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We present a method for quantum entanglement distribution over a so-called code-division multiple-access
network, in which two pairs of users share the same quantum channel to transmit information. The main idea
of this method is to use different broadband chaotic phase shifts, generated by electro-optic modulators and
chaotic Colpitts circuits, to encode the information-bearing quantum signals coming from different users and
then recover the masked quantum signals at the receiver side by imposing opposite chaotic phase shifts. The
chaotic phase shifts given to different pairs of users are almost uncorrelated due to the randomness of chaos
and thus the quantum signals from different pair of users can be distinguished even when they are sent via the
same quantum channel. It is shown that two maximally entangled states can be generated between two pairs of
users by our method mediated by bright coherent lights, which can be more easily implemented in experiments
compared with single-photon lights. Our method is robust under the channel noises if only the decay rates of the
information-bearing fields induced by the channel noises are not quite high. Our study opens up new perspectives
for addressing and transmitting quantum information in future quantum networks.
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I. INTRODUCTION

With recent progress in various quantum systems such
as ion-trap systems [1–3] and solid-state quantum circuits
[4–6], it is now possible to discuss how to establish more
efficient quantum networks or a so-called quantum internet
[7]. Previous studies about quantum communication [8–10]
and quantum cryptography [11,12] have shown that quantum
network has great advantages to transfer classical or quantum
information. However, how to best transfer information via
quantum networks is still an open problem [13–23].

In transferring quantum information over a large-scale
quantum network, a question that is asked is whether we can
allow different pairs of users, who want to transmit informa-
tion, to share the same channel [24–26]. This problem has
been widely discussed in the field of classical communication
[27,28]. In classical communication systems, such methods are
called channel-access methods or multiple-access methods.
There are mainly four different kinds of multiple-access
methods [29]: the frequency-division multiple-access (FDMA)
methods, the time-division multiple-access (TDMA) methods,
the code-division multiple-access (CDMA) methods, and
the orthogonal frequency-division multiple-access (OFDMA)
methods. In FDMA methods, different frequency bands are
assigned to different data streams, while in TDMA methods
the users split their signals into pieces and transmit them at
different time slots to share the same channel. The TDMA and
FDMA methods work equally well and are the key techniques
for the first-generation (analog) and the second-generation
(digital) mobile networks. In CDMA methods, each pair of
users shares the same channel and distinguishes each other
by their own unique codes. It can be shown that the CDMA
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method can accommodate more bits per channel use, compared
with the TDMA and FDMA [30] methods, and thus is used
in third-generation mobile communication systems. However,
the interference between different data streams will deteriorate
the information rate of the CDMA method. Other competitive
approaches are proposed including the OFDMA method,
in which the available subcarriers are divided into several
mutually orthogonal subchannels that are assigned to distinct
users for simultaneous transmission. The OFDMA method is
capable of avoiding the interference problem and thus provides
better performance in classical digital communication.

Although the multiple-access problem has been widely
studied in classical communication, it has been considered in
quantum communication only recently due to the development
of techniques for a scalable quantum network. The FDMA
method, or, equivalently, the so-called wavelength-division
multiple access method, has been used for quantum key distri-
bution [31–36], in which classical information is transmitted
over a quantum network, and the TDMA method has been
used to generate large entangled cluster states [37]. However,
whether more popular classical communication techniques
such as the OFDMA [38,39] and CDMA [40–43] methods
can be applied to quantum communication systems is still an
interesting problem yet to be solved.

Recently, various protocols were proposed to extend the
CDMA model to the quantum case [40–43] and there is
evidence showing that the CDMA model can provide higher
information rates for quantum communication compared with
the FDMA model [40]. In Ref. [40], particular chaotic phase
shifts, which work as a unique code in the CDMA model, are
introduced to spread the information-bearing quantum signals
in the frequency regime. Since the chaotic phase shifts intro-
duced for different users are uncorrelated, the cryptographic
quantum signals from different users are orthogonal and thus
can be distinguished even when we transmit them via the same
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FIG. 1. (Color online) Schematic diagram of the quantum
CDMA network by chaotic synchronization. The wave packets are
broadened by two chaotic phase shifters, i.e., CPS1 and CPS2, at the
senders, and then recovered by another two chaotic phase shifters,
i.e., CPS3 and CPS4, at the receiver side.

channel. The cryptographic quantum signals can be decoded
by introducing reversed chaotic phase shifts at the receiver
side, by which the transmitted quantum information can be
recovered coherently. The physical media used in Ref. [40] to
transmit quantum information are single-photon lights [42].

Different from the protocol in Ref. [40], instead of single-
photon lights we use bright coherent lights [43] to transmit
quantum information over a quantum CDMA network, which
is easier to realize in experiments. We find that quantum
entanglement can be controllably distributed between two
pairs of users sharing a single quantum channel. We also
present the particular design of the chaotic phase shifters
used in our proposal by introducing electro-optic modulators
(EOMs) and chaotic Colpitts oscillator circuits [44], which
are not clearly discussed in Ref. [40]. The Pecora-Carrol
synchronization technique [45,46] is introduced to generate
the reverse chaotic phase shifts at the receiver side. This
paper is organized as follows. In Sec. II we present the
general description of the quantum CDMA network we
use to transmit quantum information. In Sec. III we state
how to distribute maximally entangled quantum states over
the proposed quantum CDMA network mediated by bright
coherent lights. In Sec. IV we consider the nonideal case to
see how channel noise will affect our main results. In Sec. V
we summarize and present a forecast of future work.

II. QUANTUM CDMA NETWORK BY CHAOTIC
SYNCHRONIZATION

The main purpose of our work is to generate two maximally
entangled states between two pairs of nodes (one pair consists
of nodes 1 and 3 and the second pair consists of nodes 2 and
4) via a single quantum channel (see Fig. 1). The quantum
signals sent by nodes 1 and 2 are first encoded by two chaotic
phase shifters CPS1 and CPS2 and the two output beams are
combined by a 50:50 beam splitter and then transmitted via a
quantum channel. At the receiver side, this combined quantum
signal is divided into two branches by another 50:50 beam

splitter and sent to another two chaotic phase shifters CPS3

and CPS4 introduced to decode the information. The recovered
quantum signals are then sent to the two receiver nodes.

To understand the encoding and decoding processes of
our method, let us assume that the optical field entering
the ith chaotic phase shifter is ai (i = 1,2,3,4). The chaotic
phase shifter CPS1 (CPS2) induces an effective Hamiltonian
δ1(t)a†

1a1 [δ2(t)a†
2a2], where δ1(t) [δ2(t)] is a classical chaotic

signal. It can be shown that CPS1 (CPS2) leads to phase-shift
factor exp[−iθ1(t)] (exp[−iθ2(t)]) for the optical field. At
the receiver side, the chaotic phase shifter CPS3 (CPS4)
induces the opposite Hamiltonian −δ1(t)a†

3a3 [−δ2(t)a†
4a4] by

which a reversed phase-shift factor exp[iθ1(t)] (exp[iθ2(t)]) is
introduced to decode the information-bearing signal masked
by the chaotic phase shift. Here θi = ∫ t

0 δi(t)dt , i = 1,2. To
ensure that the chaotic phase shift at the sender side and
that at the receiver side can be exactly canceled, an auxiliary
classical channel between node 1 (node 2) and node 3 (node
4) is introduced to synchronize the two chaotic phase shifters
[47,48] (see Fig. 1).

The whole information transmission process can be repre-
sented by the input-output relationship of the whole quantum
network from a1,a2 to a3,a4 (see Fig. 1). To derive it, we can
see that the input-output response of the chaotic phase shifters
CPSi , i = 1,2,3,4, can be written as

a′
1 = a1e

−iθ1 , a′
2 = a2e

−iθ2 ,

a3 = a′
3e

iθ1 , a4 = a′
4e

iθ2
(1)

and the input-output response of the two beam splitters BS1

and BS2 can be written, respectively, as follows:

a5 = 1√
2
a′

1 + 1√
2
a′

2, a6 = 1√
2
a′

1 − 1√
2
a′

2, (2)

a′
3 = 1√

2
a5 + 1√

2
aBS, a′

4 = 1√
2
a5 − 1√

2
aBS. (3)

Hence, from Eqs. (1)–(3) we can obtain the input-output
relationship of the whole quantum network

a3 = 1

2
a1 + 1

2
a2e

i(θ1−θ2) + 1√
2
eiθ1aBS,

a4 = 1

2
a2 + 1

2
a1e

i(θ2−θ1) − 1√
2
eiθ2aBS.

(4)

For the chaotic phase shifts θi(t), i = 1,2, we should take
the average over these broadband random phases [49], by
which we have exp[±iθi(t)] ≈ √

Mi [50–52], where

Mi = exp

[
−π

∫ ωui

ωli

dωSδi
(ω)/ω2

]
, (5)

where Sδi
(ω) is the power spectrum density of the signal δi(t)

and ωli and ωui are the lower and upper bounds of the frequency
band of δi(t), respectively. Equation (4) can then be reduced
to

a3 = 1

2
a1 +

√
M1M2

2
a2 +

√
M1

2
aBS,

a4 = 1

2
a2 +

√
M1M2

2
a1 −

√
M2

2
aBS.

(6)
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The correction factor Mi may become extremely small when
δi(t) is induced by a chaotic signal that has a broadband
frequency spectrum. Thus we have a3 ≈ a1/2 and a4 ≈ a2/2,
which means that the quantum signal transmitted from node 1
to node 3 and the quantum signal transmitted from node 2 to
node 4 can be totally decoupled from each other even though
they are transmitted simultaneously on the same quantum
channel. The mechanism of such a quantum multiple-access
network is that the information-bearing fields transmitted on
the quantum channel are broadened by the chaotic phase
shifters in the frequency regime, which cannot be detected
unless we can reduce the chaotic phase shifts and sharpen the
quantum signal by chaotic synchronization. This idea is quite
similar to the classical CDMA communication. That is why
we call it the quantum CDMA network in Ref. [40].

Now let us consider the case where the quantum fields a1

and a2 are in the coherent states |α1〉 and |α2〉 and the field
aBS is in a vacuum state. It can be easily checked from the
input-output relationship given by Eq. (6) that the output fields
a3 and a4 of the quantum network are in the coherent states∣∣α3〉 = | 1

2α1 + 1
2

√
M1M2α2

〉 ≈ ∣∣ 1
2α1

〉
,

|α4〉 = ∣∣ 1
2α2 + 1

2

√
M1M2α1

〉 ≈ ∣∣ 1
2α2

〉
.

(7)

III. QUANTUM ENTANGLEMENT DISTRIBUTION
OVER THE QUANTUM CDMA NETWORK

Let us then consider how to distribute two-qubit quantum
entanglement over the quantum CDMA network. In our
proposal, the qubit states are stored in the dark states of four
�-type three-level atoms in four optical cavities (see Fig. 2).
What we want to do is generate a maximally entangled state
between atom 1 (atom 2) and atom 3 (atom 4). Here we
extend the strategy in Refs. [53,54] to generate such distributed
entangled states by bright coherent lights. The Hamiltonian of
the ith coupled atom-cavity system can be expressed as

H̃
QC
i = ωca

†
i ai + ωq

2
σ (i)

z + g(a†
i σ

(i)
− + aiσ

(i)
+ ), (8)

where ωc and ai (a†
i ) are the frequency and the annihilation

(creation) operator of the cavity mode; ωq , σ (i)
z , and σ

(i)
± are the

frequency, the z-axis Pauli operator, and the ladder operators
of the qubit; and g is the coupling strength between the qubit
and the cavity mode. Here, to simplify the discussion, we have
assumed that the system parameters are the same for four-
qubit-cavity systems. Under the dispersive-detuning condition
|	| = |ωc − ωq | � |g|, the Hamiltonian can be diagonalized
and reexpressed in the interaction picture as [55]

H
QC
i = g2

	
a
†
i aiσ

(i)
z . (9)

In this paper we introduce four EOMs [56] acting as the
chaotic phase shifters CPSi . It is known that the refractive
index of the electro-optic crystal in the EOM can be varied by
changing the voltage V (t) acting on it [see Fig. 3(a)]. Based
on this effect, we let the information-bearing optical field pass
through the EOM to obtain a phase shift β, which will be
changed by varying the voltage V (t) acting on it. This phase
shift can be expressed as β = (ωn3rL/cd)V (t), where ω is
the frequency of the injected light n is the refractive index

and the electro-optic coefficient of the electro-optic crystal in
the EOM, L and d are the length and thickness of the EOM
[see Fig. 3(a)], respectively, and c is the velocity of light.
Therefore, when the optical field transmits through the EOM,
an interaction Hamiltonian Hi = δi(t)a

†
i ai = −(�/τ )βa

†
i ai

[57] can be obtained, where ai (a†
i ) is the annihilation (creation)

operator of the injected field and τ is the optical round-trip time
through the EOM. In the present system, each pair of EOMs is
driven by two synchronized standard chaotic Colpitts oscillator
circuits, as shown in Fig. 3(b), and the specific synchronized
circuit is presented in Appendix A. We use the voltage VC2 to
drive one EOM at the sender side and the voltage ṼC2 to drive
another EOM at the receiver side, as shown in Fig. 3(b).

To show how the quantum entanglement is distributed over
our quantum CDMA network, we assume that the ith atom is
in a superposition state |ψi〉 = (|gi〉 + |ei〉)/

√
2 (i = 1,2,3,4).

The probe field entering cavity 1 (cavity 2) is a bright coherent
light |α〉 with average photon number n̄ = |α|2 � 1. When
the probe field comes out of cavity 1 (cavity 2) at time τ ′,
the system composed of atom 1 and the probe field fed out of
cavity 1 is in an entangled state

e−iH
QC
1 τ ′ |ψ1〉|α〉 = 1√

2
(|g1〉|αe−iφ/2〉 + |e1〉|αeiφ/2〉). (10)

Similarly, the system composed of atom 2 and the probe light
fed out of cavity 2 is also in an entangled state

e−iH
QC
2 τ ′ |ψ2〉|α〉 = 1√

2
(|g2〉|αe−iφ/2〉 + |e2〉|αeiφ/2〉). (11)

Here H
QC
1 and H

QC
2 are the Hamiltonians given by Eq. (9)

and φ = 2g2τ ′/	 is the phase shift of the probe field induced
by the qubit-cavity coupling. Thus, the system composed of
atoms 1 and 2 and the two probe lights before entering our
quantum CDMA network is in a separable state

1

2
[|g1g2〉|αe−iφ/2〉|αe−iφ/2〉 + |e1g2〉|αeiφ/2〉|αe−iφ/2〉

+ |g1e2〉|αe−iφ/2〉|αeiφ/2〉 + |e1e2〉|αeiφ/2〉|αeiφ/2〉].

From Eq. (7), the system composed of atoms 1 and 2 and those
two probe fields that enter cavities 3 and 4 is in the state

|�〉 =
(

1√
2
|g1〉

∣∣∣∣1

2
αe−iφ/2

〉
+ 1√

2
|e1〉

∣∣∣∣1

2
αeiφ/2

〉)

×
(

1√
2
|g2〉

∣∣∣∣1

2
αe−iφ/2

〉
+ 1√

2
|e2〉

∣∣∣∣1

2
αeiφ/2

〉)
.

Here we have omitted those
√

M1M2 terms since the factors
M1 and M2 are negligibly small in the chaotic regime. After
transmitting over the quantum CDMA network, the probe
fields a3 and a4 interact with atoms 3 and 4 and the interaction
times are both τ ′. Thus, the state of the total system composed
of four atoms and the optical fields fed out of the quantum
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FIG. 2. (Color online) Schematic diagram of the entanglement distribution over a quantum multiple-access network. The bright coherent
lights are sent to two cavities 1 and 2 in which the optical fields interact with atoms 1 and 2, respectively. After that, the two output beams
transmit through two EOMs, i.e., EOM1 and EOM2, and are broadened in the frequency domain. The two output beams are then combined by
an beam splitter and transmitted through a single quantum channel. At the receiver side, the combined optical field is split into two branches
by another beam splitter and fed into another two EOMs, i.e., EOM3 and EOM4. Since the chaotic circuits driving EOM1 (EOM2) and EOM3

(EOM4) are synchronized, the chaotic phases introduced at the sender side can be compensated at the receiver side and thus the quantum signals
transmitted can be recovered. The recovered quantum signals are then stored in the dark states of atoms 3 and 4 and homodyne detections are
preformed for the output fields to postselect the maximally entangled states.

network is

e−i(H QC
3 +H

QC
4 )τ ′ |�〉1

2
(|g3〉 + |e3〉)(|g4〉 + |e4〉)

=
(

1√
2
|�+

13〉
∣∣∣∣1

2
α

〉
+ 1

2
|g1g3〉

∣∣∣∣1

2
αe−iφ

〉

+ 1

2
|e1e3〉

∣∣∣∣1

2
αeiφ

〉)

×
(

1√
2
|�+

24〉
∣∣∣∣1

2
α

〉
+ 1

2
|g2g4〉

∣∣∣∣1

2
αe−iφ

〉

+ 1

2
|e2e4〉

∣∣∣∣1

2
αeiφ

〉)
, (12)

where |�+
13〉 = (|g1e3〉 + |e1g3〉)/

√
2 is the maximally entan-

gled state between atom 1 and atom 3 and |�+
24〉 = (|g2e4〉 +

|e2g4〉)/
√

2 is the maximally entangled state between atom 2
and atom 4.

Finally, we impose homodyne detections on the probe fields
leaking out of cavities 3 and 4. As shown in Eq. (12), the state
of the probe fields leaking out of cavities 3 and 4 can be three
possible states |α/2〉, |αe−iφ/2〉, and |αeiφ/2〉. Since the probe
fields are bright coherent lights with average photon number
n̄ = |α|2 � 1, we have

∣
∣
〈

1
2α

∣∣ 1
2αe−iφ

〉∣
∣2 = exp[−n̄ sin2(φ/2)] ≈ 0,

∣
∣
〈

1
2α

∣∣ 1
2αeiφ

〉∣
∣2 = exp[−n̄ sin2(φ/2)] ≈ 0,

∣
∣
〈

1
2αe−iφ

∣∣ 1
2αeiφ

〉∣
∣2 = exp(−n̄ sin2 φ) ≈ 0,

which means that the three coherent states |α/2〉, |αe−iφ/2〉,
and |αeiφ/2〉 are pairwise orthogonal and thus completely
distinguishable. Thus, the homodyne detections on the probe
fields are just projective measurements. Corresponding to the
three measurement outputs α/2, αe−iφ/2, and αeiφ/2, the
states of the system composed of atoms 1 and 3 (atoms 2
and 4) collapse to the maximally entangled state |�+

13〉 (|�+
24〉)

and two separable states |g1g3〉 (|g2g4〉) and |e1e3〉 (|e2e4〉).
The most important case is that the measurement outputs of
the probe fields leaking out of cavities 3 and 4 are both α/2. In
this case, atoms 1 and 3 are in the maximally entangled state
|�+

13〉 and atoms 2 and 4 are in the maximally entangled state
|�+

24〉, which means that we generate two maximally entangled
states between two pairs of nodes by sharing the same quantum
channel.

We now consider the interference effects between the
quantum signals from the two pairs of users. These interference
effects have been omitted in our previous discussion under
the condition that the correction factor M (M = M1M2) is
negligibly small if the chaotic phases introduced have very
broad bandwidths. However, these interference effects will
affect the information transmission process if the bandwidths
of the phase signals are not broad enough. To show this, let us
consider how the correction factors M1 and M2 will change if
we tune the correspondent bandwidths of the chaotic signals
δ1 and δ2. From Fig. 4(a) we can see that both M1 and M2

decrease with an increase of the bandwidth of δ1 and δ2 and
when we take the bandwidth values of the chaotic signals as
450 MHz, M1 and M2 are 0.0012 and 0.0033, respectively.
With experimentally realizable parameters of the Colpitts
chaotic circuits [45,46], it is not too difficult to generate a
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FIG. 3. (Color online) (a) Schematic diagram of a transverse
electro-optic modulator. The voltage is applied perpendicular to the
propagational direction of the input beam and the refractive index of
the electro-optic crystal can be changed by varying the voltage V ,
which induces a voltage-dependent phase shift on the input beam.
(b) Diagram of the chaotic synchronization circuit between CPS1 and
CPS3, where the transmitter drives EOM1 and the receiver drives
EOM3.

chaotic phase with bandwidth of 500 MHz and thus M1 and M2

can be very small. Meanwhile, we choose the average photon
number n̄ = 10 and thus we have M1M2 � 4/n̄. This makes
it reasonable to omit the

√
M1M2 terms in Eqs. (6), (7), and

(14). In order to check whether the phase shifts induced by the
phase shifters are in the chaotic regime, we show in Fig. 4(b)
the Lyapunov exponents of Colpitts circuits with different
bandwidths. When the bandwidths of the Colpitts circuits are
smaller than 100 MHz, the Lyapunov exponents of the Colpitts
circuits are equal to zero, which means that these circuits work
in the periodic regime. If we increase the bandwidths of the
circuits, the Colpitts circuits will then enter the chaotic regime
if the bandwidths are larger than 100 MHz, which corresponds
to positive Lyapunov exponents [see Fig. 4(b)]. This is also
confirmed by the phase diagrams and the power spectra of the
circuits with a bandwidth of 100 MHz shown in Figs. 4(c) and
4(d) and those of the circuits with a bandwidth of 500 MHz in
Figs. 4(e) and 4(f).

In order to show the efficiency of the entanglement
distribution by the quantum CDMA network, we show in
Fig. 5 the fidelities F1 = 〈�+

13|ρ13|�+
13〉 (see Appendix B)

and F2 = 〈�+
24|ρ24|�+

24〉 versus the bandwidths of the chaotic
signals and the average photon number of the probe fields
n̄, where |�+

13〉 (|�+
24〉) is the desired maximally entangled

state between atoms 1 and 3 (atoms 2 and 4) and ρ13 (ρ24)

FIG. 4. (Color online) (a) Factors M1, M2, and M versus the
bandwidths of the Colpitts circuits without channel noise. The green
solid curve represents the factor M1. The red dashed line denotes
the curve for the factor M2. The blue dash-dotted curve shows the
factor M = √

M1M2. (b) Lyapunov exponents of the Colpitts circuits
versus different bandwidths of the circuits. (c) Phase diagram and (d)
power spectrum of the Colpitts circuit with a bandwidth 100 MHz.
(e) Phase diagram and (f) power spectrum of the Colpitts circuit with
a bandwidth of 500 MHz.

FIG. 5. (Color online) (a) Fidelity F1 versus different values of
the correction factor M and the average photon number n̄. (b)
Trajectories of the fidelities F1 and F2 versus different bandwidths of
the signals. Both F1 and F2 can be very close to the ideal case, i.e.,
F1,F2 ≈ 1 when the bandwidth of the signal is larger than 400 MHz,
which means that we efficiently suppress the interference effects
of our quantum CDMA network induced by the crosstalk between
different data streams.
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is the density operator of atoms 1 and 3 (atoms 2 and 4). In
our simulations, we set φ = π/3, where φ is the phase shift
of the probe fields induced by the qubit-cavity coupling. The
trajectories of the fidelity F1 versus the correction factor M and
the average photon number n̄ are given in Fig. 5(a). We can see
clearly that the fidelity F1 can be very high if the factor M is
small enough and n̄ is not too small, which corresponds to our
previous analysis. If we fix n̄ = 10 and increase the bandwidth
of the signals, we can see the increase of the fidelities F1 and F2

as desired [see Fig. 5(b)]. Both F1 and F2 grow very quickly to
approach 1 with the increase of the bandwidths of the signals
to be larger than 400 MHz, which corresponds to a perfect
entanglement distribution.

IV. NONIDEAL CASE: EFFECTS OF THE
CHANNEL NOISE

In the previous sections we considered the ideal case in
which the channel noises are omitted. To show the efficiency
of our method in a more practical case, we consider the effects
of the channel noises in this section [58,59]. The channel noises
in quantum communication may come from different sources
such as the vibration of the optical fiber used for transmitting
quantum signals. Most of the channel noises, especially those
induced by the fibers, are low-frequency noises with several
to several hundreds of kHz, which is far smaller than the
characteristic frequency of the information-bearing fields and
also smaller than the frequency band of the chaotic phase
shifts introduced by the chaotic circuits, which is typically of
several hundreds MHz. For these reasons, we can omit the
dynamical processes of the channel noises and simply believe
that they act as a beam splitter to extract energy from the
information-bearing field (see Fig. 6). As shown in Fig. 6,
the input-output relationship of the beam splitter BS3 used to
represent the effects of the channel noises can be written as

a7 =
√

1 − ηa5 + √
ηans, a8 =

√
1 − ηa5 − √

ηans, (13)

a

a a

a

a a

a
aBSNS

FIG. 6. (Color online) Schematic diagram of quantum CDMA
network contains channel noise, where we use the beam splitter BS3

to introduce channel noise.

where ans represents the noise mode and η denotes the decay
rate induced by the noise. From Eqs. (1)–(6) and (13) we
can obtain the input-output relationship of the noisy quantum
CDMA network as

a3 =
√

1 − η

2
a1 +

√
(1 − η)M1M2

2
a2 +

√
ηM1

2
ans

+
√

M1

2
aBS,

a4 =
√

1 − η

2
a2 +

√
(1 − η)M1M2

2
a1 +

√
ηM2

2
ans

−
√

M2

2
aBS.

If we further assume that the field ans is in a vacuum state, the
output fields of the quantum CDMA network, i.e., a3 and a4,
are in the coherent states

|α3〉 =
∣∣∣∣
√

1 − η

2
α1 +

√
(1 − η)M1M2

2
α2

〉
,

|α4〉 =
∣∣∣∣
√

1 − η

2
α2 +

√
(1 − η)M1M2

2
α1

〉
.

(14)

Recall that the ith atom is in the superposition state
|ψi〉 = (|gi〉 + |ei〉)/

√
2 and the probe field entering the cavity

1 (cavity 2) is a bright coherent light |α〉 with average
photon number n̄ = |α|2 � 1. By omitting the terms related
to

√
M1M2 in Eq. (14), we can easily obtain the state of the

total system composed of the four atoms and output fields of
the quantum network as

|�〉 =
(

1√
2
|�+

13〉
∣∣∣∣
√

1 − η

2
α

〉
+ 1

2
|g1g3〉

∣∣∣∣
√

1 − η

2
αe−iφ

〉

+ 1

2
|e1e3〉

∣∣∣∣
√

1 − η

2
αeiφ

〉)

×
(

1√
2
|�+

24〉
∣∣∣∣
√

1 − η

2
α

〉
+ 1

2
|g2g4〉

∣∣∣∣
√

1 − η

2
αe−iφ

〉

+ 1

2
|e2e4〉

∣∣∣∣
√

1 − η

2
αeiφ

〉)
.

If the decay rate η induced by the channel noise is not quite
high and the probe fields are bright enough with average photon
number n̄ = |α|2 � 1/(1 − η), we have

∣
∣
∣
∣

〈√
1 − η

2
α

∣∣∣∣
√

1 − η

2
αe−iφ

〉∣
∣
∣
∣

2

= e−(1−η)n̄ sin2(φ/2) ≈ 0,

∣
∣
∣
∣

〈√
1 − η

2
α

∣∣∣∣
√

1 − η

2
αeiφ

〉∣
∣
∣
∣

2

= e−(1−η)n̄ sin2(φ/2) ≈ 0,

∣
∣
∣
∣

〈√
1 − η

2
αe−iφ

∣∣∣∣
√

1 − η

2
αeiφ

〉∣
∣
∣
∣

2

= e−(1−η)n̄ sin2 φ ≈ 0,

which means that the three coherent states |√1 − ηα/2〉,
|√1 − ηαe−iφ/2〉, and |√1 − ηαeiφ/2〉 are pairwise orthogo-
nal and thus completely distinguishable. Thus we can impose
homodyne detections on the fields leaking out of cavities 3
and 4. If the corresponding measurement outputs for the two
probe fields are both

√
1 − ηα/2, the state of atoms 1 and 3
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FIG. 7. (Color online) (a) Fidelity F1 versus different decay rates
η and the average photon number n̄. (b) Trajectories of F1 versus η

with fixed n̄ = 10. The black dashed curve with plus signs shows the
curve of the fidelity F1 realized by our quantum CDMA network. The
blue dash-dotted curve with asterisks represents the curve of F1 when
we the four EOMs are moved away. It is shown that our strategy can
still be valid when we consider the channel noise if only the decay
rate induced by the channel noises is not too high.

will collapse to the maximally entangled states |�+
13〉 and that

of atoms 2 and 4 will collapse to the maximally entangled
states |�+

24〉. From the above discussion we can conclude that
our method is still valid if only the decay rate induced by the
channel noise is not too high such that the decayed probe fields
are still bright enough.

However, if the decay rate η induced by the channel noises
is too high such that the average photon number n̄ = |α|2
is comparable to 1/(1 − η), our entanglement distribution
strategy will not be so perfect. In this case, we need to analyze
the influence of noise on the fidelities F1 and F2. Without loss
of generality, let us focus on the fidelity F1 = 〈�+

13|ρ13|�+
13〉

versus different decay rate η and average photon number n̄. The
discussion for the fidelity F2 is quite similar and thus is omitted.
We still choose φ = π/3 and assume that the correction
factors M1 = M2 ≈ 0. With these system parameters, we show
in Fig. 7 how the decay rate η affects the entanglement
distribution. As can be seen from Fig. 7(a), fidelity F1 can be
very high when η is small and the average photon number is not
large. Figure 7(b) shows the curves of the fidelity F1 versus
η for several different cases. The red solid curve represents
the ideal case, i.e., F1 = 1, which means that atoms 1 and 3
are in the maximally entangled state. The black dashed curve
with plus signs denotes the trajectory of the fidelity F1 with
increasing η ranging from 0 to 1. The blue dash-dotted curve
with asterisks shows the fidelity F1 versus η without the four
EOMs in our quantum CDMA network. By comparing these
three curves, we can see that the fidelity F1 will be greatly
decreased if we move away the four EOMs in our quantum
CDMA network. Meanwhile, with EOMs we can obtain a very
high fidelity when the decay rate η is not too high.

V. CONCLUSION

We have presented a strategy to distribute quantum en-
tanglement between two pairs of users via a single quantum
channel. The interference of the quantum signals from different

senders is greatly suppressed by introducing chaotic phase
shifts to broaden the quantum signals in the frequency domain.
It was shown that the two maximally entangled states can be
generated between two pairs of nodes even when we consider
the channel noises. It is hoped that our strategy could be
applied to other systems such as solid-state quantum circuits
and it would provide new perspectives for the field of quantum
network control.
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APPENDIX A: CHAOTIC SYNCHRONIZATION OF
COLPITTS OSCILLATOR CIRCUITS

In the system we consider, each pair of EOMs is driven
by two standard chaotic Colpitts oscillator circuits [44],
which are synchronized by the Pecora-Carroll synchronization
strategy [45,46], as shown in Fig. 8. The Colpitts chaotic
synchronization circuit comprises a transmitter and a receiver.
The transmitter is a standard Colpitts oscillator circuit, which
will enter the chaotic regime for particular system parameters.
The receiver is a part of the standard Colpitts oscillator
circuit. In our design, the system parameters of the Colpitts
oscillator circuits, such as the resistance R, the inductance L,
the capacitances C1 and C2, and the voltage VCC , are chosen
as R = 27.99�, L = 17.5 nH, C1 = 13.1 pF, C2 = 12.7 pF,
and VCC = 15 V, under which the synchronized voltages VC2

and ṼC2 are broadband chaotic signals with bandwidths of
500 MHz [45,46].

2CV

R CCV
L

1C

2C 2CV0I

RCCV
L

1C

FIG. 8. (Color online) Schematic diagram of the synchronized
chaotic Colpitts circuits, which is composed of a transmitter and a
receiver. Here we adopt the Pecora-Carroll synchronization strategy
to synchronize the two chaotic Colpitts circuits [47].
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APPENDIX B: CALCULATIONS OF THE FIDELITIES OF ENTANGLED STATES

In this Appendix we present the calculations of the fidelity F1 = 〈�+
13|ρ13|�+

13〉. The calculations of the fidelity F2 =
〈�+

24|ρ24|�+
24〉 are similar to F1, so we omit them. From Eq. (7) we see that if we consider the effect of the correction factor M ,

the state of the system composed of atoms 1 and 2 and those two probe fields that enter cavities 3 and 4 is

|�〉 = 1
2 |g1g2〉| 1

2αe−iφ/2 + 1
2Mαe−iφ/2〉| 1

2αe−iφ/2 + 1
2Mαe−iφ/2〉 + 1

2 |g1e2〉| 1
2αe−iφ/2 + 1

2Mαeiφ/2〉| 1
2αeiφ/2 + 1

2Mαeiφ/2〉
+ 1

2 |e1g2〉| 1
2αeiφ/2 + 1

2Mαe−iφ/2〉| 1
2αe−iφ/2 + 1

2Mαeiφ/2〉 + 1
2 |e1e2〉| 1

2αeiφ/2 + 1
2Mαeiφ/2〉| 1

2αeiφ/2 + 1
2Mαeiφ/2〉.

Then we can obtain the state of the total system composed of the four atoms and output fields of the quantum network as

|�〉 = e
−i

(
H

QC
3 H

QC
4

)
τ |�〉 1√

2
(|g3〉 + |e3〉) 1√

2
(|g4〉 + |e4〉).

After the homodyne detections imposed on the probe fields leaking out of cavities 3 and 4, we can obtain the density operator
ρ13 of atoms 1 and 3 by tracing out the degrees of freedom of atom 2, atom 4, and probe fields 3 and 4 by which the fidelity F1

can be expressed as

F1 = 〈�+
13|ρ13|�+

13〉
= 1

2 (〈e1g3| + 〈g1e3|)ρ13(|e1g3〉 + |g1e3〉)
= 1

2 + 1
2e−|α|2M2(1−cosφ)/2,

where |�+
13〉 is the maximally entangled state between atom 1 and atom 3 and the Hamiltonian H

QC
i is given in Eq. (9). From

Eq. (5) we can calculate the correction factor M with respect to the bandwidths of the Colpitts circuits [see Fig. 4(a)], by which
we can obtain the curve of F1 versus the bandwidths of the Colpitts circuits.
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