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Noise suppression of on-chip mechanical resonators by chaotic coherent feedback
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We propose a method to decouple the nanomechanical resonator in optomechanical systems from the
environmental noise by introducing a chaotic coherent feedback loop. We find that the chaotic controller in
the feedback loop can modulate the dynamics of the controlled optomechanical system and induce a broadband
response of the mechanical mode. This broadband response of the mechanical mode will cut off the coupling
between the mechanical mode and the environment and thus suppress the environmental noise of the mechanical
modes. As an application, we use the protected optomechanical system to act as a quantum memory. It is shown
that the noise-decoupled optomechanical quantum memory is efficient for storing information transferred from
coherent or squeezed light.
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I. INTRODUCTION

Optomechanical systems have attracted intense attention in
recent years due to their extensive applications [1–3] and rapid
progress has been made both theoretically and experimentally
in related fields [4–19]. One of the most interesting problems
for optomechanical systems is to explore the quantum aspects
of mechanical motion [12–15], which is important not only
for fundamental studies of quantum mechanics, but also for
further applications such as the detection of gravitational
waves [16,17] and quantum memory [18,19]. However, to
observe quantum-mechanical motions, some obstacles, such as
the suppression of environmental noises, the realization of an
ultrahigh-frequency mechanical resonator, and the suppression
of other sources of noise, such as laser noise, have to be
overcome. Although the recent development of experimental
techniques has made it possible to cool mechanical modes
to the ground state [12,20–23], the mechanical quantum
superposition state [14,15] is still too fragile to environmental
noises and thermal noise will be dominant if the mechanical
mode is far away from the ground state.

Due to the problems mentioned above, how to suppress the
environmental noises more efficiently is an important problem
yet to be solved. One possible way to solve this problem is
to introduce either active or passive feedback to compensate
for the noise effects [20–29]. Sideband cooling [20–25] is the
one of the most widely used passive compensation methods
and experiments [20–23] in both the strong-coupling and the
weak-optomechanical-coupling regimes have been reported
to approach the mechanical ground state [20–23]. Strategies
based on active feedback compensation [26–29] are also
effective in suppressing environmental noise. The essence
of these methods is to steer the system to the desired state
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by using the measurement output from a particular quantum
nondemolition measurement. Another possible way to solve
this problem is to decouple the mechanical resonator from
the heat bath by introducing a carefully designed open-loop
control [30–36]. Dynamic decoupling control (DDC) [30]
and its optimized versions [31–34] are possible ways to
achieve this, which introduce high-frequency control pulses
to average out the low-frequency noises. However, it is
not easy to generate the required high-frequency or op-
timized pulse in optomechanical systems and thus DDC
has not been used to protect the mechanical states in such
systems.

Motivated by the DDC-type control and especially our
recent work [37] (introducing a broadband chaotic control
to suppress decoherence of a superconducting qubit), we
propose in this paper a method to decouple the nanomechanical
resonator from its environmental noises by introducing a
chaotic coherent feedback loop. Based on the theory of
coherent feedback [38–47], which is one of the major quantum
feedback approaches [48–51], the basic idea of our method
is to transfer a broadband chaotic control signal from the
controller to the controlled optomechanical systems by feed-
back connections. This broadband control induces an effective
broadband frequency shift of the mechanical resonator and
then decouples the mechanical mode from the environmental
noises. We find that our method can also be used to suppress
the laser phase noise, which may also induce non-negligible
influence on the system we consider [52–54]. Afterward, we
use the protected mechanical mode as a quantum memory
to store continuous-variable quantum signals, such as co-
herent states and squeezed states, which may have potential
applications.

This paper is organized as follows. In Sec. II we pro-
vide a general discussion to show the noise-decoupling
mechanism for our chaotic feedback strategy. The possible
physical implementations for our noise-decoupling strategy
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in on-chip optomechanical systems are discussed in Sec. III.
As an application, in Sec. IV we show how to use an
optomechanical system, protected by the designed chaotic
feedback control, to act as a quantum memory. In Sec. V
we summarize the conclusions and provide avenues for future
work.

II. NOISE DECOUPLING BY CHAOTIC FEEDBACK

In this section we show the mechanism of our chaotic-
feedback-induced noise-decoupling strategy, in particular for
quadratically coupled optomechanical systems [55–59]. This
is motivated by our previous work [37] showing that decoher-
ence in superconducting circuits can be greatly suppressed
by chaos, which is typically believed to be a source of
decoherence [60,61]. The main idea of the chaos-induced
decoherence-suppression approach is to introduce a broadband
chaotic signal to randomly kick the system and compen-
sate for the effects of noise. However, chaotic signals are
deterministic signals and thus will not introduce additional
decoherence.

Note that there are some difficulties in introducing such
a chaotic control to suppress the noises of the quantum-
mechanical mode in optomechanical systems: (i) It is quite
hard to drive the mechanical mode of an optomechanical
system directly by a chaotic acoustic field and (ii) the optical
cavity in the optomechanical system will work as a low-pass
filter to squeeze the broadband chaotic signal if we drive the
system directly by an open-loop chaotic optical signal and thus
make the control signal not so random, which would lead to
a failure of our decoherence-suppression approach. To solve
these problems, we introduce a particular coherent feedback
loop to break the symmetry of the optomechanical system.
Thus, the chaotic controller in the feedback loop can broaden
the bandwidth and preserve the high-frequency components
of the mechanical mode and protect it from the environmental
noises.

As illustrated in Fig. 1, our feedback control system
consists of two components, i.e., a quadratically coupled
optomechanical system (the controlled system) and a chaotic
controller. These two components are connected by a mediated
optical field, from which we can construct a field-mediated
coherent feedback system [38–41,47]. The controlled system
we use here is a quadratically coupled optomechanical system
in which the mechanical resonator is placed at the node of the
cavity field. In such a system, the linear coupling between the
mechanical mode and the optical mode will vanish and only
the quadratic coupling is left. Therefore, in the interaction
picture, the Hamiltonian of the controlled system can be
written as [55–59]

H1 = (
ωa1 − G1

)
a
†
1a1 + 2G1a

†
1a1b

†
1b1 + �1b

†
1b1

+ iε1[a†
1 exp(−iωd1 t) − a1 exp(iωd1 t)]

+
∑

ω

g(ω)[b†(ω)b1e
−iωt + b(ω)b†1e

iωt ], (1)

where a1 and b1 denote the annihilation operators of the
cavity mode and the mechanical mode in the quadratically
coupled optomechanical system and ωa1 and �1 are the natural
frequencies of these two modes. Here we assume that � = 1.
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FIG. 1. (Color online) Schematic diagram of the noise-
decoupling system by coherent feedback modulation. Two quantum
components, i.e., a quadratically coupled optomechanical system
and a chaotic controller, are connected by the mediated optical
fields. The output of the optomechanical system is taken as the input
fed into the chaotic controller. Also, the chaotic signal generated
by the chaotic controller is then fed back to control the dynamics
of the quadratically coupled optomechanical system. The M1, M2,
M3, and M4 represent total-reflection mirrors that are introduced
to change the light path. In this model, the radiation pressure can
directly change the frequency of the mechanical resonator because
the coupling between the mechanical mode and the optical mode is
quadratic.

The optomechanical coupling we consider here is a kind
of quadratic optomechanical interaction with strength 2G1

[55–59], which is derived from the original form G1a
†
1a1(b†1 +

b1)2 by dropping the nonresonant terms under the rotating-
wave approximation. The optical mode a1 is driven by an
external driving field with strength ε1 and frequency ωd1 . Here
b(ω) represents the noise mode with frequency ω acting on the
mechanical mode and g(ω) is the coupling strength between
the mechanical mode and the noise mode.

Here we use Hc to denote the Hamiltonian of the chaotic
controller and a2 denotes the annihilation operator of the
chaotic cavity field in the controller. Then the interaction
Hamiltonian of the quadratically coupled system and the
controller Hint takes the form (see Appendix A)

Hint = 1

2i
(
√

γ1γ2 − √
γ2γf )(a†

2a1 − a
†
1a2), (2)

where γ1 and γ2 represent the damping rates of the optical
cavities in the controlled system 1 and the chaotic controller
2 and γf denotes the damping rate of the controlled cavity
induced by the feedback field. The total Hamiltonian of the
coherent feedback loop is provided by

Htot = H1 + Hc + Hint. (3)

In the strong-driving regime, the optical fields in the
quadratically coupled optomechanical system and the chaotic
controller can be treated classically. Here we replace the
operator a1 by α1(t), which represents the classical part of the
optical field a1, and then eliminate the classical parts including
Hc and Hint in the total Hamiltonian. Thus the Hamiltonian
of the feedback control system given in Eq. (3) can be
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simplified as

Heff = �1b1b
†
1 + f (t) b

†
1b1

+
∑

ω

g(ω)[b(ω)b†1 exp(iωt) + H.c.], (4)

where f (t) = 2G1|α1(t)|2 and the amplitude of the cavity
field |α1(t)| is modulated by the chaotic controller and
thus it is a broadband signal. The effective Hamiltonian in
Eq. (4) includes three parts: (i) the free Hamiltonian of the
mechanical mode with natural frequency �1, (ii) a correction
term with the mechanical frequency shift f (t) induced by the
chaotic controller Hc, and (iii) the interaction Hamiltonian Hint

between the mechanical mode b1 and its environmental noises
b(ω). In the rotating reference frame with the unitary operator

U = exp

(
−i

∫ t

0
[f (τ ) + �1]b†1b1dτ

)
, (5)

the effective Hamiltonian is given by

H̃eff = U †HeffU − iU †∂U/∂t

=
∑

ω

g(ω)

[
b(ω)b†1 exp

(
−i(�1 − ω)t − i

∫ t

0
f (τ )dτ

)

+ H.c.

]
. (6)

By averaging over the broadband signal f (t) [62], we have
(see Appendix B)

exp

(
−i

∫ t

0
f (τ )dτ

)
=

√
M, (7)

where M is a correction factor. Thus, the effective Hamiltonian
shown in Eq. (6) can be simplified as

˜̃Heff =
∑

ω

g̃(ω){b(ω)b†1 exp[−i(�1 − ω)t] + H.c.}, (8)

where g̃(ω) = √
Mg(ω) is the modified coupling strength be-

tween the mechanical mode and the heat bath after introducing
the chaotic signal f (t). It can be now seen that the modified
coupling strength g̃(ω) can be greatly decreased if the correc-
tion factor M is small enough, under which the mechanical
mode is efficiently decoupled from the environmental noises.

As shown in Appendix B, the correction factor M is
determined by the power spectrum Sf (ω) of the chaotic signal
f (t),

M = exp

(
−π

∫ ωu

ωl

Sf (ω)

ω2
dω

)
, (9)

where ωu and ωl are the upper bound and lower bound of
the frequency band of the chaotic signal f (t). Note that M

varies from 0 to 1. Specially, M = 0 corresponds to the full-
decoupling case and M = 1 corresponds to the case without
decoupling. Since the power spectrum Sf (ω) is broadened by
the chaotic modulation, the value of M is thus very small and
the mechanical mode is decoupled from the environmental
noises.

III. PHYSICAL IMPLEMENTATION IN ON-CHIP
OPTOMECHANICAL SYSTEMS

In this section we discuss how to physically implement our
chaotic-feedback-based noise-decoupling strategy in on-chip
optomechanical systems.

A. Implementation of the quadratically coupled
optomechanical system

Here we list two possible examples of the quadratic-
coupling optomechanical system [55–59]. The first example
is shown in Fig. 2(a), in which a membrane is placed
in the middle of a cavity and can move freely under the
laser-induced pressure [55–58]. Such a structure leads to a
quadratic coupling term between the mechanical mode and
the cavity mode. Another example of the quadratic coupling
is the rectangular membrane optomechanical system [59]. As
shown in Figs. 2(b) and 2(c), the rectangular membrane placed
above a toroidal cavity is driven by the optical field inside

OutputOutputInput

Membrane

MirrorMirror
(a)

Membrane

Cavity

(b)

Node(c)

Cavity

Membrane

FIG. 2. (Color online) Schematic diagram of the quadratic-
coupling optomechanical system with a Fabry-Pérot cavity and a
rectangular membrane. (a) Quadratic optomechanical system with a
Fabry-Pérot cavity: The quadratic coupling is realized by placing a
membrane in the middle of the Fabry-Pérot cavity. (b) Top view and
(c) cross-sectional view of a rectangular membrane optomechanical
system, where its node coincides with the central point of the
cavity. The rectangular membrane supports various vibrational modes
u = (j,k), where j,k = 1,2, . . . are the mode indices. Here the
rectangular membrane is driven to the (1,2) mode, which has two
antinodes and one node.
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the toroidal cavity, which may generate both linear-coupling
and quadratic-coupling modes between the cavity field and
the membrane. The coupling strengths of these two coupling
modes are determined by three factors: (i) the vibrational mode
of the rectangular membrane, (ii) the distance between the
membrane and the upper surface of the toroidal cavity, and
(iii) the relative position of the toroidal cavity. Moreover,
the coupling modes displayed in the rectangular membrane
optomechanical system can be controlled by modulating the
above factors. The purely-quadratic-coupling mode can be
realized when [59] (i) the rectangular membrane is excited
in a vibrational mode that contains at least one node, (ii) the
rectangular membrane is placed right above the toroidal cavity,
and (iii) the node of the membrane is located at the central point
of the cavity. Under these conditions, the linear-coupling term
between the membrane and the cavity field can be completely
removed.

The mechanism of the rectangular membrane optome-
chanical system is similar to the Fabry-Pérot-type quadratic-
coupling system and they share the same Hamiltonian, which
is shown in Eq. (1). Hereafter, we apply our noise-decoupling
method to the rectangular membrane optomechanical system
presented above.

B. Implementation of the chaotic controller

In this section we consider an optomechanical system
(see Fig. 3) with chaotic dynamics [63] as the chaotic
controller in the feedback control loop. For simplicity we
denote the controlled quadratically coupled optomechanical
device as system 1 and the chaotic controller as system 2.
The Hamiltonian of system 1 is displayed in Eq. (1) and the
Hamiltonian of system 2 is taken as

H2 = ωa2a
†
2a2 + G2 a

†
2a2(b†2 + b2) + �2 b

†
2b2

+ iε2[a†
2 exp(−iωd2 t) − a2 exp(iωd2 t)], (10)

where a2 and b2 denote the annihilation operators of the
cavity mode and the mechanical mode in system 2 and ωa2

and �2 correspond to their inherent frequencies. Here G2

OutputInput
Membrane

OutputInput
Membrane

Chaotic cavity C

Cavity A M1

M2M3

M4

Chaotic feedback

FIG. 3. (Color online) Noise-decoupling model with the control
of a toroidal cavity. Here the toroidal cavity is a chaotic controller,
which shifts the cavity field of the quadratically coupled optomechan-
ical system to chaos.

denotes the optomechanical coupling strength in system 2.
The cavity mode in system 2 is driven by an input laser
field with driving strength ε2 and the corresponding driving
frequency ωd2 . Here the driving frequencies of the cavity
modes in the two systems are chosen to be ωd1 = ωd2 = ωd .
In the rotating reference frame with the unitary operator
U = exp[−iωd (a†

1a1 + a
†
2a2)t], the total Hamiltonian of the

quantum feedback loop can be transformed to the form

Htot = (
1 − G1)a†
1a1 + 2G1a

†
1a1b

†
1b1 + �1b

†
1b1 + 
2a

†
2a2

+G2a
†
2a2(b†2 + b2) + �2b

†
2b2 + iε1(a†

1 − a1)

+ iε2(a†
2 − a2) + 1

2i
(
√

γ1γ2 − √
γ2γf )(a†

2a1 − a
†
1a2)

+
∑

ω

g(ω)[b†(ω)b1 exp(−iωt) + H.c.], (11)

where 
1 = ωa1 − ωd and 
2 = ωa2 − ωd denote the detun-
ing frequencies of cavities 1 and 2. Here γ1 and γ2 represent
the damping rates of the optical cavities 1 and 2, γf denotes the
damping rate induced by the feedback field of the controlled
cavity. We use the quantum Langevin equations to describe
the dynamics of the chaotic feedback system

ȧ1 = −i(
1 − G1)a1 − 1

2
(
√

γ1 + √
γf )2a1 − 2iG1a1b

†
1b1

−√
γ2γf a2 + ε1 − (

√
γ1 + √

γf )a1,in, (12a)

ȧ2 = −i
2a2 − γ2

2
a2 − iG2a2(b†1 + b1) + ε2

−√
γ1γ2 a1 − √

γ2 a2,in, (12b)

ḃ1 = −i�1b1 − 2iG1a
†
1a1b1 − �1

2
b1 −

√
�1 b1,in, (12c)

ḃ2 = −i�2b2 − iG2a
†
2a2 − �2

2
b2 −

√
�2 b2,in, (12d)

where a1,in (a2,in) is the input of the optical cavity in system 1
(2) and b1,in (b2,in) and �1 (�2) are the input and the damping
rate of the mechanical mode in system 1 (2). If we assume that
the backaction of the mechanical mode acting on the optical
mode in system 1 is very weak, then the evolution of the cavity
mode 1 mainly depends on Eqs. (12a), (12b), and (12d). In the
strong-driving regime, the semiclassical approximation can be
applied: a1 = α1 + ã1, a2 = α2 + ã2, and b2 = β2 + b̃2, where
α1, α2, and β2 represent the classical parts and ã1, ã2, and b̃2

denote the operators for the quantum fluctuations. Then we
neglect the quantum fluctuation terms in Eqs. (12a), (12b),
and (12d). Thus the evolution of the classical parts in the total
system can be described by

α̇1 = −i(
1 − G1)α1 − 1

2
(
√

γ1 + √
γf )2α1

+ ε1 − √
γ2γf α2, (13a)

α̇2 = −i
2α2 − γ2

2
α2 − iG2α2(β∗

2 + β2)

+ ε2 − √
γ1γ2 α1, (13b)

β̇2 = −i�1β2 − iG2α
∗
2α2 − �2

2
β2. (13c)
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FIG. 4. (Color online) Power spectra of the cavity mode in
quadratically coupled optomechanical systems. (a) The quadratically
coupled optomechanical system without feedback. (b) A chaotic
controller is introduced to modulate the power spectrum of the
cavity field of the optomechanical system. The system parameters
are chosen here as 
1/2π = 0.805 GHz, 
2/2π = 0.12 GHz,
γ1/2π = 0.1 MHz, γ2/2π = 0.24 GHz, γf /2π = 0.5 MHz,
�1/2π = 0.01 MHz, �2 = /2π = 1.4 MHz, �1/2π = 1 MHz,
�2/2π = 0.345 GHz, G1/2π = 0.055 MHz, G2/2π = 0.4 MHz,
ε1/2π = 6.6 GHz, and ε2/2π = 13.2 GHz.

When the strength of the driving field ε2 is strong enough,
the optomechanical system 2 enters the chaotic regime and
it will have a broadband cavity spectrum. As the chaotic
controller, system 2 can spread the spectrum of system 1 both
in the cavity mode and in the mechanical mode. Figure 4
shows the spectrum of the optical mode in system 1 without
[Fig. 4(a)] and with [Fig. 4(b)] the feedback modulation.
As shown in Fig. 4(a), only a single peak with very small
sidebands is displayed in the spectrum of the optical mode if
we do not introduce any feedback modulation. The power of
the background frequency components is very small (less than
−150 dB). This corresponds to the periodic case. After we
introduce chaotic feedback [see Fig. 4(b)], the spectrum of the
controlled optical mode is greatly broadened and the whole
baseline of the spectrum is increased to above 150 dB. This
corresponds to the chaotic case and the broadband response of
the optical mode will decouple the mechanical mode from the
environmental noises.

As discussed in Sec. II, we use the factor M to evaluate the
efficiency of our noise decoupling strategy [see Eq. (9)]. The
value of M is determined by the spectrum Sf (ω) of the signal
f (t) [recall that f (t) = 2G1|α1(t)|2], which can be obtained
by numerically solving Eq. (13). Note that M ∼ 1 when the
spectrum Sf (ω) is concentrated in a narrow region and M

will be close to zero if the spectrum Sf (ω) is broadened by
the chaotic modulation. In our numerical simulations, we find
that M ≈ 1 if we do not introduce feedback [Fig. 4(a)] and
M = 0.0074 if we introduce the chaotic feedback [Fig. 4(b)],
which coincides with what we expect.

We will further consider the laser phase noise, which is also
an important source of noises for the system we consider. Here
we assume that the laser phase noise is a colored noise with
limited bandwidth. Thus, the total Hamiltonian of the system
we consider here can be written as

Htot = 
1a
†
1a1 + G1a

†
1a1b

†
1b1 + �1b

†
1b1 + 
2a

†
2a2

+G2a
†
2a2(b†2 + b2) + �2b

†
2b2

+ iε1{a†
1 exp[−φ1(t)] − a1 exp[φ1(t)]}

+ iε2{a†
2 exp[−φ2(t)] − a2 exp[φ2(t)]}

+ 1

2i
(
√

γ1γ2 − √
γ2γf )(a†

2a1 − a
†
1a2)

+
∑

ω

g(ω)[b†(ω)b1 exp(−iωt) + H.c.], (14)

where φ1(t) [φ2(t)] denotes the phase fluctuation of the driving
laser in cavities 1 (2). Here φ̇1(t) [φ̇2(t)] is a color noise with
spectrum

Sφ̇(ω) = 2�L

1 + (ω/γc)2
(15)

and non-Markovian correlation relation

〈φ̇(t)φ̇(t ′)〉 = �Lγc exp [−γc(t − t ′)], (16)

where �L and γc are the linewidth and the cutoff frequency
of the laser phase noise. Given the system parameters �L =
1.1 kHz and γc = 20 kHz, we show in Fig. 5 the power
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FIG. 5. (Color online) Power spectrum of the cavity field in the
controlled optomechanical resonator in the presence of phase noise.
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FIG. 6. (Color online) Phase portrait of the cavity field in a
controlled optomechanical system (a) without fluctuations and (b)
with fluctuations.

spectrum of the cavity mode with the laser phase noise.
By comparing the spectrum of the cavity mode shown in
Fig. 5 with the spectrum without laser phase noise shown
in Fig. 4(b), we find that the laser phase almost does not
affect the broadband spectrum of the cavity mode and thus our
method is still valid when we consider the laser phase noise.
Additionally, given the same parameters as those for the case
without laser phase noise, we find that the decoupling factor
can be written as M̃ = 0.0092 when we consider the laser
phase noise, which is almost comparable to that without the
laser phase noise. Thus, we conclude that our method is still
valid even when we consider the laser phase noise.

Additionally, to drive the controller into the chaotic regime,
we should work in the strong-driving regime and thus the
fluctuations are negligibly small compared to the strong-
driving field. That is why we omit the fluctuation terms in
the above discussion. To support this claim, we performed
numerical simulations to analyze how the fluctuation terms
change the broadband chaotic signals acting on the mechanical
resonators.

Here the fluctuation terms are introduced in both the
controlled optomechanical system and the controller. Figure 6
shows the phase portraits of the optical mode in the controlled
optomechanical resonator without fluctuation [see Fig. 6(a)]
and with fluctuations [see Fig. 6(b)]. It can be seen from
Figs. 6(a) and 6(b) that the fluctuation terms almost do not
affect the chaotic attractor (or more precisely, can even make
it more chaotic) and thus our method is still valid when we
consider the fluctuation terms.

IV. STORAGE OF CONTINUOUS-VARIABLE QUANTUM
INFORMATION

The storage of continuous-variable quantum informa-
tion, i.e., to realize continuous-variable quantum mem-
ory [18,19,64–67], is important for quantum communications
and quantum computation. One possible way to solve this
problem is to transfer the continuous-variable information in
the optical signal to an on-chip mechanical resonator that has a
lower damping rate. The continuous-variable optomechanical
quantum memory system we consider here is presented in
Fig. 7, which includes the input (output) fields, an optical
cavity, and a mechanical resonator [19]. By exchanging states
between the cavity mode and the mechanical mode, a quantum

Mechanical
environment:
Mechanical

environment:

Isolator

Input

Output

11n

a b

FIG. 7. (Color online) Schematic diagram of an optomechanical
system for quantum information transfer and storage. A beam of
light with a desirable quantum state is fed into a cavity and then
transferred to the mechanical resonator. Here a is the cavity mode,
b denotes the mechanical mode, and n represents the mean thermal
excitation phonon number that follows the Boltzmann distribution.

state carried by the input field can be written into and stored
in the nanomechanical resonator.

However, the quantum information stored in the mechanical
resonator will unavoidably be destroyed due to the coupling
between the mechanical resonator and the environmental
noise. Thus, to realize such a continuous-variable quantum
memory, we have to suppress the decoherence effects of the
mechanical mode induced by the environmental noise. As we
have discussed in the previous sections, introducing a chaotic
coherent feedback loop to drive the mechanical mode into
the broadband regime is an efficient way to decouple the
mechanical mode from the environmental noise. In this section
we show how to use this noise-decoupled nanomechanical
resonator as a quantum memory.

Our purpose here is to use a noise-decoupled mechanical
resonator to store continuous-variable information. The key
point is how to transfer a quantum state to a mechanical
mode and decouple this mechanical mode simultaneously.
Here we propose a strategy with two optical cavities sharing the
same mechanical resonator but with different optomechanical
coupling: One is with a linear optomechanical coupling used
for quantum memory and the other is with a quadratic
optomechanical coupling, used for noise decoupling.

Let us now consider how to apply this quantum memory
model in the rectangular membrane optomechanical system
proposed in Ref. [59]. Figure 8(a) shows two toroidal cavities
(A and B) connected to a rectangular membrane. The types
of coupling between the cavity mode and the mechanical
mode are determined by the position of the optical resonator
and the membrane. If the optical resonator is placed at the
node of the membrane, a quadratic optomechanical coupling
can be obtained. However, if the optical resonator is located
at the antinode of the membrane, we can obtain a linear
optomechanical coupling [Fig. 8(a)]. Thus, we place the
toroidal cavity (cavity A) used for noise decoupling at the
node of the membrane and the other toroidal cavity (cavity B),
used for quantum memory, at the antinode. The toroidal cavity
A is modulated by the chaotic controller (toroidal cavity C),
which leads to the decoupling between the membrane and
its environmental noises. The cavity B is used for storing

033812-6



NOISE SUPPRESSION OF ON-CHIP MECHANICAL . . . PHYSICAL REVIEW A 92, 033812 (2015)

Antinode Node

Membrane

Cavity ACavity B

Input Output

Chaotic feedback Membrane

Antinode Node

Membrane

Cavity ACavity B

Input Output

Chaotic feedback Membrane

Input
state

Cavity A

Cavity B

Cavity C

Chaotic feedback loop

uantum state transfer

(a)

(b)

FIG. 8. (Color online) (a) Top view of the quantum memory
system. The noise-decoupled quantum memory system can be divided
into two parts shown by the dashed rectangular grid frames: the
chaotic feedback loop (inside the blue frame) for the noise decoupling
of the rectangular membrane and the setup used for transferring
the quantum state (the red frame) from the input light to the
noised-decoupled rectangular membrane. (b) Cross-sectional side
view of the rectangular membrane optomechanical system. Cavity
A is placed at the node of the rectangular membrane and cavity B is
placed at the antinode.

the quantum state in the membrane. The coupling between
the cavity mode and the mechanical mode is assumed to
be linear under the strong-driving regime [18,19]. Thus, the
Hamiltonian of the total system can be written as

H = 
sa
†
s as + Gs(asb

†
1 + a†

s b1)

+ [�1 + 2G1|α1(t)|2]b1
†b1

+
∑

ω

g(ω)[b†(ω)b1 exp(−iωt) + H.c.], (17)

where as (a†
s ) represents the annihilation (creation) operator

of the optical mode in cavity B and ωs is the corresponding
inherent frequency. Here 
s = ωs − ωd is the detuning fre-
quency of cavity B and ωd is the frequency of the external
driving field. Also, Gs denotes the coupling strength between
the optical mode and the mechanical mode. To compensate for
the effect induced by the chaotic feedback on the quantum

memory system, we take the detuning frequency as 
s =
�1 + Gs |α1(t)|2. In the rotating reference frame with the
unitary matrix

U = exp

(
−i

∫ t

0
[2G1|α1(τ )|2 + �1](b†1b1 + a†

s as)dτ

)
,

(18)

the effective system Hamiltonian can be represented by

Heff = Gs(a
†

sb1 + asb
†

1)

+
∑

ω

g̃(ω)[b†(ω)b1e
−i(�1−ω)t + H.c.], (19)

where g̃(ω) = √
Mg(ω) and M is the decoupling factor. After

introducing the adiabatic approximation to eliminate the cavity
mode shown in Ref. [19], we use b̃1 to denote the annihilation
operator of the mechanical mode and the quantum Langevin
equation of the optomechanical system can be simplified as

db̃1

dt
= −ν + �1

2
b̃1 − √

ν ad −
√

�1 bin(t), (20)

where ad denotes the optical field fed into cavity B. Let ad =
αd + ãd , where αd and ãd denote the classical part and the
quantum fluctuation of the optical mode. The fluctuation terms
ãd and bin satisfy the relations 〈ãd (t)ã†

d (t ′)〉 = δ(t − t ′) and
〈bin(t)b†in(t ′)〉 = (n + 1)δ(t − t ′), where n(�1) ≈ kBT /��1 is
the mean thermal excitation phonon number. The parameter
ν in Eq. (20) can be calculated as ν = (Gs |αd |)2/γs , where
Gs is the coupling strength between the mechanical mode and
the optical mode and γs is the damping rate of the optical
mode [18].

We now assume that the system is initially in a Gaussian
state. We use the fidelity F∞ between the initial state and
the steady state of the mechanical mode to characterize the
efficiency of noise decoupling, which can be calculated by [18]

F∞ =〈�0|ρ∞|�0〉

=
∏

j=±s

[
exp(j ) + �1[2n + 1 − exp(j )]

2(ν + �1)

]−1/2

.
(21)

Here s is the squeezing factor (see Appendix C). The steady-
state fidelity F∞ mainly depends on four factors: the mean
thermal excitation phonon number n, the coupling strength ν,
the squeezing factor s, and the mechanical damping rate �1. We
can see that the fidelity F∞ can be increased by decreasing the
mechanical damping rate �1 and, as shown in Sec. II, �1 can
be reduced by introducing a chaotic feedback loop. In fact,
after introducing the chaotic feedback control, the effective
damping rate of the mechanical mode is given by

�′
1 = M�1. (22)

Thus the modified fidelity F ′
∞ can be written as

F ′
∞ =

∏
j=±s

[
exp(j ) + �′

1[2n + 1 − exp(j )]

2(ν + �′
1)

]−1/2

. (23)

When the controller in the feedback loop enters the chaotic
regime, we have �′

1 ≈ 0 and thus F ′
∞ ≈ 1, which means almost

perfect quantum state transfer.
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FIG. 9. (Color online) Fidelity (a) before the noise decoupling
and (b) after the noise decoupling. Here n is the mean thermal
excitation phonon number that follows the Boltzmann distribution
and ν is a parameter related to the optomechanical coupling strength.
The parameters are �1/2π = 1 MHz and (a) �1/2π = 5 Hz and (b)
�′

1/2π = 0.037 Hz.

Then we numerically calculate the steady-state fidelity F∞
between the input state and the steady state of the mechanical
resonator. Two different Gaussian input states are considered:
coherent states and squeezed states.

A. Coherent input state

In this section we consider the quantum-mechanical mem-
ory system with a coherent input state. For a coherent input
state, the squeezing factor s = 0. Thus, in this case, the fidelity
Fc

∞ can be simplified as

Fc
∞ =

[
1 + �1n

ν + �1

]−1

. (24)

By comparing the fidelity between the input state and
the steady state of the mechanical mode (under the noise-
decoupling control [see Fig. 9(a)] and without the noise-
decoupling control [see Fig. 9(b)]), we find remarkable
improvement of the efficiency of the quantum memory by
introducing chaotic control. From Figs. 9(a) and 9(b) we
can observe that the decrease of the mean thermal excitation
phonon number n or the increase of the parameter ν would
lead to an improvement of the fidelity of the quantum transfer.
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FIG. 10. (Color online) Fidelity (a) before noise decoupling and
(b) after noise decoupling. The parameters used here are ν/2π =
10 kHz and (a) �1/2π = 5 Hz and (b) �′

1/2π = 0.037 Hz. The
natural frequency of the mechanical mode is here assumed to be
�1/2π = 1 MHz.

If we fix the parameter ν = 50 kHz, the fidelity of the quantum
transfer will fall to zero rapidly when increasing the excitation
phonon number n without introducing the noise-decoupling
control [Fig. 9(a)]. We find that the fidelity of the quantum
memory is increased and approaches one even when the
mean thermal excitation phonon number n exceeds 105 after
introducing the noise-decoupling control. This means that our
noise-decoupling method efficiently reduces the damping rate
of the mechanical mode �1 and thus protects the coherent input
state from decoherence.

B. Squeezed input state

Let us consider the case that the input state is a squeezed
state with squeezing factor s 
= 0. By adjusting the squeezing
factor s and the mean thermal excitation phonon number n,
we study the fidelity between the input squeezed state and the
steady state of the mechanical mode.

Compared to the case without noise-decoupling control
shown in Fig. 10(a), the fidelity under noise-decoupling control
is significantly improved [see Fig. 10(b)] for different chosen
system parameters. As shown in Figs. 10(a) and 10(b), the
fidelity decreases when increasing the squeezing factor s and
the mean thermal excitation phonon number n. Here we vary
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the squeezing factor s from −5 to 5 and it can be found
that the curve of fidelity is symmetrical about the plane s = 0
in the three-dimensional fidelity space. For each parameter n,
the fidelity is maximized when s = 0, which corresponds to
the case that the input state is a coherent state. The quantum
information stored in the memory system is more likely to be
damaged by the heat bath when increasing the degree of the
squeezing factor s. As shown in Fig. 10, the fidelity of quantum
transfer F = 0.16 is very low when n = 105 and s = 0 without
the noise-decoupling control [see Fig. 10(a)], while, with the
same condition, the fidelity is enhanced to be F = 0.96 if
we introduce the noise-decoupling control [see Fig. 10(b)].
When the squeezing factor s is increased to approach 5, the
fidelity decreases to zero rapidly without the noise-decoupling
control [see Fig. 10(a)], while it will remain nonzero, i.e.,
F = 0.38, when we introduce the noise-decoupling control
[see Fig. 10(b)].

V. CONCLUSION

To summarize, by introducing a chaotic feedback control
loop, we propose a strategy to decouple a nanomechanical res-
onator in a quadratically coupled optomechanical system from
the environmental noises. The main advantage of this method
is to introduce a chaotic controller to significantly broaden
the spectrum of a mechanical resonator and thus efficiently
suppress the environmental noise. As a specific application,
we study this proposed noise-decoupled nanomechanical
resonator of a rectangular optomechanical system as a quantum
memory to store the information transferred from external
optical signals. Compared to other optomechanical devices,
this rectangular optomechanical system can simultaneously
support both a quadratic-coupling mode and a linear-coupling
mode. We use the quadratic-coupling mode of the rectangular
optomechanical system for noise suppression, by placing
an optomechanical resonator at the node of the rectangular
membrane, and the linear-coupling mode for storing quantum
information, by placing another optomechanical resonator at
the antinode of the rectangular membrane. Two different input
states, i.e., coherent and squeezed states, are studied to show
the efficiency of this quantum memory. The numerical results
show that the fidelity of this quantum memory is greatly
improved after introducing our noise-decoupling strategy. We
believe that this nonlinear coherent-feedback strategy will have
various applications, such as nonlinear modulation of photon
transport and high-sensitivity quantum measurements, which
are left for future work.
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APPENDIX A: THEORY OF THE MARKOVIAN
COHERENT FEEDBACK NETWORK

To study the multichannel quantum input-output network,
we now introduce the SLH method presented in Ref. [68].
In the SLH language, an open quantum system can be fully
characterized by G = (S,L,H ), where S denotes an n × n

unitary scattering matrix, which satisfies SS† = S†S = I , L

represents the dissipation operator that is determined by the
dissipation channels induced by the input fields, and H is
the free Hamiltonian of the system. Within the framework of
G = (S,L,H ), the quantum Langevin equation of an arbitrary
system operator X is given by

Ẋ = −i[X,Hsys] + {L†[X,L] + [L†,X]L}/2

+{bin[L†,X] + [X,L]b†in}. (A1)

The SLH method provides a convenient way to study all-
optical quantum coherent forward and feedback networks [68].
For example, we show in Fig. 11 two quantum components:
G1 = (S1,L1,H1) and G2 = (S2,L2,H2). The series product
of these two components can be parametrized by

G2�G1 =
[
S2S1,L2 + S2L1,H1 + H2

+ 1

2i
(L†

2S2L1 − L
†
1S

†
2L2)

]
. (A2)

A typical coherent feedback control system is shown in
Fig. 12, which is composed of the controlled system, i.e.,
system 1, and the controller, i.e., system 2. This coherent
feedback control system can be seen as a series product of
three components: G1 = (S1,L1,H1), G2 = (S2,L2,H2), and
Gf = (Sf ,Lf ,H1). Thus, the corresponding SLH parameters
of this feedback control system can be represented by

Gf �G2�G1 = (S,L,Hsys), (A3)

1L 2L

1, outb1, inb

2, inb
2, outb

Subsystem 1 Subsystem 2

1H 2H

FIG. 11. (Color online) Schematic diagram of the series product
of two cascade-connected components.
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FIG. 12. (Color online) Schematic diagram of a coherent feed-
back loop.

where

S = Sf S2S1, L = S2S1L1 + S1L2 + Lf , (A4a)

Hsys = H1 + H2 + Hint, (A4b)

and the interaction Hamiltonian induced by the coherent
feedback loop is given by

Hint = 1

2i
(L†

2S2L1 − L
†
1S

†
2L2 + L

†
f Sf L2 − L

†
2S

†
f Lf

+L
†
f Sf S2L1 − L

†
1S

†
2S

†
f Lf ). (A5)

As an example, let us consider our feedback-induced noise-
decoupling system. As introduced in Sec. III, a quadratically
coupled optomechanical device (system 1) and a chaotic
controller (system 2) are connected by optical fields to
construct a coherent feedback loop, which is similar to that
given by Eq. (A4). Let a1 (a2) be the annihilation operator of
the cavity mode in quantum system 1 (2) with corresponding
damping rate γ1 (γ2) and γf is the damping rate of the
controlled cavity induced by the feedback field. In this case
we have L1 = √

γ1 a1, L2 = √
γ2 a2, Lf = √

γf a1, and S1 =
S2 = Sf = I . From Eq. (A5) the dissipation operator of the
total feedback loop can be written as

L = (
√

γ1 + √
γf )a1 + √

γ2 a2 (A6)

and the total Hamiltonian of the quantum feedback loop can
be obtained from Eqs. (A4) and (A5) as

Hsys = H1 + H2 + Hint

= H1 + H2 + 1

2i
(
√

γ1γ2 − √
γ2γf )(a†

2a1 − a
†
1a2). (A7)

Accordingly, the quantum Langevin equations of the two
cavity modes a1 and a2 can be represented by

ȧ1 = −i[a1,H1 + H2] − 1

2
(
√

γ1 + √
γf )2a1

−√
γ2γf a2 − (

√
γ1 + √

γf ) a1,in, (A8a)

ȧ2 = −i[a2,H1 + H2] − γ2

2
a2 − √

γ1γ2 a1 − √
γ2 a2,in,

(A8b)

where a1,in (a2,in) is the input field fed into the system 1 (2).
By substituting Eqs. (1) and (10) into Eq. (A8), we can obtain
the quantum Langevin equation given by Eq. (12).

APPENDIX B: DERIVATION OF THE DECOUPLING
COEFFICIENT M

The decoupling coefficient M is determined by the classical
cavity field f (t), which can be decomposed into a series of
frequency components by the Fourier transform [37,62]

f (t) =
∞∑

n=0

An cos(ωnt + ϕn), (B1)

where ωn, An, and ϕn denote the frequency, the amplitude, and
the initial phase of the nth frequency components. Integrating
f (t) gives the control-induced phase shift

θ (t) =
∫ t

0
f (τ )dτ =

∞∑
n=0

An

ωn

sin(ωnt + ϕn). (B2)

By introducing the Bessel-series expansion, we have

exp[−iθ (t)] = exp

(
−i

∞∑
n=0

An

ωn

sin(ωnt + ϕn)

)

=
∏
α

∑
n

Jnα

(
Aα

ωα

)
exp[−inαωαt − inαϕα],

(B3)

where Jnα is the nth Bessel function of the first kind. We then
neglect the high-order terms in the Bessel series, which can be
considered as the fast variables in the system, and only keep
the zeroth-order terms in Eq. (B3), by which we have

exp[−iθ (t)] =
∏
α

J0

(
Aα

ωα

)
= exp

[∑
α

ln J0

(
Aα

ωα

)]
.

(B4)

Under the condition that Aα � ωα , the zeroth-order Bessel
term can be approximately expressed as J0(Aα/ωα) ≈ 1 −
(Aα/2ωα)2. Furthermore, from Aα � ωα we have ln[1 −
(Aα/2ωα)2] ≈ −(Aα/2ωα)2. Thus Eq. (B4) can be simplified
as

∏
α

J0

(
Aα

ωα

)
= exp

(
−1

4

∑
α

A2
α

ω2
α

)

= exp

(
−π

2

∫ ωu

ωl

Sf (ω)

ω2
α

dω

)
. (B5)

If we let
√

M = exp[−iθ (t)] and M is defined as the
decoupling factor, then from Eq. (B5) we have

M = exp

(
−π

∫ ωu

ωl

Sf (ω)

ω2
α

dω

)
. (B6)

APPENDIX C: FIDELITY OF THE QUANTUM MEMORY

The Langevin equation of the mechanical operator b̃1 is
shown in Eq. (20). The steady value of the mechanical mode
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can be obtained by setting db̃1/dt = 0 as

〈b̃1(∞)〉 = −2
√

ν

ν + �1
αd, (C1)

where 〈·〉 is the average over the input vacuum fluctuation. We
then define the quantum Wiener processes A(t) = ∫ t

0 ãd (t ′)dt ′

and B(t) = ∫ t

0 bin(t ′)dt ′, by which we can obtain the quantum
stochastic differential equation from Eq. (20) as

db̃1 = −ν + �1

2
b̃1dt − √

ν αddt − √
ν dA −

√
�1dB.

(C2)

The quantum fluctuation terms dA and dB satisfy that

〈dA〉 = 〈dB〉 = 0 (C3)

and obey the quantum Itô rules

dAdA† = (N + 1)dt, dA†dA = Ndt,

(dA)2 = Mdt, (dA†)2 = M†dt, (C4)

dBdB† = (n + 1)dt, dB†dB = ndt,

where n represents the thermal exciton number, N is the effec-
tive photon number, and M denotes the squeezing parameter.
Here M and N satisfy the inequality M2 � N (N + 1). Then
we introduce the squeezing factor s [69] of the input quantum
state, which is given by

s = ln [M + M∗ + 2N + 1]. (C5)

To calculate the fidelity of the quantum memory, let us
define the normalized position x = (b̃1 + b̃

†
1)/

√
2, momentum

p = (b̃1 − b̃
†
1)/

√
2i, and the conjugate vector z = (x,p) of

the mechanical mode. We also introduce the symmetrized
covariance matrix V , which is given by

V = 1
2 [
z 
zT + (
z 
zT)T], (C6)

where 
z = z − 〈z〉. With Itô’s rule d(ab) = (da)b +
a(db) + dadb, the time evolution of the covariance matrix

V is described by the Lyapunov differential equation

V̇ = AV + V AT + �1(n + 1/2)I2 + ν�, (C7)

where A = −[(ν + �1)/2]I2 and I2 is the two-dimensional
identity matrix. Here � is a matrix related to the degree of
squeezing, which can be calculated by

� = 1

2

(
2N + 1 + M + M∗ M − M∗

M − M∗ 2N + 1 − (M + M∗)

)
.

(C8)

For a squeezed input state, the fidelity between the initial state
and the steady state of the mechanical mode is given by

F∞ = 〈�0|ρ∞|�0〉 = 1√
det(V∞ + V0)

=
∏

j=±s

[
exp (j ) + �1[2n + 1 − exp (j )]

2(ν + �1)

]−1/2

, (C9)

where V∞ denotes the stationary solution of the Lyapunov
differential equation [Eq. (C7)] and V0 is the covariance matrix
of the input state, which can be calculated by

V0 = 1

2

(
exp (s) 0

0 exp (−s)

)
. (C10)

When the input state is a coherent state, such that M = N = 0
and thus s = 0, the fidelity in this case can be simplified as

Fc
∞ = 1√

det(V∞ + V0)

=
[

1 + �1n

ν + �1

]−1

. (C11)

It can be found from Eqs. (C9) and (C11) that the fidelity
increases when increasing the mechanical damping rate �1 for
both squeezed states and coherent states.
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