam to the passive beam and vice versa
[see Figs. 6(a)(i) and 6(b)(i)]. Finally, for amplitudes of the
phonon excitation smaller than the lower bound of the region,
no phonon transport can take place between the resonators [see
Figs. 6(a)(iii) and 6(b)(iii)]. These are the result of hysteresis
[see Fig. 4(b)] caused by the strong mechanical nonlinearity.

VI. DISCUSSIONS

We have proposed a method to generate ultrastrong
mechanical nonlinearity with a very low-loss rate using a
PT -symmetric mechanical structure in which a mechanical
resonator with gain but no nonlinearity is coupled to a
lossy (i.e., passive mechanical loss and no gain) mechanical
resonator with very weak nonlinearity. We have showed
that the weak mechanical nonlinearity is redistributed in
the supermodes of the coupled mechanical system and is
enhanced (by more than three orders of magnitude) when
the mechanical PT system enters the broken-PT regime.
Moreover, owing to the presence of the mechanical gain in
one of the resonators to compensate the mechanical loss of
the other resonator, the effective mechanical damping rate is
decreased in the PT -symmetric system. Using experimentally
accessible parameter values, we identified the regimes where

unidirectional phonon transport is possible from the passive
to active resonator but not in the opposite direction. We
then proposed an experimentally realizable system where a
mechanical beam with passive loss and weak nonlinearity is
coupled to another beam which acts like an active mechanical
resonator. A possible bottleneck for this design to achieve
a phonon diode operated in ambient condition is whether
the mechanical gain observed with the mechanical beams
in a controlled environment and at low temperatures [36]
could also be obtained in ambient-temperature conditions.
A possible way to overcome this problem, and to realize
phonon diodes in ambient conditions, is to use a hybrid system
composed of a gain optomechanical resonator and an nonlinear
electrically driven mechanical beam [35], where the coupling
between them is achieved via the evanescent optical field of
the optomechanical resonator [75]. The mechanical gain of
the optomechanical resonators can be provided at ambient
conditions by, e.g., the optomechanical dynamical instability
in the blue detuning regime [76], which has been demonstrated
in optomechanical resonators in various experiments [77].
Since creating strongly nonlinear mechanical or acoustic
materials remains challenging, we believe that the proposed
system and the developed approach provide a suitable platform
for investigating nonlinear phononics and can be used as a
building block to design more complex hybrid optomechanical
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or electromechanical information processors. We envision
that PT mechanical systems will open a new route for
designing functional phononic systems with nonreciprocal
phonon responses.
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APPENDIX A: NONLINEARITY ENHANCEMENT BY
BROKEN PT SYMMETRY

In order to prove the enhancement of mechanical nonlin-
earity in the broken-PT -symmetric regime, let us consider a
system of two coupled mechanical resonators, in which one of
the resonators has mechanical gain (active resonator) and thus a
positive damping rate �g and the second mechanical resonator
has a passive mechanical loss (passive resonator) with loss rate
�l . The resonators have the same mechanical frequency �0,
and the annihilation operators for their mechanical modes are
denoted as bg and bl , respectively, for the active and passive
resonators. Moreover, the passive mechanical resonator has
a weak mechanical Kerr nonlinearity denoted by μ. The
Hamiltonian describing these coupled mechanical resonators
can be written as

H = (�0 − i�l)b
†
l bl + (�0 + i�g)b†gbg

+ gmm(b†l bg + blb
†
g) + μ(b†l bl)

2, (A1)

where gmm is the coupling strength between the mechanical
modes of the resonators. Generally the nonlinear Kerr term in
Eq. (A1) will shift the boundary between the PT symmetric
regime and the broken-PT regime. However, in our model, the
Kerr nonlinearity denoted by μ is very weak, and we can omit
the nonlinearity-induced shift of this boundary. To find the
boundary of PT transition, we consider the first three terms
in Eq. (A1),

H1 = (�0 − i�l)b
†
l bl + (�0 + i�g)b†gbg

+ gmm(b†l bg + blb
†
g), (A2)

which can be written as

H1 = (b†g b
†
l
)

(
�0 + i�g gmm

gmm �0 − i�l

)(
bg

bl

)
. (A3)

FIG. 7. (Color online) Evolution of the eigenfrequencies of the
coupled mechanical resonators. (a) Difference of the real parts
of the eigenfrequencies of the supermodes: mode splitting, and
(b) difference of the imaginary parts of the eigenfrequencies (i.e.,
linewidth) of the supermodes. The resonance frequencies of the
supermodes are nondegenerate in the PT -symmetric regime. In
the broken-PT -symmetry regime, however, they are frequency
degenerate.

This Hamiltonian can be diagonalized as

H1 = (b†g b
†
l
)P −1

(
�+ − i�+ 0

0 �− − i�−

)
P

(
bg

bl

)
,

(A4)
where the transformation matrix P is defined by

P =

(
gmm [(�+ − �0) − i(�+ − �l)]
gmm [(�− − �0) − i(�− − �l)]

)
√

(�± − �0)2 + (�± − �l)2 + g2
mm

. (A5)

Consequently we have(
b+
b−

)
= P

(
bg

bl

)
(A6)

as the mechanical supermodes formed by the coupling of the
resonators. These supermodes b± are characterized by the
eigenfrequencies �± and damping rates �±.

For this mechanical PT -symmetric system, there are two
different regimes (see Fig. 7):
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(i) PT -symmetric regime where

� = (�l + �g)

2
� gmm, (A7)

and the two supermodes b+ and b− are nondegenerate in
their resonance frequencies (i.e., real part of their complex
eigenfrequencies) given by

�± = �0 ± β = �0 ±
√

g2
mm − �2. (A8)

The damping rates of the supermodes (i.e., linewidths of the
resonances; imaginary part of their complex eigenfrequencies)
are the same and equal to

�± = χ = �l − �g

2
. (A9)

(ii) Broken-PT -symmetry regime where

� = �l + �g

2
> gmm. (A10)

The two supermodes b+ and b− are degenerate in their
resonance frequencies

�± = �0, (A11)

and their damping rates are different:

�± = χ ∓ iβ. (A12)

Now let us consider the nonlinear Kerr term in Eq. (A1). Using
Eq. (A6) we find

bl =
√

(�+ − �0)2 + (�+ − �l)2 + g2
mm

(�+ − �−) − i(�+ − �−)
b+

−
√

(�− − �0)2 + (�− − �l)2 + g2
mm

(�+ − �−) − i(�+ − �−)
b−

= βl+b+ + βl−b−.

By substituting the above equation into the last term on the
right-hand side of Eq. (A1) and dropping the nonresonant
terms, we can rewrite the nonlinear Kerr term of Eq. (A1) as

Hnl = (|βl+|2b†+b+ + |βl−|2b†−b−)2. (A13)

The self-Kerr terms |βl+|4(b†+b+)
2

and |βl−|4(b†−b−)
2

only lead
to a frequency shift of the two supermodes and thus are less
important. The cross-Kerr term

H ′
nl = |βl+|2|βl−|2(b†+b+)(b†−b−) = μ′(b†+b+)(b†−b−) (A14)

is more important and leads to the redistribution of the
nonlinear effect among the two supermodes. From Eqs. (A7)–
(A9), the nonlinear coefficient 2|βl+|2|βl−|2 can be represented
in the broken-PT regime as μ′

b, and in the PT -symmetric
regime as μ′

s ,

μ′
b = μ

�2g2
mm(

�2 − g2
mm

)2 , μ′
s = μ

g4
mm(

�2 − g2
mm

)2 . (A15)

As was observed in photonic experiments [62,78], in the
broken-PT regime the two supermodes b± are degenerate
and the field is localized in the gain resonator, and thus
the field bl is much smaller than bg . Therefore, we can omit

the terms related to bl in the expressions of the supermodes b±
and we have

b+ ≈ gmm√
(�+ − �0)2 + (�+ − �l)2 + g2

mm

bg,

b− ≈ gmm√
(�− − �0)2 + (�− − �l)2 + g2

mm

bg.

Subsequently, we find that the cross-Kerr term given in
Eq. (A14) can induce a self-Kerr effect in the gain resonator

H ′
nl = μ

g4
mm

4
(
�2 − g2

mm

)2 (b†gbg)2. (A16)

Clearly, when � ≈ gmm (in the vicinity of the spontaneous
PT -symmetry breaking point: thePT -phase transition point),
this self-Kerr nonlinearity is greatly enhanced.

APPENDIX B: UNIDIRECTIONAL PHONON TRANSPORT
BY MECHANICAL NONLINEARITY

Let us now present a detailed analysis for finding the
unidirectional phonon transport region near the PT -transition
point. In this case, the gain-loss balance between the active
resonator, with annihilation operator bg , and the passive
resonator, with annihilation operator bl , decreases the effective
damping rates of the two modes. In the vicinity of the PT -
phase transition point (i.e., � ≈ gmm), the effective damping
rates of the two modes is given by χ = (�l − �g)/2. The
coupling between the two mechanical resonators also leads
to the transfer of mechanical Kerr nonlinearity from the
passive resonator to the active resonator, and this mechanical
nonlinearity is strongly enhanced near the PT -transition
point (i.e., � ≈ gmm). Hereafter we will denote this enhanced
mechanical Kerr nonlinearity coefficient as μ′

b.
Let us first consider the phonon transport from the passive

resonator to the active resonator. Here the phononic field
in the passive resonator is generated via an phononic input
field with strength εd and frequency �d . Using the standard
input-output formalism [79,80], the output field of the active
mechanical resonator is found as bout = χ1/2bg , which shows
that the output field is proportional to the intracavity field bg ,
if we omit the vacuum fluctuations in the input field. Thus the
transmission from passive to active resonator is given by

Tl→g(δ) = χng/|εd |2, (B1)

where ng represents the steady-state value of the intracavity
phonon number in the active resonator. From the steady-state
solution of the equations of motion for the coupled mechanical
resonator system, we find that ng satisfies

μ̃2n3
g − 2μ̃�̃n2

g + (�̃2 + �̃2)ng − ñin = 0, (B2)

where

�̃ = (
χ2 + δ2 + g2

mm

)
χ, �̃ = (χ2 + δ2)�0 − g2

mmδ,

μ̃ = (χ2 + δ2)μ′
b, ñin = |εd |2g2

mm(χ2 + δ2).

The algebraic equation (B2) has three or one root depending
on the system parameters, and one of the roots is unstable if
the algebraic equation (B2) has three roots. When we increase
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the detuning δ = �0 − �d , such that

�0 − (
g2

mmδ
)
/(χ2 + δ2)

χ
(
χ2 + δ2 + g2

mm

)
/(χ2 + δ2)

=
√

3, (B3)

or equivalently,

δ = δmax =
g2

mm +
√

g4
mm + 4

(√
3χ3 − χ2�0 + √

3g2
mmχ

)
(�0 − √

3χ )

2(�0 − √
3χ )

, (B4)

the system enters the bistable regime. In fact, when δ �
δmax, the algebraic equation has three branches of solutions.
However, two branches of solutions disappear when δ > δmin

(see Ref. [81] and the supplementary materials of Ref. [82]).
In this case, the transmittance of the photon transport Tl→g(δ)
changes suddenly from a high value to a low value. Noting that
gmm 
 χ near the PT -breaking point, the critical detuning
δmax can be approximately estimated to be

δmax = g2
mm

�0 − √
3χ

. (B5)

Let us now consider the phonon transport from the active
mechanical resonator to the passive one. The driving field
with strength εd and frequency �d is fed into the gain
resonator in this case. Following the same discussion and
approach as for the previous case, it can be shown that a
bistability-induced phase transition occurs when the detuning
δ = �0 − �d satisfies

δ − (
g2

mm�0
)
/
(
χ2 + �2

0

)
χ

(
χ2 + �2

0 + g2
mm

)
/
(
χ2 + �2

0

) =
√

3, (B6)

or equivalently,

δ = δmin =
√

3
(
χ2 + �2

0 + g2
mm

)
χ + g2

mm�0

χ2 + �2
0

. (B7)

Near the PT -breaking point, χ � gmm,�0, and thus δmin can
be approximately estimated to be

δmin = g2
mm�0

χ2 + �2
0

. (B8)

Combing Eqs. (B5) and (B8), we find that when the detuning
δ is within the following region:

[δmin,δmax] =
[

g2
mm�0

�2
0 + χ2

,
g2

mm

�0 − √
3χ

]
, (B9)

it is possible to observe the unidirectional phonon transport,
i.e., the phonon transport from the passive resonator to the
active resonator is allowed, whereas the phonon transport from
the active resonator to the passive resonator is blocked.

Figure 8(a) shows the transmittance functions Tl→g(δ) and
Tg→l(δ) as a function of the detuning δ. It is (as explained in the
main text) clear that there is a unidirectional phonon transport
region when the detuning is up-scanned from smaller to larger
detuning. We also show in Fig. 8(b) the rectification ratios for
up-scanning and down-scanning the detuning δ. Similar to our
previous discussions, a nonreciprocal region can be observed

for the up-scanning process, while it disappears for the down-
scanning process, and a high rectification-ratio, larger than 30
dB, can be obtained within the nonreciprocal region.

Up to this point, we do not consider the amplitude of the
input field. Let us assume that the detuning δ is fixed and
is within the detuning region given by Eq. (B9). We then
vary the amplitude of the input field to show the bistability
and the hysteresis in the transmittance functions. Let us first
assume that δ > gmm. If we consider the phonon transport from
the passive resonator to the active resonator, we can obtain
an algebraic equation similar to that given in Eq. (B2). The
bistable transition point corresponds to the stationary points of

FIG. 8. (Color online) Bistability curves and unidirectional
phonon-transport regions. (a) Transmittances as a function of the
detuning frequency δ, when the input field amplitude is fixed at εd .
(b) Rectification ratio for the bidirectional phonon transport versus
the detuning δ: A rectification ratio larger than 30 dB can be obtained
when the detuning is up-scanned to enter the unidirectional phonon
transport region. (c) Transmittances as function of the intensity of the
input field when the detuning frequency δ is fixed and its value is taken
within the unidirectional phonon transport region in (a). The blue and
red curves represent the power transmittances from the passive to the
active resonator Tl→g and from the active to the passive resonator
Tg→l . The solid and dashed parts on each curve denote the stable
and unstable solutions of the bistable system. The unstable solutions
cannot be observed in the output and thus lead to sudden transitions
(black solid arrows) in the transmittance functions. (d) Rectification
ratios versus normalized amplitude of the input field for fixed detuning
δ. The melon-colored shaded areas denote the unidirectional transport
regions.
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the function

f (ng) = μ̃2n3
g − 2μ̃�̃n2

g + (�̃2 + �̃2)ng. (B10)

By setting f ′(ng) = 0, the stationary point of f (ng) can be found as

n∗
g =

[
2μ̃�̃ −

√
4μ̃2�̃2 − 3μ̃2(�̃2 + �̃2)

]
(3μ̃2)−1. (B11)

The upper bound of the unidirectional phonon transport region is given by

|εmax|2 = f (n∗
g)

g2
mm(χ2 + δ2)

= 2�̃(�̃2 + �̃2)

9μ̃g2
mm(χ2 + δ2)

+ (6�̃2 − 2�̃2)

9g2
mm(χ2 + δ2)

[
2μ̃�̃ −

√
4μ̃2�̃2 − 3μ̃2(�̃2 + �̃2)

3μ̃2

]
.

Near the PT -transition point, we have δ, gmm 
 χ , and thus
it can be approximately estimated that

|εmax|2 ≈ 2
(
δ2 + g2

mm

)2

9μ′
bg

2
mmδ

. (B12)

Let us now consider the case of phonon transport from the
active resonator to the passive resonator when the amplitude
of the input field is varied and the detuning is kept fixed. In
this case we obtain

˜̃μ2n3
g − 2 ˜̃μ ˜̃�n2

g + ( ˜̃�2 + ˜̃�2)ng − ˜̃nin = 0, (B13)

where

˜̃� = (
χ2 + �2

0 + g2
mm

)
χ, ˜̃� = (χ2 + �2)δ − g2

mm�0,

˜̃μ = (
χ2 + �2

0

)
μ′

b,
˜̃nin = (χ2 + δ2)2|εd |2.

Similar to Eq. (B10), the bistable transition point can be found
by calculating the stationary points of the function

f (ng) = ˜̃μ2n3
g − 2 ˜̃μ ˜̃�n2

g + ( ˜̃�2 + ˜̃�2)ng, (B14)

which leads to

ñ∗
g = [2 ˜̃μ ˜̃� −

√
4 ˜̃μ2 ˜̃�2 − 3 ˜̃μ2( ˜̃�2 + ˜̃�2)](3 ˜̃μ2)−1. (B15)

The lower bound of the unidirectional phonon transport region
is then given by

|εmin|2 = f̃ (ñ∗
g)

(χ2 + δ2)2
= 2 ˜̃�( ˜̃�2 + ˜̃�2)

9 ˜̃μ(χ2 + δ2)2
+ (6 ˜̃�2 − 2 ˜̃�2)

9g2
mm(χ2 + δ2)

×
⎡
⎣2 ˜̃μ ˜̃� −

√
4 ˜̃μ2 ˜̃�2 − 3 ˜̃μ2( ˜̃�2 + ˜̃�2)

3 ˜̃μ2

⎤
⎦.

Near the PT -transition point we have δ, gmm 
 χ , and it can
be approximately estimated that

|εmin|2 ≈ 2
(
δ2 + g2

mm

)2

9μ′
bδ

3
. (B16)

We thus conclude that nonreciprocal phonon transport takes
place if the amplitude of the input is within the region

|εd |2 ∈
[

2
(
δ2 + g2

mm

)3

9μ′
bδ

3
,
2
(
δ2 + g2

mm

)3

9μ′
bg

2
mmδ

]
. (B17)

Similarly, when δ � gmm, the nonreciprocal region for the
amplitude of the input field can be written as

|εd |2 ∈
[

2
(
δ2 + g2

mm

)3

9μ′
bg

2
mmδ

,
2
(
δ2 + g2

mm

)3

9μ′
bδ

3

]
. (B18)

In Fig. 8(c) we present the transmittances as a function of the
amplitude of the input field when the detuning is kept fixed
within the unidirectional transport region given in Eq. (B9).
We see that the lower stable branches of the bistable curves
shown in Fig. 8(c) (the parts of the bistable curves before
the bistable transitions occur) increase when we increase the
intensity of the input field. This decreases the rectification, as
shown in Fig. 8(d).

APPENDIX C: CAN THIS SYSTEM BE USED AS A
PHONON ISOLATOR?

In order to check the performance of the proposed system
as an isolator for phonons, we study the system considering
that phonons are injected in the system in both directions, that
is simultaneously at the passive and active resonator sides. If
the system exhibits unidirectional phonon transport under this
condition, then the proposed system can be used as an isolator.

The equations of motion of the system for this case can be
written as

ḃl = −(χ + iδl)bl − igmmbg + iεl,
(C1)

ḃg = −(χ + iδg)bg − iμ′
b(b†gbg)bg − igmmbl + iεg,

where the last terms on the right-hand sides of Eq. (C1) denote
the input fields. The steady-state solution of Eq. (C1) leads to

μ̄2n3
g − 2μ̄�̄n2

g + (�̄2 + �̄2)ng − n̄in = 0, (C2)

where

�̄ = (
χ2 + δ2

l + g2
mm

)
χ, μ̄ = (

χ2 + δ2
l

)
μ′

b,

�̄ = (
χ2 + δ2

l

)
δg − g2

mmδl,

n̄in = |εl|2g2
mm

(
χ2 + δ2

l

) + (
χ2 + δ2

l

)2|εg|2.

Let us first fix εl, εg, δg , and vary the detuning δl = δ. In this
case the bistable transitions for both directions occur when the
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FIG. 9. (Color online) Bistability curves for the mechanical PT
system when phonons are input simultaneously in both directions.
(a) Transmittances as functions of the detuning frequency δ when the
input field amplitude is fixed at εd . (b) Transmittances as functions
of the amplitude of the input field when the detuning frequency δ

is fixed. The blue and red curves represent the power transmittance
functions Tl→g and Tg→l . The solid and dashed parts on each curve
denote the stable and unstable solutions of the bistable systems. The
unstable solutions cannot be observed in the output and thus lead to
sudden transitions in the transmittance functions.

detuning δ satisfies

δg − (
g2

mmδ
)
/(χ2 + δ2)

χ
(
χ2 + δ2 + g2

mm

)
/(χ2 + δ2)

=
√

3. (C3)

When the detuning is up-scanned from smaller to larger
detuning values, the bistable transition occurs for

δ =
√√√√ g4

mm

4(δg − √
3χ )2

+
(√

3χ3 − χ2δg + √
3g2

mmχ
)

(δg − √
3χ )

+ g2
mm

2(δg − √
3χ )

. (C4)

When the detuning δ is down-scanned from larger to smaller
detuning values, the bistable transition occur at

δ = −
√√√√ g4

mm

4(δg − √
3χ )2

+
(√

3χ3 − χ2δg + √
3g2

mmχ
)

(δg − √
3χ )

+ g2
mm

2(δg − √
3χ )

. (C5)

The transmittances presented in Fig. 9(a) clearly show the
bistable operation. A close look at Fig. 9(a) reveals that the
transition from the bistable region to the stable trajectories
takes place at the same points for both directions. We
cannot find a detuning region within which transport in one
direction is allowed and the transport in the other direction
is prevented. Thus, we conclude that when phonons are
injected simultaneously at both input ports, we cannot see
a unidirectional operation. Consequently it is impossible to
use this system as an isolator for phonons.

Let us now fix δl , δg , εg , and vary εl = εd , to
check the possibility of providing a phonon isolator. The
bistable transition point is just the stationary points of the
function

f̄ (ng) = μ̄2n3
g − 2μ̄�̄n2

g + (�̄2 + �̄2)ng − |εg|2. (C6)

By setting f̄ ′(ng) = 0, we find

n̄∗
g1 = [2μ̄�̄ +

√
4μ̄2�̄2 − 3μ̄2(�̄2 + �̄2)](3μ̄2)−1,

n̄∗
g2 = [2μ̄�̄ −

√
4μ̄2�̄2 − 3μ̄2(�̄2 + �̄2)](3μ̄2)−1,

The bistable transition occurs at

|εd |2 = f (n∗
g1)

g2
mm

(
χ2 + δ2

l

) (C7)

when the amplitude of the input field εd is up-scanned and for

|εd |2 = f (n∗
g2)

g2
mm

(
χ2 + δ2

l

) (C8)

when the amplitude of the input field is down-scanned (see
Fig. 9). For this case too, we do not see a unidirectional
phonon transport region if we feed the inputs at the active
and passive resonators sides simultaneously. Thus we conclude
that although the proposed system can be used as phonon diode
allowing nonreciprocal phonon transport, it cannot function as
an isolator for phonons.
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