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Electronic spectrum of twisted bilayer graphene
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We study the electronic properties of twisted bilayer graphene in the tight-binding approximation. The interlayer
hopping amplitude is modeled by a function which depends not only on the distance between two carbon atoms,
but also on the positions of neighboring atoms as well. Using the Lanczos algorithm for the numerical evaluation
of eigenvalues of large sparse matrices, we calculate the bilayer single-electron spectrum for commensurate
twist angles in the range 1◦ � θ � 30◦. We show that at certain angles θ greater than θc ≈ 1.89◦ the electronic
spectrum acquires a finite gap, whose value could be as large as 80 meV. However, in an infinitely large and
perfectly clean sample the gap as a function of θ behaves nonmonotonously, demonstrating exponentially large
jumps for very small variations of θ . This sensitivity to the angle makes it impossible to predict the gap value
for a given sample, since in experiment θ is always known with certain error. To establish the connection with
experiments, we demonstrate that for a system of finite size L̃ the gap becomes a smooth function of the twist
angle. If the sample is infinite, but disorder is present, we expect that the electron mean-free path plays the same
role as L̃. In the regime of small angles θ < θc, the system is a metal with a well-defined Fermi surface which is
reduced to Fermi points for some values of θ . The density of states in the metallic phase varies smoothly with θ .
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I. INTRODUCTION

Bilayer graphene is attracting considerable attention. Re-
cent experimental studies (including scanning tunneling mi-
croscopy [1–4], Raman [5,6], and angular resolved photoe-
mission spectroscopy [7,8]) revealed that, in many cases,
the structure of bilayer samples is far from the ideal AB

stacking and is characterized by a nonzero twist angle θ

between graphene layers. The physics of twisted bilayer
graphene (tBLG) is very rich. The system demonstrates Dirac
spectrum with a θ -dependent Fermi velocity [1,5], low-energy
Van Hove singularities [3,4], and other interesting features
[9,10].

The theoretical description of the low-energy electronic
properties of twisted bilayer graphene is based on the notion
that for certain, so-called “commensurate,” values of θ , the
tBLG lattice may be thought of as a periodic repetition of
supercells, containing a large number of carbon atoms. For
such angles, numerical studies based on density functional
theory and tight-binding calculations [11–19] were performed.
Since the number of atoms in an elementary unit cell of
the tBLG superlattice may be quite substantial, especially at
small twist angles, the ab initio calculations incur a significant
computational cost. Therefore, the use of such approaches is
quite limited. To avoid this difficulty, several semianalytical
theories have been developed for describing the low-energy
electronic properties of the tBLG [20–26].

These low-energy theories operate mainly with the elec-
tronic states near the Dirac cones, which the tBLG inherits
from its two constituent layers. In the tBLG, the Dirac
cones with equal chirality are located close to each other in
momentum space. The interlayer hopping couples these cones
and suppresses the Fermi velocity [1,5], which becomes a
function of θ .

If subtler effects are of interest [24], a term hybridizing
these Dirac cones must be added to the effective long-
wave Hamiltonian of the tBLG. The corresponding electronic
spectrum obtained is gapped or gapless depending on the type
of commensurate structure.

When the twist angle is small (θ � 2◦), the electronic
structure changes qualitatively. The picture with Dirac cones
becomes irrelevant. Instead, the system acquires a finite density
of states at the Fermi level [22].

Yet, despite definite progress, several important theoretical
issues remain unaddressed. For example, the regime of low-
twist angles received very limited attention. The regime of
larger angles was studied in more detail. However, the current
understanding of this limit is not without discrepancies. The
types of spectra predicted in Ref. [24] do not coincide
with those obtained by tight-binding calculations [16]. The
value of the single-electron gap was evaluated for several
commensurate twist angles, see Refs. [14,16,24]; nonetheless,
the generic dependence of the gap on θ was not discussed.

Here we report the results of tight-binding calculations of
the band structure of tBLG in a wide range of twist angles. To
tackle the issue of the large supercell size we use the Lanczos
algorithm, which allows us to calculate the low-energy single-
electron spectrum of tBLG. We find that the tBLG single-
electron properties are qualitatively different for θ larger and
smaller than the critical angle θc ≈ 1.89◦. When θ > θc, the
low-energy spectrum can be considered roughly as consisting
of two doubly degenerate Dirac cones located near two Dirac
points in the Brillouin zone of the superlattice. The Fermi
velocity of Dirac electrons is a continuous function of the
twist angle θ , and it decreases when θ decreases. This result
is in agreement both with the low-energy theories [21–23] and
the tight-binding calculations, reported elsewhere [14,17,19].
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Under more scrutiny the spectrum reveals its fine structure:
the double degeneracy of the single-electron bands is weakly
lifted, and for the momenta close to the Dirac points the dis-
persion deviates from massless Dirac spectrum. The spectrum
of the tBLG can be gapped or gapless depending on the type
of superstructure, but for any superstructure the band splitting
is nonzero. The maximum value of the band gap is estimated
to be 80 meV. It corresponds to the twist angle θ ∼= 21.79◦.

However, in contrast to the Fermi velocity, the band splitting
is a discontinuous function of the twist angle. It can change
exponentially, even for small variations of θ . Such a feature
makes it difficult to predict the gap value for real samples,
whose twist angles are always known with some nonzero error.
It is demonstrated that this sensitivity of the gap to small
variations of the angle is absent for a sample of finite size. The
relevance of this “smoothing” for experiment is discussed.

At the critical angle θc
∼= 1.89◦, the Fermi velocity van-

ishes, and for θ < θc the conelike structure of the low-energy
bands becomes irrelevant. Instead, the system has a finite
density of states and a Fermi surface. The Fermi surface
changes smoothly as a function of θ .

The presentation below is organized as follows. In Sec. II
we briefly discuss the geometry of the tBLG lattice. In Sec. III
the tight-binding Hamiltonian is introduced. In Sec. IV the
case of large twist angles is discussed. Small θ are discussed
in Sec. V. Conclusions are presented in Sec. VI.

II. GEOMETRICAL CONSIDERATIONS

Each graphene layer in the tBLG consists of two sublattices
(A1, B1 in layer 1, and A2, B2 in layer 2). The positions of
the carbon atoms in each sublattice in the bottom layer 1 are

r1A
n ≡ rn = na1 + ma2, r1B

n = rn + δ1, (1)

where n = {n,m} (n, m are integers), δ1 = (a1 + a2)/3 =
a{1/

√
3, 0}, and a1,2 are basis vectors of the graphene

elementary unit cell,

a1 = a{
√

3,−1}/2, a2 = a{
√

3, 1}/2, (2)

with the lattice parameter a = 2.46 Å. When the layers are not
rotated (θ = 0), the system is a perfect AB bilayer.

Throughout our discussion we will assume that the con-
stituent graphene layers are perfectly flat, and separated by the
distance d = 3.35 Å from each other. In a real tBLG sample the
layers are not purely two dimensional. The interlayer distance
varies [3] depending on local arrangement of the atoms. The
interlayer corrugation is quite small (∼ 0.1 Å), thus, it can be
neglected.

Layer 2 is rotated with respect to layer 1 by the angle θ

around the axis connecting the atoms A1 and B2 with n = 0
(see Fig. 1). In this case the atoms of the top layer have the
positions

r2B
n ≡ r′

n = na′
1 + ma′

2, r2A
n = r′

n − δ2, (3)

where

a′
1,2 = a1,2

(
cos θ ∓ sin θ√

3

)
± a2,1

2 sin θ√
3

, (4)

and δ2 = a{cos θ, sin θ}/√3.

FIG. 1. (Color online) (a) Structure of the AB-stacked graphene
bilayer. A twisted graphene bilayer is obtained by rotating the top
layer by an angle θ around the axis connecting sites A1 and B2;
quantity t is the in-plane nearest-neighbor hopping, and γ1, γ3, and
γ4 are out-of-plane hopping amplitudes of the AB-stacked bilayer.
These γ s are used to fix the fitting parameters of the function t⊥(r; r′)
(see the text). In this paper we use γ1 = 0.4 eV, γ3 = 0.254 eV, and
γ4 = 0.051 eV. (b) The large hexagons show the Brillouin zones of
individual layers: the dashed hexagon (red) corresponds to the bottom
layer, the dot-dashed hexagon (blue) corresponds to the top layer for
the twist angle θ = 21.787◦ (m0 = 1, r = 1). The first Brillouin zone
of the bilayer is shown by the central (green) thick solid hexagon.
The next several Brillouin zones of the tBLG are depicted by the
six surrounding (black) thin solid hexagons. The electronic spectra
presented in Fig. 2 are calculated along the path specified by the
triangle �K1K2 (black). For the twisted bilayer, the Dirac point K′

(K′
θ ) is equivalent to the point Kθ (K) if r 
= 3n. When r = 3n,

Kθ ∼ K and K′
θ ∼ K′ (see the text). The tBLG Dirac points K1,2 are

doubly degenerate: each of them is equivalent to one of two Dirac
points of each graphene layer. For the particular case of the (1,1)
superstructure, K1 ∼ K ∼ K′

θ and K2 ∼ K′ ∼ Kθ .

The structure of the tBLG is commensurate if [13,20–22]

cos θ = 3m2
0 + 3m0r + r2/2

3m2
0 + 3m0r + r2

, (5)

where m0 and r are coprime positive integers. The superlattice
vectors, R1,2, can be expressed via m0, r , and the single-layer
graphene lattice vectors, a1,2. These expressions are different
when r is either nondivisible or divisible by 3. In the former
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case, we have

R1 = m0a1 + (m0 + r)a2
(r 
= 3n, n ∈ N ). (6)

R2 = −(m0 + r)a1 + (2m0 + r)a2

For r = 3n, the superlattice vectors become

R1 = (m0 + n)a1 + na2
(r = 3n, n ∈ N ). (7)

R2 = −na1 + (m0 + 2n)a2

The number of sites in each supercell is

N (m0,r) =
{

4
(
3m2

0 + 3m0r + r2
)
, if r 
= 3n,

4
(
m2

0 + m0r + r2/3
)
, if r = 3n.

(8)

The linear size of the superlattice cell (SC) is

Lsc ≡ |R1,2| = a
√

N/2. (9)

Besides Lsc, the tBLG has another characteristic length
scale. The rotation of one graphene layer with respect to
another one leads to the appearance of Moiré patterns, which
manifest themselves as alternating bright and dark regions
in STM images [1–4]. The Moiré period L, is defined as
the distance between centers of two neighboring bright (or
dark) regions. It is related to the twist angle according to the
following formula:

L = a

2 sin(θ/2)
. (10)

The Moiré pattern and the superstructure are two comple-
mentary concepts used to describe tBLG. The Moiré pattern
depends smoothly on the twist angle; see, e.g., Eq. (10).
The pattern can be easily detected experimentally. However,
working with the Moiré theoretically may be challenging due
to the fact that the pattern is strictly periodic only for a very
limited discrete set of angles. For a generic value of θ , different
Moiré cells in a pattern may look alike, but they are not exactly
identical.

The superstructure, which is a periodic lattice of supercells,
does not suffer from this shortcoming. Unfortunately, it has its
own deficiencies. Namely, the superstructure is only defined
for commensurate angles θ . The period Lsc is not a smooth
function of θ : two commensurate θ and θ ′, θ ≈ θ ′, may
correspond to two very dissimilar Lsc. As we will see below,
such sensitivity to the twist angle may, in some situations,
require additional efforts in interpreting theoretical results.

One can easily demonstrate that the superstructure coin-
cides with the Moiré pattern only when r = 1. For other super-
structures, Lsc is greater than L. The supercells of these struc-
tures contain r2 (if r 
= 3n) or r2/3 (if r = 3n) Moiré cells, and
the arrangements of atoms inside these Moiré cells are slightly
different from each other. This means, in particular, that the
structures with r > 1 can be considered as almost periodic rep-
etitions of structures with r = 1, as it was shown in Ref. [22].

The basis vectors of the reciprocal superlattice can be
written as

G1 = (2m0 + r)b1 + (m0 + r)b2

3m2
0 + 3m0r + r2

,

G2 = −(m0 + r)b1 + m0b2

3m2
0 + 3m0r + r2

, (11)

if r 
= 3n, or

G1 = (m0 + 2n)b1 + nb2

m2
0 + m0r + r2/3

,

G2 = −nb1 + (m0 + n)b2

m2
0 + m0r + r2/3

, (12)

if r = 3n, where

b1 = 2π{1/
√

3,−1}/a, b2 = 2π{1/
√

3, 1}/a (13)

are the reciprocal-lattice vectors of the single-layer graphene.
The first Brillouin zone of the superlattice has the shape of
a hexagon with sides |G2 − G1|/3. In the particular case of
r = 1, this side is equal to �K = |Kθ − K|, where

K = 4π

3
{0, 1} and Kθ = 4π

3
{− sin θ, cos θ} (14)

are the Dirac points of the bottom and top layers, respectively.
As known from basic graphene tight-binding physics, in

addition to the Dirac cone at the K point, the bottom layer of
the tBLG has another cone of opposite chirality at K′ = −K.
Likewise, the top layer has its second cone at K′

θ = −Kθ . It
is important to determine where these two cones are located
in the Brillouin zone of the superstructure. To find this out we
express their coordinates in terms of reciprocal superlattice
vectors. For r 
= 3n we have

K = −K′ = m0G2 + r

3
(G1 + 2G2),

Kθ = −K′
θ = m0G2 + r

3
(G2 − G1), (15)

while for r = 3n we obtain

K = −K′ = r

3
G2 + m0

3
(G2 − G1),

Kθ = −K′
θ = − r

3
G1 + m0

3
(G2 − G1). (16)

It follows from these formulas that, if r 
= 3n, point K′ is
equivalent to Kθ , and K is equivalent to K′

θ : for such a
value of r the difference K′ − Kθ is a reciprocal vector of
the superlattice. When r = 3n, the equivalent Dirac points
are K ∼ Kθ and K′ ∼ K′

θ . Thus, for any commensurate angle
we have two doubly degenerate nonequivalent Dirac points of
the tBLG. It follows from Eqs. (15) and (16) that inside the
reciprocal cell of the superlattice, the two nonequivalent tBLG
Dirac points are located at

K1 = G1 + 2G2

3
, K2 = 2G1 + G2

3
, (17)

for any superstructure. As we will show below, this double
degeneracy affects the electronic structure of the tBLG, leading
to band splitting and band-gap formation.

III. TIGHT-BINDING HAMILTONIAN

It is convenient to enumerate the sites in the sublattice
in each layer using two integer-valued vectors j = {i,j} and
n = {n,m}, where j labels the position of the supercell in the
lattice, while n enumerates the sites inside the supercell. Then,
we can write down the tight-binding Hamiltonian of the tBLG
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in the form

H = −t
∑
〈in,jm〉

sσ

(d†
sinAσdsjmBσ + H.c.)

+
∑
in,jm
αβσ

[
t⊥

(
Ri + r1α

n ; Rj + r2β
m

)
d
†
1inασ d2jmβσ + H.c.

]
,

(18)

where Rj = iR1 + jR2, the symbol 〈. . . 〉 stands for summa-
tion over the nearest neighbors within the same layer, d

†
sjnασ

and dsjnασ are the creation and annihilation operators of an
electron with the spin projection σ in the layer s(=1,2) on the
sublattice α (=A,B) in the supercell j in the position n (the
position of this site is Rj + rsα

n ). The first term describes the in-
plane nearest-neighbor hopping with amplitude t = 2.57 eV.
The second term describes the interlayer hopping, with t⊥(r; r′)
being the hopping amplitude between sites in the positions r
and r′.

This Hamiltonian (18) is invariant with respect to transla-
tions by the superstructure vectors R1,2. Performing the Fourier
transform dsknασ = N−1/2

sc
∑

j e
−ikRjdsjnασ , where Nsc is the

number of supercells in the bilayer, and using the relation
t⊥(Rj + r; Rj + r′) = t⊥(r; r′), we obtain

H =
∑
kn m
sσ

[
t snm(k)d†

sknAσdskmBσ + H.c.
]

+
∑
kn m
αβσ

[
t
αβ

⊥nm(k)d†
1knασ d2kmβσ + H.c.

]
, (19)

where k runs over the first Brillouin zone of the superlattice.
In Eq. (19)

t snm(k) = −t
∑

jδ

e−ikRjδNj+n, m−δ, (20)

t
αβ

⊥nm(k) =
∑

j

e−ikRj t⊥
(
Rj + r1α

n ; r2β
m

)
, (21)

the vector δ takes the values {0,0}, {1,0}, {0,1}, and

Nj = {m0i − (m0 + r)j,(m0 + r)i + (2m0 + r)j}.
We use the approach proposed in Ref. [27] to calculate

the interlayer hopping amplitudes. The main premise of this
approach is that t⊥(r; r′) depends not only on the relative
positions of the initial and final carbon atoms, but also on
the positions of other atoms in the bilayer via the screening
function S(r; r′) [see Eq.(2) in Ref. [27]]; the closer some of
the neighboring atoms are to the line connecting the sites
r and r′, the stronger is the screening. The inclusion of
the screening is very important. Otherwise, the longer-range
hopping amplitudes in the usual Slonczewski-Weiss-McClure
(SWM) scheme [28–31] cannot be correctly reproduced. With-
out screening, the next-nearest-neighbor interlayer hopping
amplitudes of the AB bilayer, γ3 and γ4 [see Fig. 1(a)],
become identical. This conclusion is at odds with the SWM
scheme, where these amplitudes differ by about an order of
magnitude.

Following Ref. [27] we write the hopping amplitude in the
form

t⊥(r; r′) = cos2 α Vσ (r; r′) + sin2 α Vπ (r; r′),

cos α = d√
d2 + (r − r′)2

, (22)

where the “Slater-Koster” functions Vσ and Vπ contain the
factor [1 − S(r; r′)] [exact expressions for Vσ and Vπ are
given by Eq. (1) in Ref. [27]]. Calculating hopping amplitudes
using Eq. (22) we assume, as explained in Sec. II, that the
layers are perfectly flat. In principle, the interlayer distance
is not constant, but, rather, changes [3] over the Moiré
cell, affecting local t⊥. However, due to the smallness of
such a corrugation, the corresponding variation of t⊥ will
be disregarded. Likewise, local distortions of the perfect
honeycomb lattice caused by modulation of the interlayer
interatomic forces within a single Moiré cell are not accounted
by our model.

Under these assumptions we found that the contribution to
t⊥ from Vπ is negligible, in agreement with Refs. [15,21,22].
Due to screening, the function t⊥(r; r′) decays very quickly
when |r − r′| > a. The functions Vσ (r; r′) and S(r; r′) in
Ref. [27] depend on seven fitting parameters (α1,2,3,4 and
β1,2,3). However, the values found in Ref. [27] cannot be
directly applied to bilayer graphene [15]. Instead, we use the
following estimates for the fitting constants [32]: α1 = 6.715,
α2 = 0.762, α3 = 0.179, α4 = 1.411, β1 = 6.811, β2 = 0.01,
and β3 = 19.176 (cf. with the third line of Table I of Ref. [27]).
With these coefficients we reproduce the well-known SWM
hopping amplitudes γ1,3,4 in the AB bilayer (see Fig. 1 for the
definitions of γ1,3,4). A similar approach was used in Ref. [15],
but the authors obtained different fitting parameters because
they used another optimization procedure.

We now introduce the N -component operator



†
kσ = {d†

1knAσ ,d
†
1knBσ ,d

†
2knAσ ,d

†
2knBσ } (23)

and rewrite Eq. (19) in the form H = ∑
kσ 


†
kσ Ĥk
kσ , where

Ĥk is the N×N matrix

Ĥk =

⎛
⎜⎜⎜⎜⎝

0 t̂1
k t̂11

⊥k t̂12
⊥k

t̂
1†
k 0 t̂21

⊥k t̂22
⊥k

t̂
11†
⊥k t̂

21†
⊥k 0 t̂2

k

t̂
12†
⊥k t̂

22†
⊥k t̂

2†
k 0

⎞
⎟⎟⎟⎟⎠. (24)

Here, the matrices t̂ sk and t̂
αβ

⊥k are constructed from t snm(k) and
t
αβ

⊥nm(k) according to Eqs. (20) and (21).
The energy spectrum of the tBLG consists of N bands E

(i)
k

(i = 1, . . . ,N ). We are interested here in the spectrum near
the Fermi level μ at half filling. The chemical potential μ is
nonzero due to the violation of the particle-hole symmetry of
our tight-binding Hamiltonian, and it has to be found with the
help of the charge-neutrality requirement. For a rough estimate
of μ we use the formula relating the number of electrons per
site ne and chemical potential μ, which does not require the
full diagonalization of the matrix Ĥk:

ne(μ) = 2T

N

∑
iω

∫
d2k
υBZ

eiω0+
Tr

[
1

iω + μ − Ĥk

]
= 1, (25)
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FIG. 2. (Color online) (a)–(c) The spectra of the twisted bilayer graphene calculated for three different twist angles θ along the path �K1K2

shown in Fig. 1(b). The spectrum shown in panel (a) corresponds to θ ≈ 21.787◦. It demonstrates a significant gap. The detailed behavior
of this spectrum near the Dirac point is shown in panel (d) [the dispersion curves shown in panel (d) and (e) are calculated along the line
parallel to vector �K = K2 − K1]. Two almost-degenerate bands approaching the Fermi level μ from above and two almost-degenerate bands
approaching it from below are clearly seen. For a much smaller angle θ ≈ 4.408◦, panel (b), the gap is much smaller, but still present; see panel
(e). Panels (c) and (f) correspond to θ ≈ 1.89◦. The spectrum is gapless and three bands cross the Fermi energy forming the Fermi surface. The
low-energy dispersion shown in panel (f) is calculated along the line passing through the Dirac point K2 perpendicular to the vector �K [the
dot-dashed line in Fig. 8(a)]. In panels (d)–(f) the Dirac point corresponds to δk = 0.
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where υBZ is the area of the first Brillouin zone of the su-
perstructure, the summation is performed over the Matsubara
frequencies, and T is the temperature, which we choose low
enough (T = 0.1γ1). Estimates of μ according to Eq. (25)
show that |μ| is very small for any twist angle, and only n0

bands with the smallest absolute values, Ē
(ν)
k = E

(i0+ν)
k [i0 =

(N − n0)/2 − 2, ν = 1, . . . ,n0] can cross the Fermi level.
Analysis shows that when θ > θc the number of low-energy
bands is n0 = 4. For θ < θc, we have n0 = 4r2, if r 
= 3n,
or n0 = 4r2/3 otherwise. More precise value of the chemical
potential μ is found from the usual charge-neutrality relation:

2
∑

ν

∫
d2k
υBZ

�
(
μ − Ē

(ν)
k

) = n0. (26)

The distant hopping amplitudes t⊥(r; r′) turn out to be
negligible, and the matrix Ĥk is very sparse; that is, the number
of nonzero elements in Ĥk is proportional to N . This allows
us to use the Lanczos algorithm to calculate the eigenvalues
closest to zero energy [33]. Then we calculate the spectra
along the contour in k space shown in Fig. 1(b) for a set of
superstructures with (m0,r) varying in a broad range.

IV. LARGE TWIST ANGLES θ > θc

A. Superstructures with r = 1

We explained in Sec. II that the superstructures with r > 1
can be viewed as almost-periodic repetitions of superstructures
with r = 1. Consequently, some electronic properties of a
bilayer with generic values of θ may be easily linked to the
properties of a r = 1 system. This makes the study of the
r = 1 case particularly useful. Below we calculate the spectra
for several such superstructures: we vary m0 from m0 = 1
(θ = 21.787◦, the number of sites in the supercell N = 28)
to m0 = 25 (θ = 1.297◦, N = 7804). The results for three
different angles are shown in Figs. 2(a)–2(c). The results are
qualitatively different for θ larger and smaller than the critical
value θc

∼= 1.89◦ corresponding to m0 = 17.
For r = 1 the number of low-energy bands n0 = 4 for any

θ . When θ > θc (m0 < 17), two pairs of bands come close to
the Fermi level μ in the vicinity of the tBLG Dirac points K1

and K2: one pair from below and another pair from above.
The bands in each pair are almost degenerate in a large range
of momentum space. The smaller θ , the smaller the energy
difference between bands in these pairs. Neither of the bands
reach the Fermi energy for θ > θc. Thus, in this case the system
is an insulator with a nonzero band gap �. Near the Dirac
points K1,2, at k = K1,2 + δk, the energy spectrum can be
approximated as

Ē
(ν)
K1,2+δk = μ ±

√
�2 + v2

F (|δk| ± k0)2, (27)

where the different signs correspond to different bands; �, vF ,
and k0 are fitting parameters [see Figs. 2(d) and 2(e)]. The
quantities � and vF , calculated by fitting the numerical data
for Ē

(ν)
k using Eq. (27), are shown in Fig. 3 as functions of

θ . The gap monotonously decreases when θ decreases, with
a single exception at θ ∼= 9.43◦ (m0 = 3). The gap � � 1 K
if θ � 4.408◦ (m0 � 7) and achieves the value � ∼= 0.08 eV
when θ ∼= 21.787◦ (m0 = 1). Thus, it can be experimentally

FIG. 3. (Color online) Single-electron spectrum properties as
functions of the twist angle θ . In panel (a) the dependencies of the
band gap � (red solid curve) and band splitting �s (blue dashed
curve) are shown for r = 1 structures. In panel (b) the Fermi velocity
vF for both r = 1 structures (small blue dots), and r 
= 1 structures
(larger red dots) is plotted. To extract the gap �, splitting �s , and
Fermi velocity vF, the numerically determined low-energy bands Ē

(ν)
k

were fitted by Eq. (27).

measured if the twist angle is not small. In the region θc <

θ � 4.4◦, the gap is too small, and one can consider the tBLG
to be a semimetal. The spectrum of the tBLG with a gap was
observed in recent experiments [8]. However, the nature of this
gap is unclear.

If we neglect the values � and k0 in Eq. (27), the band
structure reduces to two doubly degenerate Dirac cones located
at the points K1 and K2 and intersecting at higher energies.
The Fermi velocity vF is smaller than that of the single-layer
graphene, v0F = ta

√
3/2, and it monotonously decreases

with decreasing twist angle (see Fig. 3). This picture is
quite consistent with many previous studies utilizing different
approaches [13–17,19–23].

The gap may be viewed as a consequence of hybridization
between the states located at the Dirac points of two graphene
layers Kθ and K′ (and K and K′

θ ). Indeed, as it was mentioned
above, for commensurate structures with r 
= 3n the momenta
K′ and Kθ are equivalent to each other [see Eq. (15)]. The
matrix element mixing the states near Kθ and K′ is allowed by
symmetry, which leads to the band splitting and gap opening.

This hybridization is ignored in the continuum approxi-
mations [21–23], even though Refs. [21,22] mentioned such
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a possibility. The phenomenological approach taking into
account the hybridization between different Dirac cones in
the tBLG was proposed in Ref. [24]. However, if r = 1, as we
assume in this subsection, the formalism of Ref. [24] predicts
a gapless spectrum, failing to capture the insulating state of
r = 1 structures.

A more general result of the hybridization between electron
states near the Dirac points is the breakdown of the double
degeneracy of the low-energy bands of the tBLG. For r = 1
structures, the band gap � would be the measure of such a band
splitting. However, this is not so for structures with r = 3n,
where the gap is zero as we will show below. Here, following
Refs. [14,16], we introduce the quantity

�s = (
Ē

(4)
K − Ē

(1)
K

)/
2 (28)

as a measure of this band splitting. According to Eq. (27), �

and �s satisfy the relationship

�s =
√

�2 + v2
F k2

0 .

The dependence of �s on θ is also shown in Fig. 3. In contrast
to the band gap, �s monotonously decreases with the twist
angle θ .

The tight-binding calculations in Refs. [14,16] predicted
the existence of the band splitting in the tBLG. However, the
value of �s is at least one order of magnitude smaller than
our value (cf. Fig. 3 with Fig. 9 in Ref. [14], or with Fig. 1 in
Ref. [16]). We attribute this discrepancy to the different choice
of the function t⊥(r; r′). We believe that our choice is more
suitable for the tBLG since it reproduces the SWM hopping
parameters for AB bilayer graphene. A similar conclusion
was reached in Ref. [25]. Our calculations show, that if we
neglect the environment dependence of the hopping, leading
to the difference between γ3 and γ4 hopping amplitudes of the
AB bilayer, the gap for the tBLG becomes smaller, and we
reproduce the results of Refs. [14,16]. The value �s estimates
the band splitting near the Dirac point. However, it can be
substantially larger in other regions of momentum space.
The band splitting was experimentally observed by ARPES
measurements in Ref. [7].

B. Superstructures with r �= 1

The superstructures with r = 1, considered in the previous
subsection, exhaust a fairly limited set of twist angles. Can
the knowledge about this set be sufficient to adequately
capture the properties of the tBLG for a generic value of θ?
The answer to this question is positive, if one aims to describe
the Fermi velocity (see, for example, Fig. 3). However, as we
will see below, it is negative, if one needs to know the band
gap. Therefore, a detailed study of r 
= 1 systems is required.

The supercell of the structure (mr,r) with r > 1 contains
r2/g Moiré cells, where g = 1 if r 
= 3n, or g = 3 otherwise.
The arrangements of carbon atoms inside these cells are
slightly different from each other and approximately corre-
spond to the r = 1 superstructure with m0 = [mr/r], where
[a] means the integer part of a. Since these structures are not
completely identical, this can affect the electronic structure
of the tBLG. In this subsection we consider the differences
and similarities between electronic spectra of “basic” r = 1
structures and superstructures with r > 1.

FIG. 4. (Color online) The spectra of the twisted bilayer
graphene calculated for structures (9,4) (a) and (2,1) (b). The
spectrum for (9,4) is calculated along the line connecting the points
G1(9,4) and G2(9,4). The spectrum for (2,1) is calculated in the
folded (four times) reciprocal cell of the superlattice along the
line connecting the points G1(2,1)/4 ≈ G1(9,4) and G2(2,1)/4 ≈
G2(9,4).

For the structure (mr,r) and close basic structure (m0,1)
with m0 = [mr/r], we have

G1,2(mr,r) ≈ G1,2(m0,1)/r (29)

if r 
= 3n, or

G1(mr,r) ≈ [G1(m0,1) − G2(m0,1)]/r,

G2(mr,r) ≈ [G1(m0,1) + 2G2(m0,1)]/r (30)

otherwise. For r 
= 3n we can compare the low-energy spectra
of the (mr,r) and (m0,1) structures directly by folding the
Brillouin zone of the (m0,1) superstructure. Figure 4 shows the
low-energy spectra of the structure (9,4) with θ = 11.985◦ and
the structure (2,1) having a similar twist angle θ = 13.174◦.
The spectrum for (9,4) is calculated along the line connecting
the reciprocal supercell vectors of this structure: G1(9,4)
and G2(9,4). The spectrum for (2,1) is calculated along the
line connecting the points G1(2,1)/4 and G2(2,1)/4 in the
reciprocal cell of the superlattice, which has been folded four
times. After folding, the momenta k + iG1/4 + jG2/4 (with

075402-7



SBOYCHAKOV, RAKHMANOV, ROZHKOV, AND NORI PHYSICAL REVIEW B 92, 075402 (2015)

i,j = 0,1,2,3) become equal to each other, and the number of
bands increases 16 times. We see that these spectra are very
similar to each other, with the single exception that the splitting
of the low-energy bands for the (9,4) structure is much smaller
than that for the (2,1) structure.

The direct comparison of the spectra for (mr,r) and (m0,1)
structures with r = 3n in the way described above is not
possible. This is because for r = 3n, the folding procedure
brings the Dirac points of the (m0,1) superlattice, K1,2, to the
single �(0,0) point. For (mr,r) structures, however, the Dirac
points K1,2 are not equivalent to each other; their locations are
given by Eq. (17). In principle, one can fold both structures
in such a manner that the corresponding folded Brillouin
zones coincide. However, this increases drastically the number
of low-energy bands to compare. Instead, we compare the
density of states (DOS) for different superstructures with close
twist angles. More precisely, using numerical integration over
momentum space, we calculate the density of states at finite
temperature T :

ρT (E) = 1

N

∑
i

∫
d2k
υBZ

1

4T cosh2
(

E−E
(i)
k

2T

) . (31)

The density of states is normalized such that
∫ +∞
−∞ dE ρT (E) =

1. Typical curves (for θ > θc) are presented in Fig. 5 (we
choose T = 0.01t). The DOS behaves almost linearly at small
energies and has several Van Hove peaks at larger energies.
The two Van Hove peaks closest to zero energy are due to
the overlapping of two tBLG Dirac cones, which leads to the
appearance of saddle points in the spectrum. Such a behavior of
the DOS is in agreement both with theoretical studies [21,22]
and STM measurements [3,4]. Comparing the curves ρT (E)
for structures with close twist angles (see Fig. 5), we find that
the density of states continuously depends on θ when T > �s .
This is not so, however, at smaller temperatures and energies
very close to the chemical potential μ at zero doping. To
determine the density of states in this case we have to calculate
the spectrum near the Dirac points. For r 
= 3n structures, the
low-energy bands are described with very good accuracy by
Eq. (27), while for r = 3n the momentum dependence of the
low-energy bands is [see Figs. 5(b) and 5(c)]

Ē
(1,4)
K+δk = μ ∓

√
�2

s + v2
F δk2,

Ē
(2,3)
K+δk = μ ∓ (√

�2
s + v2

F δk2 − �s

)
. (32)

Thus, for r 
= 3n structures, the spectrum has a gap �, while
for r = 3n the spectrum is gapless, and the bands Ē

(2,3)
K+δk touch

each other at the Dirac points. For these structures, the density
of states is nonzero at the Fermi level and is proportional to
the band splitting �s . For energies close to the Fermi level, the
density of states (at T = 0) for these two types of structures
can be written as

ρ0(E + μ) = a2
√

3|E|
8πv2

F

[
�(|E| − �s)

+ vF k0√
E2 − �2

�(|E| −�)�(�s − |E|)
]
, (33)

FIG. 5. (Color online) (a) Finite temperature (T = 0.01t) density
of states ρT (E) calculated for the superstructure (2,1) (θ ≈ 13.174◦),
the superstructure (3,2) (θ ≈ 16.426◦), and the superstructure (7,3)
(θ ≈ 11.635◦). The peaks in the range 0.25 < |E/t | < 0.5 are Van
Hove singularities due to the overlapping of two tBLG Dirac cones.
The inset shows the zero-temperature density of states ρ calculated
for energies close to the Fermi level. The structures (2,1) and (3,2)
are gapped; the gap for the structure (3,2) is much lower than that
for the (2,1). The structure (7,3) is gapless and has a finite density
of states at the Fermi level. (b)–(c) Typical tBLG spectra close to the
Dirac point for r 
= 3n (b) and r = 3n (c) structures. The value of the
band splitting parameter �s is shown by double arrows.

if r 
= 3n, or

ρ0(E + μ) = a2
√

3

16πv2
F

[|E| + �s + |E|�(|E| − �s)], (34)

if r = 3n.
Such a behavior of the low-energy bands for r 
= 3n and

r = 3n structures coincides with tight-binding calculations
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done in Ref. [16]. However, the low-energy approach proposed
in Ref. [24] gives the opposite results: the spectrum of the
r = 3n system is described by Eq. (27), while for r 
= 3n the
band structure corresponds to Eq. (32).

The DOS at zero temperature near the Fermi level for
several superstructures with nearby twist angles is shown in
the inset in Fig. 5(a). At small energies, the density of states
exhibits strong sensitivity to the type of structure, while for
|E − μ| > max(�s), the DOS for similar twist angles almost
coincide with each other.

In the energy region, where the DOS curves coalesce,
the density of states depends linearly on the energy. The
proportionality coefficient is set by the Fermi velocity, which
is determined by fitting the numerically calculated spectrum
with either Eqs. (27) or (32) (the choice between these two
equations is based on the structure type). For several r 
= 1
structures, whose twist angles are close to the twist angle θ

of the (2,1) structure, the Fermi velocity is shown as circles
in Fig. 3. We see that the Fermi velocities of the r = 1 and
r 
= 1 structures are well described by a single smooth curve
monotonously decreasing with decreasing twist angle.

Thus, our analysis indicates that the density of states at
finite temperatures (for T > �s) and the Fermi velocity can be
considered as continuous functions of the twist angle. The band
splitting, and even the type of T = 0 low-energy spectrum,
however, are very sensitive to the type of superstructure, and
can vary significantly for structures with arbitrary close twist
angles. Let us discuss this issue in more details. In Fig. 6 we
plot the band splitting �s as a function of the twist angle θ for
all superstructures, whose supercell contains N < 2000 atoms.
It is seen from this figure that �s is not a monotonous function

FIG. 6. (Color online) The band splitting �s as a function of the
twist angle θ calculated for all superstructures with N < 2000 (gray
solid line). Different dashed curves connect the points corresponding
to superstructures with the same value of r . We can see that, if r is
fixed, the band splitting decreases monotonously as m0 grows (when
m0 grows, the angle θ decreases). However, when r is not restricted,
the splitting �s can change exponentially for weak variations of θ .

of θ : any small deviation of the twist angle from a given value
changes drastically the band splitting. However, there is some
order in this chaos: the band splitting �s for superstructures
with fixed r monotonously decreases when the twist angle
decreases. All curves �s versus θ at fixed r are qualitatively
similar to each other, and the curve for r = 1 superstructures
lies above all other curves.

Thus, among all possible superstructures in some range
of twist angles, the maximum band splitting corresponds to
the r = 1 superstructure. According to our calculations, for
m0 < 7 the band splitting exceeds 1 K, which is experimentally
observable.

However, the discontinuous behavior of �s versus θ makes
the direct interpretation of the graph in Fig. 6 problematic.
After all, in any realistic situation the twist angle is known
with finite error. Examining Fig. 6 we discover that within a
given small interval of θ one can find an exponentially wide
range of band splittings.

To resolve this paradox one must remember that the data
in Fig. 6 are valid only for infinite and ideally clean samples
with infinite mean-free path. In an experimental situation these
assumptions are not valid. Let us denote a length scale L̃

characterizing the coherent motion of electrons in the tBLG.
This scale can be limited by the sample size for mesoscopic
samples, or the mean-free path of electrons scattered by
impurities, “topological defects” (e.g., “the wrinkles” due to
spacial variation of the twist angle), phonons, etc.

Imagine now that the twist angle deviates from the value
θ0 corresponding to the (m0,1) superstructure by some small
quantity δθ . Using Eqs. (5)–(8), one can show that the minimal
supercell size Lsc among all r 
= 1 superstructures inside this
angular interval can be estimated as

Lsc

a
∼ θ0

|δθ | . (35)

Our calculations of the spectrum and the band splitting are
relevant only when L̃ � Lsc. Thus, the results for �s presented
here are not applicable for

|δθ | � θ0
a

L̃
. (36)

Inside this region of twist angles we should take into account
the influence of the electron scattering or the sample’s size on
the band gap and band splitting. We expect that this will lead
to a continuous dependence of � on θ .

To verify this we diagonalized the Hamiltonian (18) for
finite-size samples. The sample has the shape of a rhombus
with sides L̃ and an acute angle between sides equal to 60◦.
The rotation of the layer 2 is performed around the central point
of the sample, where the A1 and B2 carbon atoms are located.
We now choose (m0,r) = (1,1), which corresponds to θ0

∼=
21.787◦, as a reference structure. The sample size should be
large enough in order to suppress the size-quantization effect.
At small energies, the energy difference between neighboring
electron states is about vF /L̃. Thus, the parameter L̃ must
satisfy the inequality

L̃/a � vF /(a�) ∼ t/� ≈ 30

for t = 2.57 eV, and the gap � ∼= 0.08 eV corresponding to
the (1,1) structure.
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FIG. 7. (Color online) Dependence of the band gap � on the
deviation δθ of the twist angle from the value θ (1,1) ∼= 21.787◦,
calculated for finite sample of rhombic shape containing 151×151
unit cells in each graphene layer. The total number of atoms in
the sample Natoms = 91 204. The inset shows the energy distribution
of the first 200 electron levels close to the zero energy, calculated
for δθ = 0.

In addition to the size-quantization effect, we must deal
with another complication: the emergence of low-energy states
localized at the sample edges. To eliminate them an extra term
is added to the Hamiltonian: we introduce the potential-energy
difference between A and B atoms which decays exponentially
fast away from the edge. This “boundary condition” pushes the
edge states eigenenergies out of the low-energy range.

The band gap of the finite-size sample as a function of
the deviation δθ from the twist angle θ0 is shown in Fig. 7.
We see that � decreases continuously from its maximum at
δθ = 0 down to the background nonzero value set by the size
quantization.

The calculations for samples of different sizes (L̃/a = 61,

75, 151) show that the characteristic width of the peak, �θ ,
satisfies the relationship

�θL̃/a ∼ 1.

In other words, the gap disappears when the maximum
deviations in the positions of the atoms in the sample L̃δθ is
about a lattice constant. The larger the value of L̃, the smaller
fluctuations in the twist angle destroy the band gap.

We expect that similar results are also valid for an infinite,
but nonideal sample with a finite mean-free path of electrons.
If this so, we would have a paradoxical situation: the fewer
defects the sample has, the more difficult it would be to
experimentally observe the gap in the spectrum due to the
fluctuations of the twist angle. This issue, as well as the study
of the effects of other possible fluctuations in the tBLG crystal
lattice, are beyond the scope of this work.

FIG. 8. (Color online) Fermi surfaces of the superstructures
(17,1) [θ ∼= 1.89◦, (a)] and (18,1) [θ ∼= 1.79◦, (b)] calculated at half
filling. Different colors correspond to different bands intersecting the
Fermi level μ at half filling. The first Brillouin zone (hexagon) and the
reciprocal supercell (rhombus) are also shown. The dot-dashed line
in (a) shows the way along which the spectrum presented in Fig. 2(f)
is calculated.

V. SMALL TWIST ANGLE θ < θc

The Fermi velocity vF calculated according to Eq. (27)
decreases when θ decreases (see Fig. 3), in good agreement
with previous theoretical [13–15,17,19,21–23], and experi-
mental [1,5] studies. For angles close to θc = 1.89◦, four
low-energy bands become almost flat in the whole Brillouin
zone, with the exception of the small region near the point �

[see Figs. 2(a)–2(c)]. In the region of twist angles θc
∼= 1.89◦ <

θ � 4.4◦, the band splitting is too small to be experimentally
observable even for r = 1 superstructures. Since the band
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FIG. 9. (Color online) Fermi surfaces of the superstructures (17,1) [θ ∼= 1.89◦, (a)], (35,2) [θ ∼= 1.84◦, (b)], and (18,1) [θ ∼= 1.79◦, (c)]
calculated at half filling. The Fermi surfaces for the structures (17,1) and (18,1) are calculated by band folding of the original Fermi surfaces.
Different colors correspond to different bands intersecting the Fermi level μ at half filling. Panels (a) and (c) show the same Fermi surfaces as
Figs. 8(a) and 8(b), but in the folded Brillouin zone. (d) The low-energy density of states calculated for three superstructures with similar twist
angles θ < θc. The density of states is calculated at finite temperature T/t = 10−5 by numerical integration over the momentum; see Eq. (31).
Note that in units of t the energy window where the weight is enhanced is very narrow.

splitting is negligible, the density of states changes contin-
uously with the twist angle.

For smaller angles, θ < θc (m0 � 17), the conelike shape
of the low-energy bands completely disappears even near the
Dirac points [see Fig. 2(f)], the gap becomes zero, and the
system acquires a Fermi surface and nonzero density of states
at the Fermi level. As θ decreases further, the Fermi surface
changes, and for some values of θ reduces to several Fermi
points. The density of states at the Fermi level oscillates with θ .

Figure 8 shows the Fermi surfaces calculated at half filling
for the superstructures (17,1) corresponding to θc

∼= 1.89◦ and
similar to the structure (18,1) (θ ∼= 1.79◦). It is clearly seen
from these figures that the Fermi surfaces are similar to each
other, and the total size (length) of the Fermi surface sheets for
the structure (18,1) is smaller than that for the (17,1). The band

flatness, the nonzero density of states for small θ , as well as the
existence of the “magic” angles where the density of states van-
ishes is consistent with many previous studies using both low-
energy [22,23,26] and tight-binding calculations [13,17–19].

Our calculations show that no gap exists between the low-
energy bands and the lower or upper bands. Thus, the system
remains metallic under doping when the chemical potential
shifts from its values at half filling. On the other hand, the
bands Ē

(ν)
k are quite flat if θ < θc; the Fermi velocities are

about 10−3 times smaller than those for a single graphene layer.
Consequently, the disorder or the electron-electron interaction
may qualitatively change the metallic band structure giving
rise to localization or opening of a gap due to ordering.

The superstructures with r 
= 1 are also metallic if θ is
smaller than θc. To compare the Fermi surfaces, we perform
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band folding for r = 1 superstructures as described in
Sec. IV B. Figure 9 shows the Fermi surfaces for the super-
structures (17,1) [θ ∼= 1.89◦, panel (a)] and (18,1) [θ ∼= 1.79◦,
panel (c)] calculated in the folded (reduced two times in
size) Brillouin zones, as well as the Fermi surface for the
intermediate (35,2) [θ ∼= 1.84◦, panel (b)] superstructure.
Since the twist angles are quite small, the Brillouin zones
considered almost coincide with each other. All Fermi surfaces
are calculated at half filling, and the position of the chemical
potential μ in each case is found in the way described in
Sec. III. We see that the Fermi surface of the intermediate
r = 2 superstructure, being different in some details, con-
tains, however, all basic elements presented in the Fermi
surface (in folded Brillouin zones) of both proximate r = 1
superstructures.

For a more quantitative analysis, we calculate the low-
energy density of states of r = 1 and r 
= 1 superstructures
with similar twist angles. The densities of states near the
Fermi level for the (17,1), (35,2), and (18,1) superstructures
are shown in Fig. 9(d). Each density of states has a sharp
peak and a shoulder, which has additional smaller peaks. The
height and the position of the central peak with respect to
the Fermi level, as well as the height and the position of the
shoulder, correlate with the change of the twist angle. For the
superstructure (mr,r) with θ < θc, the number of low-energy
bands which contribute to the peaks and shoulder in the density
of states at low energies is equal to n0 = 4r2/g, where g = 1
if r 
= 3n or g = 3 otherwise. With the normalization of the
DOS used in Eq. (31), the integral of ρT (E) over low energies
[the area under the curves shown in Fig. 9(d)] with a high
accuracy is equal to S = 4r2/[gN (mr,r)]. Using Eqs. (5) and
(8), one can easily show that this integral depends only on the
twist angle and is equal to

S = sin2 θ

2
. (37)

The spectral weight shifts toward higher energies as the twist
angle decreases.

Thus, our analysis of the DOS and the Fermi surface
indicates that neglecting some delicate details, the electronic
properties of the tBLG change continuously with the twist
angle when θ < θc. However, further analysis is required to
address the issues of the evolution of the Fermi surface at very
small angles (e.g., the existence of the magic angles where the
Fermi surface vanishes, etc.).

VI. CONCLUSIONS

To conclude, we have studied a tight-binding model for
twisted bilayer graphene in a wide range of twist angles. In
the model Hamiltonian we take into account the effect of the
environment-dependent hopping, which correctly reproduces
the Slonczewski-Weiss-McClure scheme for interlayer hop-
ping amplitudes in bilayer graphene. We demonstrate that at
twist angles θ > θc

∼= 1.89◦ the tBLG can have a band gap,
which can be as large as 80 meV. The gap is maximum for twist
angles corresponding to superstructures with the superlattice
period coinciding with their Moiré period. This gap, however,
is very sensitive to small deviations of the twist angle from
these original values. This sensitivity of the gap disappears for
finite-size samples. If θ is below a critical angle θc, tBLG has
a Fermi surface, and the DOS has a peak at the Fermi level.
Moreover, the DOS changes continuously with the twist angle.
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