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ABSTRACT: Through a hard-core slave-boson mean-field
approach to the ¢-J model, which describes the dynamics of
holes moving in a quantum antiferromagnet, we investigate
its generalized flux phases. We first study the motion of
an electron gas for arbitrary fillings and fields and establish
the linear proportionality between the filling factor and the
optimal flux with high accuracy. Using this result, we show
that if the hard-core nature of the hole bosons is taken into
account, then the slave-boson mean-field approximation for
the t-J Hamiltonian allows for a solution where both the
spinons and the holons experience an average flux of one
flux quantum per particle. This enables them to achieve
the lowest possible energy within the manifold of spatially-
uniform flux states. In the case of the continuum model, this
is possible only for certain fractional fillings and we suggest
that the system may react to this frustration effect by phase
separation.

1. INTRODUCTION

The discovery of high temperature superconductors has led to a revival of interest
in two-dimensional strongly correlated electronic systems. A model of central in-
terest is the t-J Hamiltonian.ll At half-filling, it reduces to the Heisenberg model
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which develops long-range order at zero temperature. Away from half-filling, how-
ever, a quantum spin liquid description has been proposed.ll This state is a spin
singlet, has no long-range magnetic order and is characterized by a uniform charge

2] Among the suggested

density and limited-range antiferromagnetic correlations.
mean-field descriptions of the spin liquid, the flux phase at34] and close to half-
filling has the lowest ground state energy for a wide range of the parameters.
Besides the mean-field approaches, variational wavefunctions making use of the
Gutzwiller projection have also been proposeds] and studied numericaﬂy.6’7] Fi-
nally, a large number of related works is concerned with chiral spin liquids, where
excitations with fractional statistics may arise.8! However, these states have been
shown to give the lowest energy only for large values of the next-nearest neighbor
(nnn) couplingQ] and we will not consider them here. Long-range generalizations of

the flux phase, including nnn coupling and beyond, have recently been studied.!?]

Many groupslo’ll'w] have studied possible generalizations of the flux phases
for different fillings. For instance, investigating a few doping concentrations, Led-
erer, Poilblanc, Hasegawa and Rice®”) found evidence that the exchange energy
(J) is minimized at about one flux quantum per particle. Then, using the same
trial wave function, they calculated the contribution of the kinetic term (t) to the
ground state energy and studied the competition between the ¢ and the J terms

which occurs because the former prefers zero flux.

In this work, we first study the motion of an electron in a uniform magnetic
field for arbitrary fillings and fields and establish the linear proportionality between
the filling factor and the optimal flux with high accuracy. Then we turn to the
t-J model and represent the doping and the no-double-occupancy constraint in a
slave-boson formalism. Up to multiplicative factors in the effective Hamiltonian,
the mean field approximation for the slave bosons is known to be equivalent to the
Gutzwiller projection.s'ﬂ However, in the slave-boson approximation, the hard-
core nature of the bosons is treated only on the average. We develop a method
to represent this feature more satisfyingly and explore its consequences. Finally,
we discuss the relation of variational approaches to mean-field techniques and the

problems associated with the passage to the continuum limit.



2. ELECTRONIC DIAMAGNETISM IN 2D LATTICES

First let us consider the motion of an electron in a fixed external magnetic field.

The Hamiltonian is

H= Zc;*'cj-ei‘ﬁ‘ﬂ' + h.c. (1)

(i,5)
where (i,j) refers to nearest-neighbor sites and the sum of ¢; ; along any closed
contour gives the flux of the magnetic field through the enclosed area. This is
a quadratic form so that the diagonalization can be carried out at once. From
now on, we consider the square lattice geometry with unit spacing. In the Landau

gauge A = yHz, the corresponding eigenvalue equation is

"/J:c+1,y + "»b:c—-l,y + e_ieHm"»[’:r.,y+l + eieHz¢z,y—1 = E¢z,y- (2)

If we assume plane wave behavior in the y direction, the previous two-dimensional
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2D) equation may be reduced into a simpler 1D form known as Harper equa-
q

tion,

x(n+1) + x(n — 1) + 2 cos(2mnf — p)x(n) = ex(n), (3)

where ¥n m = eim"x(n) and f is the ratio of the flux through a lattice cell to one

flux quantum.

We have numerically diagonalized Eq. (1) for lattices of various sizes, up to
40 by 40. We have not reduced our Hamiltonian to Harper’s equation since the
general form allows us to study more general problems.lo} The specific form of
the gauge link used here is given by ¢;; = 2« fij A -dl = m(z; + z;)(y; — ¥i)s
where (z;,y;) are the coordinates of site j. We calculate the ground state energy
for a fixed number N of particles by summing the first N energy eigenvalues. We
have computed this quantity for every single filling factor (of the form n/Np ,
where 7 is an integer and N, is the number of lattice sites) and about 1000 values
of the magnetic flux. Consequently, we are able to find the exact location of the

global and local minima of the total energy with high accuracy. Our results exhibit



two prominent features: (i) The ground state energy shows a global minimum as
a function of the flux exactly at plus or minus one flux quantum per particle,
® = v, (modulo one flux quantum per plaquette) where v is the electronic filling
factor; (i2) A set of harmonics is observed: there are local energy minima at
& =v/M; + My/M; were My and My are integers.

We suggest a physical reason for this result: away from half-filling, the Fermi
energy at one flux quantum per particle lies in the biggest gap of the spectrum,
which in the continuum limit is equivalent to the first Landau gap. Thus, adiabatic
manipulations should not change the qualitative features of the system. Let us
imagine that we shrink the homogeneous magnetic field into infinitesimally thin
vortex tubes, bound to the electrons. Then the unit flux quantum per particle
turns each electron exactly into a boson, thus allowing all of them to occupy
the lowest energy state and thereby maximizing their energy gain. This type of
argument is familiar from the theory of the quantum Hall effect. The analogous
reasoning for the Heisenberg model is that if we treat the model in fermionic3] and
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bosonic** mean-field approximation, the ground state energy in the latter case is

considerably lower. Thus the fermions try to lower their energy by “turning into
bosons” and the closest they can get to this within the bounds of the mean-field

approximation is the generalized flux state with unit flux quantum per particle.
3. HARD-CORE SLAVE-BOSON t-J MODEL

For the t-J model, we choose a spin-fermion (“spinon”) and charge-boson (“holon”)

representation of the problem:

=-tZZ b'*'chJo‘cwr + hec

(3.)
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where N, is the number of spinon species and the term with the Lagrange multiplier
A ensures the one particle per site constraint. A typical procedurezl now would
be to assume a mean field for the holons to give simply a renormalized hopping
matrix element and then to treat the exchange term by means of another mean
field. However, this approach reflects the hard core nature of the bosons only on
average. For an improvement on that point we represent the bosons by fermions
(fermion holon operators h,hT) with a vortex tube carrying one flux quantum
attached to each.!516] In this approach, no two like particles can occupy the same
site simultaneously, so it recognizes the local character of the constraint and treats
it more symmetrically with respect to holons and spinons.We write for the kinetic

term:
Hiin = —t Z Z emp(iﬁi,j) hj'hjc;:aci,(, + h.e., (5)
(1.3) @

In addition, there is a constraint relating the flux of the statistical gauge

potential through a plaquette of the dual lattice to an odd integer g times the hole

density at the corresponding site of the original lattice:17]
> Aij = ahfhs (6)
J:plag.

We make a “mean-field” approximation by replacing the vortex tubes of the
statistical gauge field fii,j by a homogeneous gauge field A;,j.m] The ¢t and J
terms are now each four-fermion interactions. We decouple them via a Hubbard-
Stratonovich transformation. The resulting Hamiltonian describes two types of

fermions, propagating in (different) gauge fields:
H= Z [—t(IQ,‘,j]e:cp[i(@i,j + Ai,j)]h;"hj + h.c.)
43

—7 D (1Qi 5l expli®; jlcf ,ejo + hec.)
2

+; 1Qu;P + NeGhihihth| + H(constraint), (7)

where ®; ; is the phase associated with the auxiliary field Q; ;. The four-holon



interaction term gives approximately a constant shift ~ N,§2¢2 /J, where § =
doping, to the energy because of the constraint. This may be neglected in the
limit t6/J <« 1.

4. VARIATIONAL APPROACH

We now employ a variational approach, analogous to the one in Ref. 7. We look
for the minimum of the action in the space of functionals which is restricted by the
requirement that the effective hopping amplitudes |Q; ;| correspond to an isotropic
hopping probability and the phases to a uniform gauge flux. The extremum con-
ditions for (H), which arise from the variations with respect to |Q; ;| = Q(®)

and ® are:

Q(®) = g3 E[(E (cf5cio) exp(i®; ;)

1,7 4
+ %‘-t- (h;*'hj) expli(®; ; + 4;;)]) + c.c.] (8)
O(H)/0® o« 8Q%*®)/8% = 0 (9)

where & = Y ®; ;/2m around a plaquette, i.e., it is the flux through a plaquette (in
units of the flux quantum) and Ny, is the number of lattice sites. As demonstrated
in the first part of this paper, the optimal flux for fermions propagating in a
magnetic field is one flux quantum per particle. In Egs. (8) and (9) we have two
types of fermions which propagate in simply related magnetic fields with only one
variational parameter ®. The number of holons and spinons is different, therefore
the optimization of their energy terms with respect to the flux seems to lead to
conflicting requirements for ®. This competition determines the value of the flux,
as described in Ref. 7. However, if one takes into consideration that the energy is
periodic with periodicity of one flux quantum per plaquette and that the statistics-
changing flux per holon can be any odd multiple of the flux quantum, then the
following equations are obtained for the total optimal flux for spinons and holons,

respectively:

®cNe==+N, +p1Ng,



®cNc + gNp = Ny +paNy, (10)

where pj,py are integers, ®. is the optimal flux per spinon and N3 and N, are
the numbers of holons and one type of spinons, respectively. Direct inspection
shows that both fluxes can assume the value of one flux quantum per particle
simultaneously for all rational filling factors, § = Ny /Ny, which are the ratio of
odd integers. Thus we find that the hard-core nature of the holons does lead
to an important result; namely, both types of excitation may be associated with
an accompanying gauge field such that the lowest energy is obtained within the
mean-field scheme. Since the Fermi energy now lies in the biggest gap for the
doped systems, we can imagine again an adiabatic transformation of the gauge
fields into tiny vortex tubes. Then this result implies that the spin quasiparticles
still turn effectively into bosons but without changing the statistics of the holons
into fermions. This is a genuine many body effect, since one of the bare spinons
or holons must be fermionic because of their electronic origin. This unusual result
is somewhat paralleled by recent studies on slave-fermion models.!”] There the
spinons are naturally represented from the outset as bosons, the holes are fermions
and (in the ground state) a phase factor proportional to the doping is associated
with the fermions within the mean field approximation. However, that phase does

not represent a flux and it leads to the so-called spiral state.

5. PHASE SEPARATION AND THE COMPETITION
BETWEEN THE HOPPING AND EXCHANGE TERMS

We continue with two remarks on the peculiarities of the model. First, had we
considered the continuum model from the outset, there would not have been a unit
flux quantum per plaquette periodicity in the energy as a function of the flux and
consequently (with p; = py = 0 in the above formulae), the competition between
the ¢t and J terms would be reestablished and the optimal unit flux per particle
could be achieved only for particular values of the doping (the “happy fractions”):

§ = 1/(odd integer) (11)

The main reason for the difference from the previous conclusion is that the two



results correspond to different continuum limits; namely, the particle number per
site is kept constant in the first case and the particle number per unit area in
the second. If one moves away from these special values, at least two scenarios
are possible: (i) The system will favor the flux corresponding to the nearby happy
fraction value as a background and it absorbs the additional flux by creating quasi-
particles with fractional statistics as happens in the case of the fractional quantum
Hall problem and as was suggested recently by Laughlin;sl (i7) the system phase
separates and splits into domains, where the flux takes on the values corresponding -
to the two neighboring happy fractional fillings. There is some evidence for phase
separation in the t-J model from exact diagonalization on small lattices, especially
for large J/ £.18] Of course the long range part of the electrostatic energy opposes
such a spatial inhomogeneity but this case should not be excluded a priori.lg] The
size of these domains is determined by the competition of the magnetic and elec-
trostatic energies and can shrink to the size of the unit cell, in which case the
situation is similar to scenario (i). Different, but related mechanisms for phase

separation have also been suggested.zo]

Second, we remark on some details of the different techniques applied. Had
we not constrained the function space to spatially homogeneous flux states when
searching for the minima of the action, we would not have been able to carry
through a self-consistent procedure. The reason is that a constant (mean) flux
associated with the decoupling of the magnetic exchange term requires a proper
nonuniform arrangement of the complex gauge factors along the bonds. When one
then introduces the resulting spinon mean field into the holon ¢ term, the resulting
effective kinetic energy corresponds not only to a nonuniform magnetic field, but
also to a spatially varying hopping amplitude. This would take us out of the
Hofstadter problem which requires a uniform hopping. Therefore, our numerical
results would not apply. This shows that the energy minimum we obtained by
our variational approach is the result of a strongly restricted search and does not

necessarily represent a local minimum in an unrestricted space.

We now address the question of the diamagnetic properties of the model.
It is clear that for the case of the lattice, in our uniform mean-field treatment,
any external flux can be accomodated by changing the internal field such that

the total flux remains the optimal value.8] This means that an external field is



not expelled from the material. Also, the absence of flux quantization in a ring
geometry for a related model has been demonstrated at the mean-field level.2!] In
this same uniform mean-field approximation, a gap is present in the spectrum and
renders the system insulating. However, investigation of collective modes could
reveal the existence of low-energy excitations.22:23] According to Ref. 22, there is
hope for superconductive behavior only in those extended mean-field approaches
in which the value of the flux is allowed to follow the local changes in the particle
density. We note that in the case of the continuum model an external magnetic
field leads to an energy increase which is linear in the magnitude of the field.
Thus a divergent susceptibility is obtained. This is reminiscent of the situation
in the anyon gas,8’23] but it should be emphasized that unlike that situation, we
permit the internal fluxes seen by spinons and holons to adjust in such a way as

to minimize the energy.

6. ORBITAL MAGNETIC MOMENTS IN FLUX MODELS

Within the framework of the anyon gas, it has been estimated?3 that the induced
magnetic field of the orbital magnetic moment is of order 30 G. Experiments were
proposed in order to measure the local magnetic field, and therefore support the
existence of an anyon gas. However, recent experimental results have placed an
upper limit < 0.8 G, well below the estimated 30 G predicted23] for the anyon

model.

Models with no local orbital currents (no net current on any bond) have
been proposed here!!) in the context of the hard-core slave-boson generalized flux
phases of the t-J model. The lack of experimental evidence for the existence of
local magnetic fields provides support for models with no orbital currents. For an

excellent overview on this subject, we refer the reader to a recent brief review by

Rice24.



7. PAIRING INSTABILITY.

Sheng, Su and Yu25] have recently taken into account both the hard-core nature of
holons and the pairing instability in order to study the competition and possible
coexistence of the staggered flux phase (SFP) and the resonating valence bond
(RVB) state. They find a very interesting result: the possibility of reducing the
staggered flux and guarantee the commensurability condition of the uniform flux
for holons simultaneously. Below a critical doping, the SFP coexists with the s +1id
RVB state to lower the energy of the system, while the d-wave becomes dominant

only beyond the critical doping.
8. CONCLUSIONS

To summarize, we investigated certain flux phases arising in the mean-field ap-
proach to the t-J model. First we established for the whole range of parameters
that the energy of an electron moving in a uniform magnetic field has a sharp
minimum as a function of the flux at exactly one flux quantum per particle. Us-
ing this result, we showed that if the hard-core nature of the holons is taken into
account, then the uniform mean-field approximation of the t-J Hamiltonian has a
solution in which both the spinons and the holons experience a flux quantum per
particle, enabling them to achieve the lowest possible energy within the manifold
of spatially uniform flux states. In the case of the continuum model, however, only
certain (happy) fractional fillings were possible and we speculated that the system
may react to this frustration effect by phase separation, i.e. by developing nonuni-
form distributions of the electrons. It is worthwhile to mention that some recent
experiments on the high temperature superconductors can be naturally explained

by assuming phase separation of the electrons.26]
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