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Observation of non-Hermitian degeneracies
in a chaotic exciton-polariton billiard
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Exciton-polaritons are hybrid light–matter quasiparticles formed
by strongly interacting photons and excitons (electron–hole pairs)
in semiconductor microcavities1–3. They have emerged as a robust
solid-state platform for next-generation optoelectronic applica-
tions as well as for fundamental studies of quantum many-body
physics. Importantly, exciton-polaritons are a profoundly open
(that is, non-Hermitian4,5) quantum system, which requires
constant pumping of energy and continuously decays, releasing
coherent radiation6. Thus, the exciton-polaritons always exist in
a balanced potential landscape of gain and loss. However, the
inherent non-Hermitian nature of this potential has so far been
largely ignored in exciton-polariton physics. Here we demonstrate
that non-Hermiticity dramatically modifies the structure of modes
and spectral degeneracies in exciton-polariton systems, and, there-
fore, will affect their quantum transport, localization and dynam-
ical properties7–9. Using a spatially structured optical pump10–12, we
create a chaotic exciton-polariton billiard—a two-dimensional
area enclosed by a curved potential barrier. Eigenmodes of this
billiard exhibit multiple non-Hermitian spectral degeneracies,
known as exceptional points13,14. Such points can cause remarkable
wave phenomena, such as unidirectional transport15, anomalous
lasing/absorption16,17 and chiral modes18. By varying parameters
of the billiard, we observe crossing and anti-crossing of energy levels
and reveal the non-trivial topological modal structure exclusive to
non-Hermitian systems9,13–22. We also observe mode switching and
a topological Berry phase for a parameter loop encircling the excep-
tional point23,24. Our findings pave the way to studies of non-
Hermitian quantum dynamics of exciton-polaritons, which may
uncover novel operating principles for polariton-based devices.

Studies of open quantum systems go back to Gamow’s theory of
nuclear a-decay developed in the early days of quantum mechanics4.
Indeed, metastable states of a single quantum particle in a spherically
symmetric potential well with semi-transparent barriers decay in time,
and therefore are characterized by complex energies. Furthermore,
introducing a 2D potential well with non-trivial geometry, that is, a
quantum billiard, results in strongly correlated energy levels and trans-
ition to quantum chaos7,19,21,25–28. Spectral degeneracies crucially deter-
mine transport and dynamical properties in both non-Hermitian and
chaotic wave systems7–9,15–17. In chaotic and disordered wave systems,
spectral degeneracies underpin statistical properties and quantum
phase transitions from localized to delocalized dynamics8,9. In non-
Hermitian (including PT-symmetric) systems, non-trivial topology
of eigenmodes and unusual transport properties in the vicinity of
exceptional points15–17,19 are currently under investigation. Basic non-
Hermitian or stochastic dynamics have so far been studied in the con-
text of microwave9,18–20,24, optical15–17,19,21, atomic22,26,27 and electron25,28

waves. However, the concepts of non-Hermiticity and quantum chaos
remain largely separated from each other, owing to the lack of a simple

quantum system in which both features would be readily accessible.
Moreover, it is challenging to produce artificial complex potentials with
gain and loss for classical waves, as well as to observe nanoscopic
electron states in solids.

Microcavity exciton-polaritons represent a unique quantum macro-
scopic system, which combines the main advantages of light and mat-
ter waves1–3. Being bosons, exciton-polaritons can display collective
quantum behaviour, Bose–Einstein condensation (BEC), when they
occupy a single-particle quantum state in massive numbers. Exciton-
polaritons have provided a very accessible system for studies of col-
lective quantum behaviour because they condense at temperatures
ranging from 10 K to room temperature (compared to nanokelvins
for neutral atoms) and do not require painstaking isolation from
the environment.

The schematics of exciton-polariton condensation under continu-
ous-wave incoherent optical excitation conditions1 are shown in
Fig. 1a. The optical pump, far detuned from the exciton resonance
in the cavity, effectively creates an incoherent reservoir of ‘hot’,
exciton-like polaritons. Above a threshold density of the reservoir,
relaxation and stimulated scattering into the coherent BEC state of
exciton-polaritons dominate the dynamics. The continuously pumped
condensate decays and releases coherent photons, which escape the
cavity carrying all information about the condensed state. The inter-
actions between the reservoir and condensed exciton-polaritons
are responsible for the formation of effective pump-induced poten-
tials10–12. Thus, the macroscopic matter wavefunction is shaped by an
optical pump and spatially resolved via free-space optical microscopy.
This enables us to clearly observe and control non-Hermitian and
irregular quantum dynamics.

We use a structured optical pump10–12 to create a non-Hermitian
potential in the shape of a Sinai billiard7 with a circular defect of radius
R (see Fig. 1b) for condensed exciton-polaritons (see Methods for
details). In our experiment, the billiard has ‘soft’ (inelastic) walls of a
finite width and height. The main properties of eigenstates of the
exciton-polariton condensate in the billiard can be described by a linear
Schrodinger equation with a complex two-dimensional potential
V(r) 5 V9(r) 1 iV0(r). Here the real part of the potential, V9(r) / P(r),
is the potential barrier shaped as a Sinai billiard boundary with a
Gaussian envelope. The optical pump rate, P(r), is induced by the strong
repulsive interaction between the excitonic reservoir populated by the
pump and the polariton BEC10–12. The imaginary part of the potential,
V0(r) / P(r) 2 c, combines the gain profile produced by the same
optical pump P(r) with the spatially uniform loss c due to polariton
decay (Fig. 1b). Despite the strong polariton–polariton interactions, the
corresponding nonlinearity mostly affects the relative population of the
energy eigenstates, as well as the overall blueshift (see Methods).

Changing the radius of the defect, R, varies the geometry of the
billiard and hence affects the energy levels. Figures 1c and d show the
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experimentally measured and numerically computed energy spectra
E(R) of the first 11 levels as a function of R. Variations of the shape of
the 2D potential tune eigenvalues of different modes at different rates,
and as a result some energy levels approach each other at certain values
of R. It can be seen (Fig. 1c, d) that multiple degeneracies (or near-
degeneracies) appear in the spectrum. In a ‘hard-wall’ Hermitian Sinai
billiard, the proliferation of degeneracies is a signature of the transition
from regular to chaotic dynamics7. Although our exciton-polariton
billiard has ‘soft’ walls and can generically exhibit mixed regular-
chaotic behaviour27, we clearly observe multiple degeneracies similar
to the ‘hard-wall’ case7. In Hermitian billiards, the levels generically
avoid crossing (that is, they anti-cross) in the vicinity of degeneracies,
which correspond to the average level repulsion and Wigner distri-
bution of the nearest-neighbour energy spacings8. In contrast, the non-
Hermitian systems can exhibit both crossings and anti-crossings of
levels9,19–22. This is because the energy eigenvalues in non-Hermitian
systems are complex: the real part and imaginary parts correspond to
the real energies and linewidths of the modes, respectively. A crossing
of the energies is accompanied by an anti-crossing of the linewidths
and vice versa. In our experiment, we measure the spectral profile of
the cavity photoluminescence at a particular spatial position and
extract both peak energies and widths of spectral resonances (see
Methods). Crossings as well as anti-crossings of real energy levels
are clearly seen both in experiments (Fig. 1c) and numerical simula-
tions (Fig. 1d).

To observe the transition between crossing and anti-crossing for the
same near-degenerate pair of eigenvalues, a second control parameter

needs to be varied. In our exciton-polariton billiard, this additional
parameter is the thickness, d, of the billiard walls. Provided the internal
area of the billiard remains unchanged, this parameter does not affect
the geometry of the billiard and primarily controls the imaginary part
V0 of the non-Hermitian potential barrier. Figure 2 shows one pair
of billiard modes highlighted in Fig. 1c in the vicinity of a near-
degeneracy for two values of the control parameter d. One can clearly
see the anti-crossing (crossing) behaviour of the real (imaginary) parts
of the complex eigenenergies in the billiard with thick walls (Fig. 2a, c)
and the opposite behaviour for the thin-wall billiard (Fig. 2b, d).

Importantly, the energy-resolved real-space imaging of the photo-
luminescence provides all the information about complex eigenvalues
as well as the spatial structure of the eigenmodes (wavefunctions). In
particular, the levels shown in Fig. 2 correspond (at R 5 0) to the third
mode with three horizontal lobes and the fourth mode with two ver-
tical lobes. The experimentally imaged and calculated spatial profiles
of these eigenmodes are shown as insets in Fig. 2a, b along the eigen-
energy curves. We observe that the two modes are hybridized and
therefore change their spatial profiles in the near-degeneracy region,
and ‘exchange’ their spatial profiles after passing it.

The behaviour of two billiard modes in the vicinity of a degeneracy
can be described by a simple model of a two-level system with an
effective coupling (see Methods). The corresponding non-Hermitian
Hamiltonian reads9,18–22:
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Figure 1 | Non-Hermitian exciton-polariton Sinai billiard and its spectrum.
a, Exciton-polariton dispersion showing the upper and lower branches (solid
lines) formed owing to hybridization of the cavity photon and exciton modes
(dashed lines). The incoherent excitonic reservoir is continuously replenished
by the optical pump (represented by the cyan arrow) and ‘feeds’ the polariton
BEC (black arrow). The polariton BEC decays into cavity photoluminescence
(orange arrow)1–3. b, Schematics of the exciton-polariton Sinai billiard formed
in the plane of a quantum well embedded into the microcavity (see Methods).
The barrier is induced by the optical pump via the excitonic reservoir, and the
square modulus of the wavefunction of the confined polariton BEC (shown in

greyscale inside the billiard) is imaged via the photoluminescence. The billiard
dimensions are fixed as W 5 14mm, L 5 23mm, the radius of the defect R is
varied from 0 to W, and the thickness of the walls d is varied from 3mm to 7mm
(see Methods). c, d, Experimentally measured (c) and numerically simulated
(d) spectra E(R/W) for the first 11 modes of the billiard in arbitrary units (a.u.).
With growing R, numerous degeneracies and quasi-degeneracies proliferate in
the grey area, which is a signature of the transition to quantum chaos in the
Hermitian Sinai billiard7. Topological properties of two near-degenerate modes
(red and blue in the orange rectangles) are analysed in detail in Figs 2–4.
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Here ~E1,2 are the complex eigenvalues of two uncoupled modes (with
E1,2 being the real energies and C1,2 being the decay/gain rates),
whereas q characterizes the coupling between these two modes (the
star stands for complex conjugation). We will also use the mean
complex energy ~E~ ~E1z~E2

� �
=2:E{iC , and the complex energy

difference d~E~ ~E2{~E1
� �

=2:dE{idC . The eigenvalues of the

Hamiltonian (equation (1)) are l1,2~~E+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d~E2z qj j2

q
; their real and

imaginary parts, which depend on the parameters d~E~ dE, dCð Þ, are
shown in Fig. 3. These complex eigenvalues coalesce, l1 5 l2, at the
exceptional points (EPs)13–22, where id~EEP~+ qj j. At these points,
the eigenstates also coalesce and form a single chiral mode13,14,18.
Assuming that the coupling constant q is fixed, the exceptional
points appear in the parameter plane as (dEEP, dCEP) 5 (0, 6jqj).
We assume dC . 0 in our range of parameters, so that there is only
one exceptional point in the domain of interest. The exceptional point
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Figure 2 | Crossing and anti-crossing for two near-degenerate modes.
These modes are boxed in Fig. 1c, d. a–d, Experimentally observed anti-
crossing (a) and crossing (b) of eigenenergies of two modes in the spectrum of
the exciton-polariton Sinai billiard with varying parameter R (see Fig. 1) for
thick, d < 6mm (a, c), and thin, d < 4mm (b, d), billiard walls; dEP is the
value corresponding to the exceptional point. Panels c and d show the

corresponding crossing and anti-crossing of the linewidths (that is, imaginary
parts of the complex eigenvalues). The error bars in a–d originate from
numerical fitting of the spectroscopic data (see Methods). The upper (lower)
inset panels in a and b illustrate the numerically calculated (experimentally
imaged) spatial structure of the eigenmodes at different values of the
parameter R. Details of the hybridization region are given in Methods.
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Figure 3 | Eigenvalues of a two-level non-Hermitian model in the vicinity
of the exceptional point. a, b, Real (a) and imaginary (b) parts of the
eigenvalues l1,2 of the model (equation (1)) as functions of two parameters,
dE and dC. The exceptional point (EP) is shown in magenta. The crossing
and anti-crossing of the real and imaginary parts of the eigenvalues as functions

of dE, for dC , dCEP and dC . dCEP, are shown in red and blue. This is
in correspondence with the experimentally observed behaviour in Fig. 2.
Traversing along the green contour encircling the exceptional point in the
(dE, dC) plane reveals the non-trivial topology of eigenmodes, as shown
in Fig. 4.
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can be encircled in the (dE, dC ) plane by varying these two parameters,
as seen in Fig. 3.

Two parameters of the model, (dE, dC), approximately correspond
to the varying parameters (R, d) of our exciton-polariton billiard. The
radius R mostly affects the real part of the potential, V9(r), and hence
the energy difference between the modes. Increasing R corresponds to
a tighter spatial confinement and therefore to increasing dE. In turn,
the thickness d of the billiard walls controls the gain/loss profile V0(r).
Different modes have different spatial overlaps with the imaginary
potential V0(r), and, therefore, are characterized by different integral
(spatially averaged) dissipation parameters C1,2 (see Methods). In our
case, increasing d corresponds to decreasing dC. The effective coupling
q in our model (equation (1)) is determined by the spatial overlap
between the two modes away from the hybridization region9. The
red and blue curves in Fig. 3 show the crossing/anti-crossing behaviour
of the real and imaginary parts of the eigenvalues versus the energy
difference dE for two values of the dissipation parameter: dC , dCEP

and dC . dCEP. This behaviour is perfectly consistent with that in the
experimental Fig. 2, which means that our range of varying parameters
includes the exceptional point.

The structure of the complex eigenvalues in the vicinity of the
exceptional point reveals non-trivial topology of a branch-point
type13–22, shown in Fig. 3. Therefore, continuous encircling of the
non-Hermitian degeneracy in the two-parameter plane (for example,
along the green contour in Fig. 3) results in the transition to the other
branch. When the contour is traversed twice, we return to the original
mode, most significantly with a topological phase shift of p. This
phase shift is the manifestation of the Berry phase resulting from
encircling of a non-Hermitian degeneracy in a two-dimensional para-
meter space23,24. We use the method suggested in the microwave
experiment24 to trace the above topological structure of two modes
in the vicinity of the exceptional point. We compare the eigenmodes at
neighbouring values of parameters (dE, dC ) , (R, d) along the contour
encircling the exceptional point (see Fig. 3). Notably, we do not con-
sider adiabatic evolution of modes due to variations of the parameters
(R, d) in time; such evolution would be accompanied by unavoidable
non-adiabatic transitions in the non-Hermitian case29,30. Rather, we
examine the natural topological structure and geometrical connection
of stationary modes depending on the parameter values.

Figure 4 depicts the experimentally measured intensities and the
corresponding numerically simulated phase profiles of the two modes
from Fig. 2 for the parameter values lying on the contour encircling the
exceptional point (Fig. 3). In Fig. 4a, we start on the upper branch (blue
in Figs 2a and 3a) at R , REP, d . dEP and trace the eigenmode trans-
mutation as the radius is increased to R . REP. This takes us from the
vertical two-lobe mode, through the anti-crossing, to the horizontal
three-lobe mode (still on the blue upper branch). Then, we decrease
the thickness to d , dEP and stay on the same horizontal three-lobe
mode, which now corresponds to the red branch in Figs 2b and 3a.
Next, reducing the radius R takes this mode through the crossing and
recovers its three-lobe structure. Increasing d closes the loop. Thus, the
continuous transformation brought us from the vertical two-lobe
mode (‘start’ in Fig. 4a) to the horizontal three-lobe mode (‘end’ in
Fig. 4a) at the same values of the parameters. Repeating this traverse
one more time (Fig. 4b) returns us to the original vertical two-lobe
mode, but now with the p topological phase shift (clearly seen in the
simulated phase profiles). The experimental density distribution of the
modes is in very good agreement with that calculated numerically.
Therefore we can associate the phase structure of the simulated spatial
modes with the experimental mode profiles24.

Thus, we have demonstrated the creation of highly controllable
complex (non-Hermitian) potentials for exciton-polaritons, and
implemented a chaotic non-Hermitian exciton-polariton billiard with
multiple spectral degeneracies. We have provided detailed experi-
mental observations of the non-trivial behaviour of complex eigenva-
lues and eigenmodes in the vicinity of an exceptional point. These
include crossing/anti-crossing transitions as well as mode switching
and topological Berry phase when encircling the exceptional point
in the two-parameter plane. Our results show that the inherent
non-Hermitian nature of exciton-polaritons determines their basic
properties, which are crucial for transport and quantum information
processing. Therefore, these features should be taken into account
in future studies and applications involving confinement and
manipulation of exciton-polaritons. Most importantly, this complex
quantum dynamics can bring novel functionality to polariton-based
devices operating at the interface between photonics and electronics.
Generally, exciton-polaritons offer a novel macroscopic quantum plat-
form for studies of non-Hermitian physics and quantum chaos at the
confluence of light and matter.
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Figure 4 | Observation of the topological Berry phase acquired after circling
around the exceptional point in the parameter plane. Transmutations of
spatial distributions (black-and-white panels) of the selected eigenmode (from
the pair shown in Fig. 2) along the closed contour in the parameter space
(R, d) , (dE, dC) encircling the exceptional point (see Fig. 3). Parameters
are not varied in time during the measurements, and each distribution
corresponds to the stationary mode at the corresponding parameter values.

a, b, The first loop (a) shows the transition to a different branch (mode)
through the hybridization region (see explanations in text); the second loop
(b) returns the mode to the original one with a p topological phase shift23,24. The
phases (colour panels) are inferred from comparison with the numerically
calculated modes. The modes corresponding to the ‘start’ and ‘end’ points of the
loop on the red (blue) branch in Figs 2a, b and 3a are boxed in red (blue).
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METHODS
Experimental setup. The semiconductor sample used in the experiment is a
GaAs/AlGaAs microcavity containing 12 quantum wells (QWs) (,13 nm wide
each) sandwiched between distributed Bragg reflector mirrors (32/36 mirror
pairs). To achieve the strong interaction regime between cavity photons and
quantum-well excitons1,31, the quantum wells are distributed in the sample via
three sets of four located at the anti-nodes of the photon mode. The cavity photon
mode is red-detuned by 2.8 meV from the exciton resonance at 1.546 eV, resulting
in the exciton-polariton dispersion schematically shown in Fig. 1a. The sample is
mounted on a cold finger inside a continuous flow microscopy cryostat and
maintained at 5.6 K.

A schematic of the experimental apparatus is shown in Extended Data Fig. 1.
The exciton-polariton condensate is formed by illuminating the sample by a quasi-
continuous, off-resonant, linearly polarized pump beam derived from a continu-
ous wave (CW) Ti:sapphire laser operating at 732 nm. The threshold power for the
condensation is ,0.079 mWmm22. To minimize heating of the sample, the pump
beam is chopped by an acoustic optical modulator (AOM). We use a digital
micromirror device (DMD) to engineer the spatial pump profile in the shape of
a Sinai billiard shown in Fig. 1b, which is then re-imaged onto the sample at
normal incidence through a high numerical aperture (NA) microscope objective.

Owing to the continuous decay of the exciton-polaritons, coherent photons
escape the cavity as a photoluminescence signal and carry all the information
about the condensate1. The photoluminescence is then collected via the micro-
scope objective and analysed using the CCD camera and spectrometer (Extended
Data Fig. 1). We reconstruct the spatial modes by scanning the real space imaging
across the slit of the spectrometer.
Creating exciton-polariton billiards. The DMD mirror is programmed to reflect
the spatial pattern shown in Extended Data Fig. 2, thus creating a structured pump
beam in the shape of a Sinai billiard32. The pump creates an inhomogeneous
distribution of reservoir excitons in the plane of the quantum well, therefore
inducing an effective potential for the condensed exciton-polaritons10.

The two parameters of the billiard controlling the non-Hermitian dynamics of
exciton-polaritons are the radius of the round corner (defect), R, and the thickness
of the walls, d. The latter is different on the different sides of the perimeter due to
the shape of the laser beam illuminating the DMD. Throughout the main text, we
consider a continuous change of R (0 , R/W , 1), but only two modifications of d
(shown in Extended Data Fig. 2).

We have verified that, for any R, when the thickness of the walls is varied
within our experimental range, the pump power density remains approximately
constant. For the ‘thin’ and ‘thick’ wall configurations shown in Extended
Data Fig. 2, the values are 0.11060.0033 mWmm22 (Extended Data Fig. 2a)
and 0.11760.0047 mWmm22 (Extended Data Fig. 2b), respectively. This effec-
tively means that the height of the billiard potential walls, defined by the pump
power, remains the same. Since the internal area and hence geometry of the billiard
does not depend on d either, this leads us to conclude that the wall thickness
controls mainly the imaginary part of the billiard potential.
Spectroscopy of the billiard. Above the condensation threshold, exciton-polar-
itons occupy multiple energy levels of the billiard potential, and in our experiments
we comfortably resolve approximately the first 15 levels in the energy versus
position spectrum. As the radius of the defect in the Sinai billiard grows, the area
of the potential confining exciton-polaritons shrinks, so that the energy levels are
blueshifted (see Fig. 1c, d). The spectral line profiles measured at fixed spatial
positions in the vicinity of degeneracy highlighted in Fig. 1c, d are shown in
Extended Data Fig. 3. The line profiles obtained for several values of the defect
radius within the range (0.4 , R/W , 0.65) are plotted on the same plot and their
relative blueshift is represented by the offset on the intensity axis.

Positions of the individual energy levels (Fig. 2a, b) for different values of R are
derived from the spectroscopic peaks, as schematically shown in Extended Data
Fig. 3, and the linewidths (Fig. 2c, d) are determined by the numerical fitting of the
spectral profile. The errors indicated in Fig. 2 arise from the numerical fitting
procedure and therefore are very small.
Modelling of the billiard. The full dynamics of the exciton-polariton condensate
subject to off-resonant, incoherent optical pumping can be described by the gen-
eralized complex Gross–Pitaevskii (or Ginzburg–Landau) equation33–35 for the
condensate wavefunction, y:

i�h
Ly(r , t)

Lt
~ {

�h2

2m
+2z(g{icnl) yj j2z(gRzi�hR)nR(r){i�hc

� �
yzi�h<½y(r , t)�

ð2Þ
Here m is the effective mass of the lower polariton, g is the polariton–polariton
interaction strength, gR is the strength of interaction between the reservoir and
condensed polaritons, R is the rate of stimulated scattering into the condensed
state, and c is the spatially homogeneous decay rate of polaritons. The reservoir

density distribution nR(r) / P(r) is defined by the rate of reservoir (excitonic)
polariton injection per unit area and time, P(r). The parameter cnl entering equa-
tion (2) characterizes gain saturation and, in general, depends on the spatial
distribution of the pump. In our numerical calculations, we take the cnl to be small
and spatially homogeneous due to the weak overlap between the condensate and
the pumping area.
The model, equation (2), was initially suggested phenomenologically33 and sub-
sequently derived from the semiclassical Maxwell–Bloch equations34. It qualita-
tively coincides with the generalized open-dissipative Gross–Pitaevskii model36

augmented with the rate equation for the excitonic reservoir density:

LNR

Lt
~P (r){ cRzR yj j2

� �
NR

in the regime of near-threshold pumping37. In this limit, the steady state reservoir
density distribution can be expressed as NR<P rð Þ=cR{RP rð Þ yj j2

�
c2

R~nR rð Þ{
cnl�h

{1R{1 yj j2, where cR is the decay rate of reservoir polaritons.
The phenomenological energy relaxation35,38,39, which is essential to

adequately model the multi-mode nature of the condensate38, is taken in the
following form35,38:

< y r , tð Þ½ �~anR m r, tð Þ{i�h
L
Lt

� �
y r, tð Þ

where a is the energy relaxation rate, and m(r, t) is a local chemical potential of
the condensate.

We use equation (2) to obtain the structure of the spatial modes of the exciton-
polariton condensate corresponding to peaks of the energy spectrum. The
parameters of the model used for our dynamical simulations are as follows:
m 5 5 3 1025 me, where me is the free electron mass, g 5 2 3 1023 meVmm2,
gR 5 2g, �hR 5 6 3 1024 meVmm2, c 5 0.1 ps21, cnl 5 0.3g, a 5 1.2 3 1023mm2

ps21 meV21. The effective potential height is max(V9) 5 2.25 meV, and the bil-
liard wall profile given by the reservoir density distribution, nR(r), is convoluted
with a Gaussian profile to account for the ‘soft’ edges of the potential created by the
optical excitation and exciton diffusion.

The spatial modes computed numerically using the fully nonlinear, open-dis-
sipative dynamical model, equation (2), are presented in the bottom row of
Extended Data Fig. 4. For comparison, the middle row of Extended Data Fig. 4
shows the single-particle eigenstates of the complex linear potential induced by the
excitonic reservoir: V rð Þ~V 0ziV 00:gRnR rð Þzi�h RnR rð Þ{c½ �, with both real
and imaginary parts V9, V0 proportional to the pumping rate36, P(r). One can
see that the condensate dynamics described by equation (2) effectively populates
the eigenstates of the linear complex effective potential. The validity of our model
is confirmed by the excellent agreement with the experimental images of the
billiard modes presented in the top row of Extended Data Fig. 4.

In agreement with previous studies40, the nonlinearity due to exciton-polariton
interactions strongly determines the relative population of the eigenstates, as well
as the overall blueshift of the eigenenergies. The eigenenergies are complex, and so
the spectral linewidths may exceed the level separation. For this reason, in our
experiment some of the higher-order energy-filtered wavefunctions represent
superpositions of neighbouring eigenstates. For example, the seventh mode mea-
sured in the experiment (last column in Extended Data Fig. 4) is, in fact, a super-
position of eigenstates eight and nine, as revealed by the comparison with the
numerically calculated modes. In contrast, the lower-order modes in Extended
Data Fig. 4 represent almost pure eigenstates, having a very weak (less that 10%)
admixture of the neighbouring eigenstates.
Hybridization of modes. Hybridization of modes occurs in the vicinity of cross-
ing and anti-crossing of the energy levels in Fig. 2a and b. In these regions,
the billiard modes are different in shape to the uncoupled modes away from the
(near-)degeneracy. In experiments, it is hard to spectrally resolve pure modes in
the hybridization region since their spectral linewidths exceed the peak separation.
Therefore, what is experimentally imaged and shown in the insets of Fig. 2a and b
is a superposition of two modes. This is especially true for Fig. 2b, where the
spectral peaks (but not the linewidths) precisely coincide at the crossing, so that
in the experiment we can only image a single mode corresponding to a single peak.

To match the spatial distributions obtained in the experiment with those found
numerically, we plot superpositions of the pure eigenstates found in numerical
simulations: Qs~aQ3zbQ4eiq, where Q3,4 are the pure eigenstates 3 and 4, a and b
are their relative amplitudes, and q is the relative phase. We find that only the
relative phase q 5p/2 can produce a superposition that fits well with the experi-
ment. These spatial modes (pure and superposition states) for the thick and thin
billiard in the hybridization region (anti-crossing and crossing of eigenenergies,
respectively) are shown in Extended Data Fig. 5.

Note that this mode mixing is performed only in the hybridization region. Away
from this region, the experimentally imaged and numerically calculated modes
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match extremely well. Importantly, in Fig. 4, in order to perform a reliable phase
extraction from numerically found modes away from the (near-)degeneracy, it is
absolutely necessary to trace the continuous variation of phase of the pure modes
as we pass the hybridization region. For this reason, we did not mix numerically
found pure modes to match experimentally imaged spatial distributions of super-
position states. This explains visible discrepancies between the spatial structure of
numerically calculated and experimentally imaged modes in the hybridization
regions in Fig. 4.
Coupled-mode model. The behaviour of any two non-Hermitian modes of the
billiard potential near the degeneracy point can be described by a standard
coupled-mode model written in the dimensionless form as follows:

i
Lyn, n’ r , tð Þ

Lt
~ {+2zV ’ rð ÞziV ’’ rð Þ
� 	

yn, n’zVyn’, n ð3Þ

where V characterizes the coupling strength between the states n and n9.
Separating the temporal and spatial dependence of the wavefunctions,
yn~an(t)Qn rð Þ, substituting this ansatz into equation (3), and integrating out
the spatial degrees of freedom, leads us to the eigenvalue equation (1) in the main
text, where (n, n9) 5 (1, 2). The real energies of the modes away from the degen-
eracy in equation (1) are defined by the shape of the billiard potential,
{+2zV ’ rð Þ
� 	

Qn rð Þ~EnQn rð Þ, the complex parts of the eigenenergies are given
by the overlap between the billiard modes and the exciton reservoir,
Cn!

Ð
V ’’ rð Þ Qn rð Þj j2d2r , and the off-diagonal matrix elements in equation (1)

are determined by the degree of spatial overlap between the two modes,
q!

Ð
Q�n rð ÞQn’ rð Þ d2r . Here we assume that the uncoupled modes are properly

normalized.

We stress that our theory essentially uncovers the non-Hermitian features of
degeneracies of the modes of the entire billiard, which can be considered as a two-
dimensional resonator in the plane of the quantum well. This approach is con-
ceptually close to, for example, the theory of two-dimensional PT-symmetric
systems41 and differs from the well developed coupled-mode theories for weakly
coupled non-Hermitian single-mode resonators.
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Extended Data Figure 1 | Diagram of the experimental apparatus. See Methods for details.
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Extended Data Figure 2 | Schematics of the optically induced billiard potential with two different wall thicknesses. a, Thin walls; b, thick walls. The active
regions corresponding to the optical pump are shown in black, and we note that the enclosed area does not change with wall thickness.
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Extended Data Figure 3 | Effect of wall thickness on spectroscopic line
profiles of the Sinai billiard. a, b, Profiles are shown in the vicinity of the
degeneracy for the levels highlighted in Fig. 1c, d with thick (a) and thin

(b) walls. The thick lines demonstrate the principle of data extraction for anti-
crossing (a) and crossing (b) of the energy levels corresponding to those
shown in Fig. 2a and b, respectively
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Extended Data Figure 4 | Spatial density distribution of the first seven
simultaneously populated lowest-energy modes of the Sinai billiard. Spatial
density distributions were obtained from the thick-wall setup (Extended Data

Fig. 2b) with R/W 5 0.35. Top row, experimentally imaged; middle row,
calculated using the effective linear potential model; bottom row, calculated
using the full dynamical model given by equation (2).
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Extended Data Figure 5 | Spatial modes in the hybridization regions.
a–g, Calculated spatial modes; each panel shows the modulus squared of the
wavefunction (left) and the wavefunction’s phase distribution (right, colour
coded). a, b, e, f, Numerically calculated pure spatial eigenstates (modes 3
(a, e) and 4 (b, f)) for the Sinai billiard with thick and thin walls in the
corresponding hybridization regions shown in Fig. 2a and b, respectively.

c, d, g, The superpositions of modes 3 and 4 that match the experimentally
imaged modes shown in Fig. 2; c (boxed in blue) and d (boxed in red)
correspond to the blue and red curves of Fig. 2a, respectively, while g (boxed in
red and blue) corresponds to the crossing point in Fig. 2b. The relative
populations of pure modes in the superposition states are: c, | a | 2 5 0.85 and
| b | 2 5 0.15; d, | a | 2 5 0.65 and | b | 2 5 0.35; g, | a | 2 5 0.60 and | b | 2 5 0.40.
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