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Abstract. We consider the problem of a qubit driven by a harmonically
oscillating external field while it is coupled to a quantum two-level system
(TLS). We perform a systematic numerical analysis of the problem by varying
the relevant parameters. The numerical calculations agree with the predictions of
a simple intuitive picture, namely one that takes into consideration the four-level
energy spectrum, the simple principles of Rabi oscillations and the basic effects of
decoherence. Furthermore, they reveal a number of other interesting phenomena.
We provide explanations for the various features that we observe in the numerical
calculations and discuss how they can be used in experiment. In particular, we
suggest an experimental procedure to characterize an environment of TLSs.
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1. Introduction

There have been remarkable advances in the field of superconductor-based quantum information
processing in recent years (there are now several reviews on the subject, see e.g. [1]). Coherent
oscillations and basic gate operations have been observed in systems of single qubits and two
interacting qubits [2]-[9]. One of the most important operations that are used in manipulating
qubits is the application of an oscillating external field on resonance with the qubit to drive Rabi
oscillations [3]-[6], [10]. A closely related problem with great promise of possible applications
is that of a qubit coupled to a quantum harmonic-oscillator mode [11]-[14].

Qubits are always coupled to uncontrollable degrees of freedom that cause decoherence in its
dynamics. One generally thinks of the environment as slowly reducing the coherence of the qubit,
typically as a monotonically decreasing decay function. In some recent experiments, however,
oscillations in the qubit have been observed that imply it is strongly coupled to quantum degrees
of freedom with long decoherence times [10, 15]. The effects of those degrees of freedom have
been successfully described by modelling them as quantum two-level systems (TLSs) [16]-[20].
Since, as mentioned above, Rabi oscillations are a simple and powerful method to manipulate
the quantum state of a qubit, it is important to understand the behaviour of a qubit that is
driven on or close to resonance in the presence of such a TLS. Furthermore, we shall show
below that driving the qubit close to resonance can be used to extract more parameters about an
environment of TLSs than has been done in experiment so far. The results of this study are also
relevant to the problem of Rabi oscillations in a qubit that is interacting with other surrounding
qubits.

Some theoretical treatments and analysis of special cases of the problem at hand were given
in [15, 19]. In this paper, we perform a more systematic analysis in order to reach a more complete
understanding of this phenomenon. We shall present a few simple physical principles that can
be used to understand several aspects of the behaviour of this system with different possible
choices of the relevant parameters. Those principles are (1) the four-level energy spectrum of the
qubit+TLS system, (2) the basic properties of the Rabi-oscillation dynamics and (3) the basic
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effects of decoherence. We shall then perform numerical calculations that will agree with that
intuitive picture and also will reveal other results that are more difficult to definitively predict
otherwise. Finally, we suggest an experimental procedure where the driven qubit dynamics can
be used to characterize the environment of TLSs.

The paper is organized as follows: in section 2, we introduce the model system and the
Hamiltonian that describes it. In section 3, we present a few simple arguments that will be used
as a foundation for our numerical analysis of section 4, which will confirm that intuitive picture
and reveal other less intuitively predictable results (note that a reader who is sufficiently familiar
with the subject matter can skip section 3). In section 5, we discuss how our results can be used
in experiment. We finally conclude our discussion in section 6.

2. Model system

The model system that we shall study in this paper is composed of a harmonically driven qubit,
a quantum TLS and their weakly coupled environment.> We assume that the qubit and the TLS
interact with their own (uncorrelated) environments that would cause decoherence even in the
absence of qubit—TLS coupling. The Hamiltonian of the system is given by:

H(@) = Hy(t) + Hris + Hy + Hey,, (1)

where H q and Hry g are the qubit and TLS Hamiltonians, respectively; H, describes the coupling
between the qubit and the TLS, and H env describes all the degrees of freedom in the environment
and their coupling to the qubit and TLS. The (time-dependent) qubit Hamiltonian is given by:

A A €
H,(t) = —7‘]6)@ — ch?iq) + F cos(wr) (sin 6:6@ + cos ch?;q)) , (2)

where A, and €, are the adjustable static control parameters of the qubit, 69 are the Pauli spin
matrices of the qubit, F and w are the amplitude (in energy units) and frequency, respectively, of
the driving field, and 6; is an angle that describes the orientation of the external field relative to
the qubit o, axis. Although we have used a rather general form to describe the coupling between
the qubit and the driving field, we shall see in section 3 that one only needs a single, easily
extractable parameter to characterize the amplitude of the driving field. We assume that the TLS
is not coupled to the external driving field, and its Hamiltonian is given by:

A ATis . €TLS A
Ao — STLS) _ 5TLS)
TLS 2 x 2 b4 ’

3)
where the definition of the parameters and operators is similar to those of the qubit, except that
the TLS parameters are uncontrollable. Note that our assumption that the TLS is not coupled
to the driving field can be valid even in cases where the physical nature of the TLS and the

3 We shall make a number of assumptions that might seem too specific at certain points. We have been careful,
however, not to make a choice of parameters that causes any of the interesting physical phenomena to disappear.
For a more detailed discussion of our assumptions, see [20].
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driving field leads to such coupling, since we generally consider a microscopic TLS, rendering
any coupling to the external field negligible.

The energy splitting between the two quantum states of each subsystem, in the absence of
coupling between them, is given by:

Ey = /A2 +é€, 4)

where the index « refers to either the qubit or the TLS. The corresponding ground and excited
states are, respectively, given by:

18)a = 9a| Jo + inealw le)e = ineal) Qali) (5)
ga_coszTa S 5 Ve ey =S5 2Ta 0052 o

where the angle 6, is given by the criterion tan 6, = A,/€,. We take the interaction Hamiltonian
between the qubit and the TLS to be of the form:

N AL .
A= 260 @6, 6)

where A is the (uncontrollable) coupling strength between the qubit and the TLS. Note that any
interaction Hamiltonian that is a product of a qubit observable times a TLS observable can be
recast into the above form using a simple basis transformation, keeping in mind that such a basis
transformation also changes the values of 6, Or.s and 6;.

We assume that all the coupling terms in Hy,, are small enough that its effect on the dynamics
of the qubit+TLS system can be treated within the framework of the markovian Bloch—Redfield
master equation approach. We shall use a noise power spectrum that can describe both dephasing
and relaxation with independently adjustable rates, and we shall present our results in terms of
those decoherence rates. For definiteness in the numerical calculations, we take the coupling of
the qubit and the TLS to their respective environments to be described by the operators 6, where
o refers to the qubit and the TLS. Note, however, that since we use the relaxation and dephasing
rates to quantify decoherence, our results are independent of the choice of system—environment
coupling operators.

3. Intuitive picture

We start our analysis of the problem by presenting a few physical principles that prove very helpful
in intuitively predicting the behaviour of the above-described system. Note that the arguments
given in this section are well known [21, 22, 23]. For the sake of clarity, however, we present
them explicitly and discuss their roles in the problem at hand.

3.1. Energy levels and eigenstates

The first element that one needs to consider is the energy levels of the combined qubit+TLS
system. In order for a given experimental sample to function as a qubit, the qubit—-TLS coupling
strength A must be much smaller than the energy splitting of the qubit E,. We therefore take that
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limit, as well as the limit A < Etrg, and straightforwardly find the energy levels to be given by

Ens+E, e 1
E1 = —% — 7, E2 = —5 (ETLS — Eq)2 +)\.§S +

)“CC
2 9
(7)

1 2 )"cc ETLS +E )\cc
E:+—\/E —E) +A+ 8, Ey=4 2 Td e
3 2 ( TLS q) ss 2 4 2 D)

where A = A cos 6, cos Orrs, Ass = A sin , sin O s. The corresponding eigenstates are given by:

1) = Igg). |2>=cos§|eg>+sin§|ge>, |3>=sin§|eg>—cos§|ge>, 14) = |ee),
8)

where the first symbol refers to the qubit state and the second one refers to the TLS state in their
respective uncoupled bases, the angle ¢ is given by the criterion tan ¢ = Ay /(Ers — Eg), and
for definiteness in the form of the states |2) and |3) we have assumed that Er; g > E.

Note that the mean-field shift of the qubit resonance frequency, A, is present regardless
of the values of the qubit and TLS energy splittings. The avoided-crossing structure involving
states |2) and |3), however, is only relevant when the qubit and TLS energies are almost equal.
One can therefore use spectroscopy of the four-level structure to experimentally measure the
TLS energy splitting Et; s and angle 615, as will be discussed in more detail in section 5.

3.2. Rabi oscillations

If a TLS (e.g. a qubit) with energy splitting @y, initially in its ground state, is driven by a
harmonically oscillating weak field with a frequency w close to its energy splitting (up to a factor
of i) as described by equation (3), its probability to be found in the excited state at a later time
t is given by:

_ Q2 1 — cos()
Q2+ (0 — wp)? 2 ’

)

(&

where Q = \/ Q% + (w — wp)?, and the on-resonance Rabi frequency Qo = F|sin(6; — 6y)| (we
take 7 = 1) [23]. We therefore see that maximum oscillations with full g <> e conversion
probability are obtained when the driving is resonant with the qubit energy splitting. We also see
that the width of the Rabi peak in the frequency domain is given by €2,. Simple Rabi oscillations
can also be observed in a multi-level system if the driving frequency is on resonance with one
of the relevant energy splittings but off resonance with all others.

3.3. The effect of decoherence

In an undriven system, the effect of decoherence is to push the density matrix describing
the system towards its thermal-equilibrium value with timescales given by the characteristic
dephasing and relaxation times. The effects of decoherence, especially dephasing, can be thought
of in terms of a broadening of the energy levels. In particular, if the energy separation between the
states |2) and |3) of subsection 3.1 is smaller than the typical decoherence rates in the problem,
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any effect related to that energy separation becomes unobservable. Alternatively, one could say
that only processes that occur on a timescale faster than the decoherence times can be observed.

It is worth taking a moment to look in some more detail at the problem of a resonantly
driven qubit coupled to a dissipative environment, which is usually studied under the name of
Bloch-equations [23].* If the Rabi frequency is much smaller than the decoherence rates, the
qubit will remain in its thermal equilibrium state, since any deviations from that state caused
by the driving field will be dissipated immediately. If, on the other hand, the Rabi frequency is
much larger than the decoherence rates, the system will perform damped Rabi oscillations, and
it will end up close to the maximally mixed state in which both states |g) and |e) have equal
occupation probability. In that case, one could say that decoherence succeeds in making us lose
track of the quantum state of the qubit but fails to dissipate the energy of the qubit, since more
energy will always be available from the driving field.

3.4. Combined picture

We now take the three elements presented above and combine them to obtain a simple intuitive
picture of the problem at hand.

Let us for a moment neglect the effects of decoherence and only consider the case w ~ wj.
The driving field tries to flip the state of the qubit alone. However, two of the relevant eigenstates
are entangled states, namely |2) and |3). One can therefore expect that if the width of the
Rabi peak, or in other words the on-resonance Rabi frequency, is much larger than the energy
separation between the states |2) and |3), the qubit will start oscillating much faster than the
TLS can respond, and the initial dynamics will look similar to that of the uncoupled system.
Only after many oscillations and a time of the order of (E; — E;)~! will one start to see the
effects of the qubit-TLS interaction. If, on the other hand, the Rabi frequency is much smaller
than the energy separation between the states |2) and |3), the driving field can excite at most one
of those two states, depending on the driving frequency. In that case the qubit-TLS interactions
are strong enough that the TLS can follow adiabatically the time evolution of the qubit. In the
intermediate region, one expects that if the driving frequency is closer to one of the two transition
frequencies E, — E| and E3 — E|, beating behaviour will be seen right from the beginning. If
one looks at the Rabi peak in the frequency domain, e.g. by plotting the maximum g <> e qubit-
state conversion probability as a function of frequency, the single peak of the weak-coupling
limit separates into two peaks as the qubit—TLS coupling strength becomes comparable to and
exceeds the on-resonance Rabi frequency.

We do not expect weak to moderate levels of decoherence to cause any qualitative changes in
the qubit dynamics other than, for example, imposing a decaying envelope on the qubit excitation
probability. As mentioned above, features that are narrower (in frequency) than the decoherence
rates will be suppressed the most. Note that if the TLS decoherence rates are large enough [20],
the TLS can be neglected and one recovers the single Rabi peak with a height determined by the
qubit decoherence rates alone.

4. Numerical results

In the absence of decoherence, we find it easiest to treat the problem at hand using the dressed-
state picture [22]. In that picture one thinks of the driving field mode as being quantized, and

* For studies of certain aspects of this problem in superconducting qubits see [24].
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Figure 1. Left: energy levels and direct transitions between them in the dressed-
state picture. Right: energy splittings separated according to their physical origin.

processes are described as involving the absorption and emission of quantized photons by the
qubit+TLS combined system. We take the frequency of the driving field to be close to the qubit
and TLS energy splittings. For simplicity, we take those to be equal. We shall come back to the
general case later in this section. Without going over the rather simple details of the derivation,
we show the four relevant energy levels and the possible transitions in figure 1. The effective
Hamiltonian describing the dynamics within those four levels is given by:

0 sz;) Q 0
R Q) —8w + hee — hs/2 0 Q!
Ag=|_" 9 (10)
Q) 0 80 + hee + Ags/2 —S2
0 ) —Q —28w

where Q) = Q0/2%?, Q, is the on-resonance Rabi frequency in the absence of qubit-TLS
coupling, dw = w — wp, and the Hamiltonian is expressed in the basis of states (|1, N),
2, N —1),|3, N—1) and |4, N — 2)), where N is the number of photons in the driving field.
We take the low temperature limit, which means that we can take the initial state to be |1, N)
without the need for any extra initialization. We can now evolve the system numerically and
analyse the dynamics. After we find the density matrix of the combined qubit+TLS system as
a function of time, we can look at the dynamics of the combined system or that of the two
subsystems separately, depending on which one provides more insightful information.

We start by demonstrating the separation of the Rabi peak into two peaks as the qubit—TLS
coupling strength is increased. As a quantifier of the amplitude of Rabi oscillations, we use the
maximum probability for the qubit to be found in the excited state between times t = 0 and
t = 207/ 2y, and we refer to that quantity as Pfl)nax. In figure 2, we plot Pfr)nax as a function of
renormalized detuning §w/ €2y. As was explained in section 3, the peak separates into two when
the qubit—TLS coupling strength exceeds the on-resonance Rabi frequency, up to simple factors
of order one. The system also behaves according to the explanation given in section 3 in the
weak- and strong-coupling limits. When A is substantially smaller than €2, oscillations in the
qubit state occur on a timescale 7!, where Q is the Rabi frequency defined in subsection 3.2,
whereas the beating behaviour occurs on a timescale (E3 — E,)~'. When A is more than an order
of magnitude smaller than €2, the effects of the TLS are hardly visible in the qubit dynamics
within the time given above. On the other hand, when A is large enough such that the energy
difference E; — E, is several times larger than €2(, the dynamics corresponds to exciting at
most one of the two eigenstates |2) and |3). We generally see that beating behaviour becomes
less pronounced when the driving frequency is equal to the qubit energy splitting including the
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Figure 2. Maximum qubit excitation probability Pffnax between t =0 and

t = 20m/ Qo for A/ 29 =0.5(a),2(b),2.5(c)and 5 (d). 6y = /4 and O s = 7/6.

TLS-mean-field shift, i.e. when w = \/ A(Zl + (€q + Acc)?, which corresponds to the top of the

unsplit single peak or the midpoint between the two separated peaks.

We also see some interesting features in the peak structure of figure 2 that were not discussed
in section 3. In the intermediate-coupling regime (figures 2(b) and (c)), we see a peak that reaches
unit height, i.e. a peak that corresponds to full g <> e conversion in the qubit dynamics at w = 0.
The asymmetry between the two main peaks in figure 2, as well as the additional dips in the
double-peak structure, were also not immediately obvious from the simple arguments of section 3.
In order to give a first explanation of the above features, we plot in figure 3 a curve similar to
that in figure 2(b) (with different 01y 5), along with the same quantity plotted when the eigenstate
|4, N — 2) is neglected, i.e. by using a reduced 3 x 3 Hamiltonian where the fourth row and
column are removed from H off- In the three-state calculation, there is no dw = 0 peak, the two
main peaks are symmetric, but we still see some dips. We also plot in figure 4 the qubit excitation
probability as a function of time for the four frequencies marked by vertical dashed lines in
figure 2(b).

By looking at figure 1, one might say that the w = 0 peak clearly corresponds to a two-
photon process coupling states |1) and |4). In fact, for further demonstration that this is the
case, we have included in figure 4 the probability of the combined qubit+TLS system to be
in state |4). This peak is easiest to observe in the intermediate coupling regime. In the weak-
coupling limit, the qubit and TLS are essentially decoupled, especially on the timescale of
qubit dynamics. In the strong coupling limit, one can argue that a Raman transition will give
rise to that peak. However, noting that the width of that peak is of the order of the smaller of the
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Figure 3. Maximum qubit excitation probability Pf"r)nax between f =0 and
t = 207/ 2o for the four-level system (solid line) and the reduced three-level
system (dashed line). A/ Qo = 2, 0, = /4 and 01 s = 7/5.

1 1 ‘ ‘ ‘ ‘
(a) (b)
0.8 AR : 0.8! ]
_ 06 A i 06
S i NMAR T
S04 Vi 0 o4
02 - he 02
0 “‘«' . . . . 0 A | IE N TP A | S A
0 2 4 8 10
o 1o 0 2 490t/2n6 8 10
1 1 ‘ ‘ ‘ ‘
(c) (d)
08 ] 0.8t ]
0.6/ 06
S e
0.4 0.4
02 0.2
O T4 6 8 10 T A
Qot/21t Qot/Zn

Figure 4. Qubit excitation probability P;q) as a function of time (solid line) for

dw/ 2 = 0(a), 0.92 (b), 1.61 (c) and 1.77 (d). The dashed line is the occupation
probability of state [4, N —2). L/ Qo = 2, 6, = /4 and Op.s = 7/5.

New Journal of Physics 8 (2006) 103 (http://www.njp.org/)


http://www.njp.org/

10 Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

values Q% /Ass and Q(z) /Acc, We can see that it becomes increasingly narrow in that limit. In other
words, the virtual intermediate state after the absorption of one photon is far enough in energy
from the states |2) and |3) to make the peak invisibly narrow. It is rather surprising, however,
that in the intermediate-coupling regime the peak reaches unit g <> e conversion probability,
even though the transitions to states |2) and |3) are real, rather than being virtual transitions
whose role is merely to mediate the coupling between states |1) and [4). We have verified that
the (almost) unit height of the peak is quite robust against changes in the angles 6, and 615 for
a wide range in A, even when that peak coincides with the top of one of the two main peaks. In
fact, the Hamiltonian H.; can be diagonalized rather straightforwardly in the case éw = 0, and
one can see that there is no symmetry that requires full conversion between the states |1, N) and
|4, N — 2). The lack of any special relations between the energy differences in the eigenvalues
of H off, however, suggests that almost full conversion should be achieved in a reasonable amount
of time.

The asymmetry between the two main peaks in figures 2 and 3 can also be explained by
the fact that in one of those peaks state |4) is also involved in the dynamics and it increases
the quantity P;?I)nax. As above, we have included in figures 4(b) and (c) the probability of the
combined qubit+TLS system to be in state |4).

In order to explain the dips in figures 2 and 3, we note that the plotted quantity, P;f‘r)nax,
is the sum of four terms (in the reduced three-level system): a constant and three oscillating
terms. The frequencies of those terms correspond to the energy differences in the diagonalized
3 x 3 Hamiltonian. The dips occur at frequencies where the two largest frequencies are integer
multiples of the smallest one. Away from any such point, Pf:nax will reach a value equal to the
sum of the amplitudes of the four terms. Exactly at those points, however, such a constructive
build-up of amplitudes is not always possible, and a dip is generally obtained. The width of that
dip decreases and vanishes asymptotically as we increase the simulation time, although the depth
remains unaffected.

We also studied the case where the qubit and TLS energy splittings were different. As can be
expected, the effects of the TLS decrease as it moves away from resonance with the qubit. That
is most clearly reflected in the two-peak structure, where one of the two main peaks becomes
substantially smaller than the other. The two-photon peak was still clearly observable in plots
corresponding to the same quantity plotted in figure 2, i.e. plots of P;flr)nax versus dw/ €29, even
when the detuning between the qubit and the TLS was a few times larger than the coupling
strength and the on-resonance Rabi frequency.

The truncated dressed-state picture with four energy levels is insufficient to study the effects
of decoherence. For example, relaxation from state |2) to |1) does not necessarily have to involve
emission of a photon into the driving-field mode. We therefore study the effects of decoherence
by treating the driving field classically. We then solve a Bloch—Redfield master equation with a
time-dependent Hamiltonian and externally imposed dephasing and relaxation times, as was done
in [20]. In figure 5 we reproduce the four-level results of figure 3, i.e. PE‘I)naX versus dw/ 2 with
no decoherence, along with the same quantity obtained when we take into account the effects of
decoherence. For a moderate level of decoherence, we see that the qubit excitation probability is
somewhat reduced and all the features that are narrower than the decoherence rates are suppressed
partially or completely by the effects of decoherence. For large qubit decoherence rates, the qubit
excitation probability is greatly reduced close to resonance, where the Rabi frequency €2 takes
its lowest values. The shallow dip in the dash-dotted line in figure 5 occurs because for those
frequencies and in the absence of decoherence the maximum amplitude is only reached after
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T, max

@

P

Figure 5. Maximum qubit excitation probability Pf’l[)nax between f =0 and
201/ 29. The solid line corresponds to the case of no decoherence. The
dotted (I'%) = 0.12/27and T} = 0.2€)/27), dashed (I'") = Oand I'}> =
2€2)) and dash-dotted (I‘g = ) and F§T2L > = 0) lines correspond to different
decoherence regimes. 1/ = 2, 6, = 7/4 and Or5 = /5. T\ and 'Y are the
relaxation and dephasing rates of the subsystem «, respectively.

several oscillations, whereas it is reached during the first few oscillations outside that region. For
large TLS decoherence rates, the TLS becomes weakly coupled to the qubit, and a single peak
is recovered in the qubit dynamics (with a height larger than either the two split peaks). All of
these effects are in agreement with the simple picture presented in section 3.

5. Experimental considerations

In the early experiments on phase qubits coupled to TLSs [10, 15], the qubit relaxation rate
Fiq) (~40 MHz) was comparable to the splitting between the two Rabi peaks Ay (~20-70 MHz),
whereas the on-resonance Rabi frequency €2, was tunable from 30 to 400 MHz (note that,
as discussed in section 3, the Rabi frequency cannot be reduced to values much lower than
the decoherence rates, or Rabi oscillations would disappear altogether). The large relaxation
rates in those experiments would make several effects discussed in this paper unobservable.
The constraint that €2, could not be reduced below 30 MHz made the strong-coupling regime,
where 2y < A, inaccessible. The weak-coupling regime, where €2 >> A, was easily accessible
in those experiments. However, as can be seen from figure 2, it shows only a minor signature
of the TLS. Although the intermediate-coupling regime was also accessible, as evidenced by
the observation of the splitting of the Rabi peak into two peaks, observation of the two-photon
process and the additional dips of figure 2 discussed above would have required a time at least
comparable to the qubit relaxation time. That would have made them difficult to distinguish from
experimental fluctuations.
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With the new qubit design of [25], the qubit relaxation time has been increased by a factor
of 20. The constraint that 2, must be at least comparable to Fg no longer prevents accessibility
of the strong-coupling regime. Furthermore, since our simulations were run for a period of time
corresponding to approximately ten Rabi oscillation cycles, i.e. shorter than the relaxation time
observed in that experiment, all the effects that were discussed above should be observable,
including the observation of the two-photon peak and the transition from the weak- to the strong-
coupling regimes by varying the driving amplitude.

We finally consider one possible application of our results to experiments on phase qubits,
namely the problem of characterizing the environment composed of TLSs. As we shall show
shortly, characterizing the TLS parameters and the nature of the qubit-TLS coupling are not
independent questions. The energy splitting of a given TLS, Etrs, can be obtained easily from
the location of the qubit-TLS resonance as the qubit energy splitting is varied. One can then
obtain the distribution of values of Eryg for a large number of TLSs, as was in fact done in [25].
The splitting of the Rabi resonance peak into two peaks by itself, however, is insufficient to
determine the values of Ay s and e s separately. By observing the location of the two-photon
peak, in addition to the locations of the two main peaks, one would be able to determine both A
and A for a given TLS, as can be seen from figure 1. Those values can then be used to calculate
both E1; g and Oy 5 = arctan(Ars/erLs) of that TLS. The distribution of values of 61, s can then
be used to test models of the environment, such as the one given in [17] to describe the results
of [26].

In order to reach the above conclusion, we have made the assumption that the distribution
of values of 615 for those TLSs with sufficiently strong coupling to the qubit is representative
of all TLSs. Since it is generally believed that strong coupling is a result of proximity to the
junction, the above assumption is quite plausible, as long as the other TLSs share the same
nature. Although it is possible that there might be two different types of TLSs of different nature
in a qubit’s environment, identifying that possibility would also be helpful in understanding the
nature of the environment. We have also assumed that 6, does not take the special value 7/2
(note that, based on the arguments of [17, 26], we are also assuming that generally 611 g # 7/2).
That assumption would not raise any concern when dealing with charge or flux qubits, where
both A, and ¢, can be adjusted in a single experiment, provided an appropriate design is used.
However, the situation is trickier with phase qubits. The results in that case depend on the nature
of the qubit-TLS coupling, which we discuss next.

The two mechanisms that are currently considered the most likely candidates to describe
the qubit—TLS coupling are through either (i) a dependence of the Josephson junction’s critical
current on the TLS state or (ii) Coulomb interactions between a charged TLS and the charge
across the junction. In the former case, one has an effective value of 6, that is different from
/2 (further arguments regarding the value of 6, are given in [27]), and the assumption of an
intermediate value of 6, is justified. In the case of coupling through Coulomb interactions, on the
other hand, one effectively has 6, = 7/2, and therefore A.. vanishes for all the TLSs. In that case
the two-photon peak would always appear at the midpoint (to a good approximation) between
the two main Rabi peaks. Although that would prevent the determination of the distribution
of values of Or.g, it would be a strong indication that Coulomb interactions with the charge
across the junction are responsible for the qubit—TLS coupling rather than the critical current
dependence on the TLS state. Note also that if it turns out that this is in fact the case, and the
distribution of values of 61 g cannot be extracted from the experimental results, that distribution
might be irrelevant to the question of decoherence in phase qubits.
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6. Conclusion

We have studied the problem of a harmonically driven qubit that is interacting with an
uncontrollable TLS and a background environment. We have presented a simple picture to
understand the majority of the phenomena that are observed in this system. That picture is
composed of three elements: (i) the four-level energy spectrum of the qubit+TLS system, (ii)
the basic properties of the Rabi-oscillation dynamics and (iii) the basic effects of decoherence.
We have confirmed the predictions of that picture using a systematic numerical analysis where
we have varied a number of relevant parameters. We have also found unexpected features in the
resonance-peak structure. We have analysed the behaviour of the system and provided simple
explanations in those cases as well. Our results can be tested with available experimental systems.
Furthermore, they can be used in experimental attempts to characterize the TLSs surrounding a
qubit, which can then be used as part of possible techniques to eliminate the TLSs’ detrimental
effects on the qubit operation.
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