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We study the measurement-induced enhancement of the spontaneous decay for a two-level subsystem,
where measurements are treated as couplings between the excited state and an auxiliary state rather than the
von Neumann’s wave function reduction. The photon radiated in a fast decay of the atom, from the auxiliary
state to the excited state, triggers a quasi-measurement, as opposed to a projection measurement. Our use of
the term ‘‘quasi-measurement’’ refers to a ‘‘coupling-based measurement’’. Such frequent
quasi-measurements result in an exponential decay of the survival probability of atomic initial state with a
photon emission following each quasi-measurement. Our calculations show that the effective decay rate is of
the same form as the one based on projection measurements. The survival probability of the atomic initial
state obtained by tracing over all the photon states is equivalent to that of the atomic initial state with a
photon emission following each quasi-measurement.

I
n the quantum Zeno effect (QZE) (see, e.g., Refs. 1–6) frequent measurements inhibit atomic transitions for a
closed system. In the quantum anti-Zeno effect (QAZE), atomic decays can be accelerated by frequent
measurements, when the observed atom also interacts with a heat bath with some spectral distribution7–15.

This QAZE has been extensively studied for various cases, such as the QAZE without the rotating-wave approxi-
mation10,11,15,16 and in an artificial bath12. The conventional explorations for the QAZE as well as the QZE need to
invoke the von Neumann’s wave function collapse17 for quantum measurements, namely the projection mea-
surement postulate. Thus, the QAZE seems to depend on a particular quantum mechanical interpretation
specified by this collapse postulate.

However, even though the collapse postulate has been extensively used in the past, some researchers do not believe
it is necessary for quantum mechanics. There exist other interpretations, such as the ensemble interpretation18. In
this sense, it is necessary to develop a quantum-mechanical-interpretation-independent approach to the QAZE.

To this end, we draw lessons from the dynamic explanations of the QZE19–23. After the QZE was proposed by
Misra and Sudarshan6, it was recognized24 that the QZE could be mimicked by strong couplings to an external
agent, which carried out a coupling-based detection. Then, an experiment25 observing the QZE was explained21 in
such a dynamic fashion. Therein, all the phenomena were only described by the unitary evolution governed by the
Schrödinger equation for the whole system. Later on, to further develop this dynamic interpretation of the QZE,
Pascazio et al.26 and Sun et al.27,28 explicitly used the decoherence model of quantum measurement, where the
couplings to the apparatus only decohered the phases of the system rather than changed the system’s energy. This
measurement model is essentially a non-demolition measurement29–32.

Following these dynamic approaches for the QZE, we now develop a quantum dynamic theory for the QAZE
without reference to projection measurements or the collapse postulate. To illustrate our main idea, we use an
example: a two-level subsystem coupled to an auxiliary state to form a cascade configuration. Due to the couplings
to the reservoir, the excited state spontaneously decays to the ground state. After a short interval, the remaining
population of the excited state is coherently pumped into the auxiliary state by a strong laser. Then, it returns to
the excited state by a fast spontaneous decay and a photon is emitted simultaneously. At this stage, a quasi-
measurement is realized. Here, the term quasi-measurement refers to a coupling-based measurement in contrast to
the usual projection measurement. The correlation of the atomic initial state and the orthogonal states with two
orthogonal states of the environment is produced in such a process. We call it quasi-measurement since it can be
viewed as the first (unitary) stage of the measurement process. Similar to the conventional approach, based on the
collapse postulate, the effective decay rate of the survival probability with one photon emitted following each pulse
in the presence of such quasi-measurements is given by the overlap integral of the measurement-induced level-
broadening function and the interacting spectral distribution. As different photon states may not be distinguished
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in a realistic experiment, the survival probability of the atomic initial
state after n repetitive quasi-measurements, which can be obtained
by tracing over all the photon states, can be taken into consideration.
The contributions from photon states with less than n emitted
photons correspond to repopulation of the initial state due to return
of the excitation from the reservoir. We calculate these contributions
and show that they are small and can be omitted in the first approxi-
mation under a weak coupling. Thus, the result for the projection
measurements is recovered with the quasi-measurements.

Results
Model setup. We consider the QAZE for a three-level atom with the
cascade configuration depicted in Fig. 1(b, c). We mainly focus on the
QAZE concerning a subsystem with the ground state j1æ and the
excited state j2æ [see Fig. 1(a)]. Since these two levels are coupled
to a reservoir, there would be natural spontaneous decay from j2æ to
j1æ if the subsystem were not coupled to other dynamic agents. In this
process with duration t, the total system is governed by the
Hamiltonian

H~
P

k
vka{kakzv2 2j i 2h jz

P
k

gk a{k 1j i 2h jzH:c:
� �

, ð1Þ

where ak a{k

� �
is the annihilation (creation) operator for the

reservoir’s kth mode with frequency vk, v2 the eigenenergy for the
excited state j2æ, and gk the coupling constant between the kth mode
and the transition between j1æ and j2æ, which is assumed to be real for
simplicity. We assume v1 5 0. Notice that we have applied the
rotating-wave approximation33 to the above Hamiltonian (1).

In order to perform a quasi-measurement, we avoid the collapse
postulate, as also done, e.g., in Refs. 19, 20, 21, 24, where the quasi-
measurement involved coherently coupling the measured state to an
external agent, e.g., an additional energy level j3æ. In this sense, a
quasi-measurement is the first (unitary) stage of the measurement
process, providing an entanglement between the system and the
apparatus. A quantum measurement in this approach is implemen-
ted by an alternative coupling18–21,23,25 lasting for tp between j2æ and
j3æ with eigenenergy v3, which is described by

H’~
X

k

vka{
kakzv2 2j i 2h jzv3 3j i 3h jzV cosDt 2j i 3h jz 3j i 2h jð Þ, ð2Þ

where V is the Rabi frequency between j2æ and j3æ. Hereafter, we
focus on the resonance case, i.e.,

v~D:v3{v2: ð3Þ

When the resonant coupling laser is applied between j2æ and j3æ, we
can disregard the spontaneous decay between the auxiliary state j3æ
and the excited state j2æ for a very strong laser, i.e.,V?C, with a short
pulse duration tp=C{1, where C is the decay rate from j3æ to j2æ. We

assume that each laser pulse is a p-pulse, which transfers the popu-
lation of state j2æ to j3æ. Then, when the coupling laser is turned off,
the population of the state j3æ will quickly return to j2æ, with a photon
c produced by the spontaneous decay, i.e.,

3,vj i? 2,c1j i, ð4Þ

where j3, væ 5 j3æ jvæ is the product state of the atomic auxiliary state
j3æ and the vacuum jvæ for the reservoir, jcnæ denotes the state with n
photons in the c mode. At this stage, the quasi-measurement is
completed. Then, the subsystem alternatively evolves freely and is
‘‘measured’’ through laser pumping. The time sequence for the entire
course is schematically shown in Fig. 2.

Here, we assume the duration 1/C for the fast spontaneous decay
from the auxiliary state j3æ to the excited state j2æ to be much smaller
than the one for the spontaneous decay from j2æ to j1æ and than the
interval between the pulses, i.e., 1=C=t. In this case, we can omit the
dynamic evolution between j2æ and j1æ induced by the finite cou-
plings to the reservoir when the fast spontaneous decay from the
auxiliary state j3æ to the excited state j2æ occurs. On the other hand,
notice that we treat the photons emitted by the decay of the atom
from j2æ to j1æ and the photons emitted by the decay from j3æ to j2æ
separately. Here, we assume that the level spacing between j2æ and j1æ
is largely detuned from the one between j3æ and j2æ. Then the fre-
quency range of the photons emitted in the decay from j3æ to j2æ does
not overlap the one of the photons emitted in the decay from j2æ to
j1æ. In this case, we can consider the spontaneous decay for the two
transitions as occurring to different reservoirs and thus treat the two
different kinds of photons separately. Below we call the reservoirs
corresponding to the transitions between j1æ and j2æ, and between j2æ
and j3æ, as reservoirs 1 and 2, respectively.

Dynamical approach to the anti-Zeno effect. Previously, we des-
cribed a dynamical approach to study the QAZE. We emphasize that
in our approach there is no wave-function-reduction postulate
involved, and the unitary evolution of both the two-level
subsystem and the measuring apparatus is depicted by means of
the Schrödinger equation. Let us first describe the two basic
processes U and W schematically illustrated in Fig. 2.

For the spontaneous decay between the excited state and the
ground state, governed by the Hamiltonian (1), we assume the wave
function of the total system to be a superposition of two kinds of
single-excitation states, i.e.,

Y tð Þj i~a tð Þe{iv2t 2,v1,v2j iz
X

k

bk tð Þe{ivkt 1,k,v2j i, ð5Þ

where j2, v1, v2æ 5 j2æ jv1æ jv2æ is the product state of the atomic
excited state j2æ and the vacuum states jv1æ and jv2æ for the reservoirs

Figure 1 | Energy level diagram for the three processes considered here:
(a) the spontaneous decay from the excited state | 2æ to the ground state
| 1æ, (b) a coherent transition with Rabi frequency V between | 2æ and the
auxiliary state | 3æ by laser pumping, and (c) a fast spontaneous decay
from | 3æ to | 2æ with a photon emitted in | c1æ. Here, the eigenenergies for

the excited state and the auxiliary state are v2 and v3, respectively.

Figure 2 | The pulse sequence for demonstrating the QAZE by a quasi-
measurement (i.e., avoiding projection measurements). Here, U stands

for the spontaneous decay from | 2æ to | 1æ. Also, W is a quasi-measurement

which is alternatively present and absent for a duration tp 1 td and t,

respectively.
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1 and 2, respectively, j1, k, v2æ 5 j1æ jkæ jv2æ, with jkæ being the single-
excitation state in the kth mode of the reservoir corresponding to the
transition j1æ–j2æ, and vk is the kth-mode frequency. It follows from
the Schrödinger equation ihtjY(t)æ 5 H jY(t)æ that the coefficients
a(t) and bk(t) in equation (5) satisfy

i _a~
P

k
gkbkei v2{vkð Þt , ð6aÞ

i _bk~gkae{i v2{vkð Þt : ð6bÞ

Under the short-time approximation, the solutions to the above
equations for t $ t0 become

a tð Þ~a t0ð Þ 1z
X

k

g2
k

h v2{vk,t{t0,0ð Þ{i t{t0ð Þ
v2{vk

" #

{
X

k

gkbk t0ð Þh v2{vk,t,t0ð Þ,
ð7aÞ

bk tð Þ~bk t0ð Þ{a t0ð Þgkh vk{v2,t,t0ð Þ, ð7bÞ

where

h v,t,t0ð Þ~ 1
v

eivt{eivt0
� �

: ð8Þ

The detailed calculations are presented in Methods section.
In the quasi-measurement process, a strong laser field is applied to

induce the transition between the excited state j2æ and the auxiliary
state j3æ [see Fig. 1(b)]. With a unitary transformation

W~ exp {iDt 2j i 2h jð Þ, ð9Þ

the transformed wave function jY9(t)æ ; W jY(t)æ is governed by the
effective Hamiltonian Heff ; WH9W{ – iWhtW{, which reads

Hef f^
X

k

vka{kakzv3 2j i 2h jzv3 3j i 3h jzV

2
2j i 3h jzH:c:ð Þ, ð10Þ

where we have dropped the fast-oscillating terms including the fac-
tors exp(6i2Dt).

Now we assume the transformed wave function to be

Y’ tð Þj i~A 2,v1,v2j iz
X

k

Bk 1,k,v2j izC 3,v1,v2j i: ð11Þ

Then the original wave function jY(t)æ 5 W21 jY9(t)æ can be written
as

Y tð Þj i~AeiDt 2,v1,v2j iz
X

k

Bk 1,k,v2j izC 3,v1,v2j i: ð12Þ

According to the Schrödinger equation for the transformed wave
function ihtjY9(t)æ 5 Heff jY9(t)æ, we obtain the following system
of differential equations

i _A~v3Az
V

2
C, ð13aÞ

i _Bk~vkBk, ð13bÞ

i _C~v3Cz
V

2
A: ð13cÞ

The solutions are given by

A tð Þ~ A 0ð Þ cos
V

2
t{iC 0ð Þ sin

V

2
t

� �
e{iv3t , ð14aÞ

Bk tð Þ~Bk 0ð Þe{ivkt , ð14bÞ

C tð Þ~ C 0ð Þ cos V
2 t{iA 0ð Þ sin V

2 t
� 	

e{iv3t : ð14cÞ

Applying a p-pulse, i.e., a laser with duration

tp~
p

V
, ð15Þ

drives the system to evolve into the state

Y tp
� �

 �

~
P

k
Bk tp
� �

1,k,v2j izCt tp
� �

3,v1,v2j i, ð16Þ

where the coefficients

Bk tp
� �

~Bk 0ð Þe{ivktp , ð17aÞ

Ct tp
� �

~{iA 0ð Þe{iv3tp ð17bÞ

can be obtained from equation (14). Here, we have assumed there is
no initial population in the auxiliary state, namely C(0) 5 0, and thus
A(tp) 5 0. Afterwards, by means of a fast spontaneous decay, the state
j3, v1, v2æ decays into j2, v1, c1æ [see Fig. 1(c)]. Therefore, a quasi-
measurement is finished.

Here, we will explicitly describe the complete process including the
free evolution by U and the quasi-measurement by W. The total
system is initially prepared in the excited state with the reservoirs
in the vacuum: jY(0)æ 5 j2, v1, v2æ. Then, according to equations (5)
and (7), after a free evolution with period t, the state evolves into34

Y tð Þj i~a1e{iv2t 2,v1,v2j iz
X

k

b
1,1ð Þ

k e{ivkt 1,k,v2j i, ð18Þ

where

a1~1z
X

k

g2
k

h v2{vk,t,0ð Þ{it
v2{vk

, ð19aÞ

b
1,1ð Þ

k ~{gkh vk{v2,t,0ð Þ: ð19bÞ

Applying a strong laser forces the system to evolve into [cf. equation
(17b)]

Y tztp
� �

 �

~ a1e{iv2 tztpð Þ 3,v1,v2j iz
P

k
b

1,1ð Þ
k e{ivk tztpð Þ 1,k,v2j i,

ð20Þ

where ~{i exp {iDtp
� �

. Later, through a fast spontaneous decay,
the total system becomes

Y tztpztd

� �

 �
~a1e{iv2 tztpztd

� �
2,v1,c1j izX

k

b
1,1ð Þ

k e{ivk tztpztd

� �
1,k,v2j i,

ð21Þ

where td ,C21 and the phase factor is included in the wave function
jc1æ. At this stage, the first cycle is accomplished. The survival prob-
ability amplitude of the state j2æ after one quasi-measurement is a1.
Hereafter, for the sake of simplicity, we will label jY(nt 1 (n 2 1)tp

1 (n 2 1)td)æ, jY(nt 1 ntp 1 (n 2 1)td)æ, and jY(n (t 1 tp 1 td))æ as
jYn(1)æ, jYn(2)æ, and jYn(3)æ, respectively. In other words, jYn(j)æ
denotes the state after jth procedure in the nth cycle for n 5 1, 2, …
and j 5 1, 2, 3.

For the second cycle, after the free evolution, the total system is in
the state

Y2 1ð Þj i~a2
1e{iv2 t1ztð Þ 2,v1,c1j iz

X
k

b
2,2ð Þ

k e{ivk t1ztð Þ 1,k,c1j i

za 2,1ð Þe{iv2 t1ztð Þ 2,v1,v2j iz
X

k

b
1,1ð Þ

k e{ivk t1ztð Þ 1,k,v2j i,
ð22Þ

where tn 5 n(t 1 tp 1 td),

b
2,2ð Þ

k ~{a1gkh vk{v2,t1zt,t1ð Þ, ð23aÞ

a 2,1ð Þ~{
X

k

gkb
1,1ð Þ

k h v2{vk,t1zt,t1ð Þ: ð23bÞ

The coefficients a2
1 and b

2,2ð Þ
k are determined by a(t1 1 t) and

bk(t1 1 t), respectively, in equation (7) with initial conditions at t0 5 t1

www.nature.com/scientificreports
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a t1ð Þ~a1, bk t1ð Þ~0, ð24Þ

whereas a(2,1) and b
1,1ð Þ

k are determined by a(t1 1 t) and bk(t1 1 t),
respectively, with initial conditions

a t1ð Þ~0, bk t1ð Þ~b
1,1ð Þ

k : ð25Þ

After another p-pulse,

Y2 2ð Þj i~ a2
1e{iv2 t1ztztp

� �
3,v1,c1j i

z
X

k

b
2,2ð Þ

k e{ivk t1ztztp
� �

1,k,c1j i

z a 2,1ð Þe{iv2 t1ztztp
� �

3,v1,v2j i

z
X

k

b
2,1ð Þ

k e{ivk t1ztztp
� �

1,k,v2j i:

ð26Þ

Afterwards, by means of a fast spontaneous decay it becomes

Y2 3ð Þj i~a2
1e{iv2t2 2,v1,c1c2j iz

X
k

b
2,2ð Þ

k e{ivkt2 1,k,c1j i

za 2,1ð Þe{iv2t2 2,v1,c2j iz
X

k

b
2,1ð Þ

k e{ivkt2 1,k,v2j i:
ð27Þ

Here the phase factors are included in the photon states, j2, v1, c1c2æ 5

j2æjv1æjc1c2æ, jcicj …æ is the state with the photons ci, cj, …, and ci is the
photon emitted in the ith cycle.

Thus, the survival probability of the state j2æ with photon emis-
sions following both pulses is ja1j4. Here, we point out that this is
different from the survival probability of the atomic initial state,
which has an additional contribution from j2, v1, c2æ. In this dynamic
approach for the QAZE, once a photon in the c mode is emitted right
after a pulse, a quasi-measurement is finished. This means that the
system is in the initial state before the quasi-measurement and still
remains in its initial state after the quasi-measurement. For the case
with two quasi-measurements, a(2,1) corresponds to such a probabil-
ity amplitude which decays to the ground state before the first quasi-
measurement and returns to the excited state before the second
quasi-measurement.

Judging from the analysis made in the above calculation, we may
safely arrive at the conclusion that the survival probability amplitude
of the state j2æ with photon emissions following n pulses is an

1 . It is
straightforward to calculate the survival probability as

P2 t~ntð Þ~ a1j j2n: ð28Þ

As a result, we observe an exponential decay of the survival prob-
ability of the atomic initial state with photon emission following each
pulse, i.e.,

P2 tð Þ~ exp {Rtð Þ: ð29Þ

Here, the effective decay rate is8

R tð Þ~2p
ð?

{?
F v,tð ÞG vð Þdv, ð30Þ

where the interaction spectral distribution is

G vð Þ~
X

k

g2
k d v{vkð Þ, ð31Þ

and the measurement-induced level-broadening function is given by

F v,tð Þ~ t

2p
sinc2 1

2
v2{vð Þt

� �
: ð32Þ

We now perform the numerical simulation for a Lorentzian inter-
acting spectral distribution

G vð Þ~ g

v{nð Þ2zd2 , ð33Þ

where n and d are the center and the width of the spectrum respect-
ively, g the coupling strength. For typical neutral atoms, the spon-
taneous decay rates are of the orders of 107–109 rad/s, e.g., 5.51 3 107

rad/s for 6 3P1-6 1S0 of mercury35 and 1.26 3 109 rad/s for 4s4p1P1-
4s21S0 of calcium36. Here, we choose the following parameters d 5 108

rad/s, v2 5 1012 rad/s, n 5 v212d, g 5 1024/(4p) rad3/s3 and C5 109

rad/s. It is worth noticing that the detuning between the center of
interacting spectrum and transition frequency between the excited
and ground states is 2d. We remark that in collaboration with other
parameters the detuning plays the center role in the existence of the
QAZE. Therefore, the golden-rule decay rate is straightforwardly
obtained as RGR 5 107 rad/s. As shown in Fig. 3, both the QAZE
and QZE can be observed if the quasi-measurement interval t is
suitable, as predicted by the projection measurement8. And the above
analysis is reasonable since the transition time of the QAZE to QZE
ttran^5 fulfills the requirement n{v2ð Þttran^1, which represents
the border between the regions of QAZE and QZE, i.e.,
1=t= n{v2ð Þ and 1=t? n{v2ð Þ, cf. Ref. 8, respectively.
Additionally, because the atom-bath coupling is in the weak-coup-
ling regime, e.g., sufficiently-large d, as will be shown in the next
section, the contribution from the survival probabilities with less
than n photons emitted can be omitted.

Effect of repopulation. In the previous deduction, we neglected
measurement-assisted return of the excitation from the reservoir,
which repopulates the initial level. Such an assumption is usually
done in the treatments of the quantum Zeno and anti-Zeno effects
on exponential spontaneous decay8,34. In other words, it is usually
assumed that after each (quasi-)measurement the decay into the
empty reservoir is resumed. However, strictly speaking, the
reservoir is not empty, and the emitted photon can be reabsorbed.
Let us consider this effect in more detail.

In the intervals between (quasi-)measurements, the state of the
system, comprised of the transition 1j i/? 2j i and reservoir 1 (call it
system S), is entangled with the state of reservoir 2, so that the total
wave function is a superposition of products comprised of a state of
system S and a state corresponding to a certain set of photons emitted
to reservoir 2. States of system S multiplied by different states of
reservoir 2 undergo unitary evolution independently of each other.
After a quasi-measurement, each state of the form j2æjy1æjy2æ in
jYn(1)æ, where jyjæ is a state of reservoir j (j 5 1, 2), becomes
2j i y1j ijy’2i in jYn(3)æ, where y’2j i is orthogonal to all states of

Figure 3 | The effective decay rate R(t) versus the quasi-measurement
interval t for a Lorentzian interacting spectrum with d 5 108 rad/s, v2 5
1012 rad/s, n 2 v2 5 2 3 108 rad/s, and RGR 5 107 rad/s. The red dashed

line displays the golden-rule decay rate.
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reservoir 2 in jYn(1)æ; in contrast, all states of the form j1æjy1æjy2æ
remain unchanged. This destroys the coherence between the initial
and final states in spontaneous decay. As a result, unitary evolutions
of different components of the wave function in the interval (tn,
tn1t) are of two types: (a) spontaneous decay into the empty res-
ervoir and (b) return of the excitation from the reservoir to the empty
level j2æ. The two types of evolution have initial conditions similar to
equations (24) and (25), respectively.

To estimate the effect of repopulation on the evolution of the
excited state, we consider sufficiently short times, where PT

2 tð Þ<1.
In this time interval, it is sufficient to consider the corrections to
equation (28) due to the cases where the excitation only once leaves
the atom and then returns back, contributions due to the cases where
the excitation leaves the atom two and more times being of higher
orders of smallness. Taking into account the above corrections due to
repopulation, we obtain that the survival probability of the atomic
initial state reads

PT
2 t~ntð Þ~ a1j j2n

z
Xn{1

m~1

Xn

j~mz1

a j,mð Þ

 

2: ð34Þ

Here a(j,m) is the amplitude of the process in which the excitation
leaves the atom in the mth cycle and returns to the initial state in the
jth cycle.

As shown in Methods section,

a j,mð Þ~a j�mð Þ, ð35Þ

where

a lð Þ~{2pt

ð?
{?

dvG vð ÞF v,tð Þeilt v2{vð Þ: ð36Þ

As follows from equation (35), equation (34) can be recast as

PT
2 t~ntð Þ~ a1j j2n

z
Xn{1

m~1

Xn{m

l~1

a lð Þ

 

2 ð37Þ

or, equivalently,

PT
2 t~ntð Þ~ a1j j2n

z
Xn{1

l~1

n{lð Þ a lð Þ

 

2: ð38Þ

Equation (36) implies that a(l) tends to zero when l tends to infinity,
the characteristic decay value of l being

lc~max 1, dtð Þ{1� 

, ð39Þ

where d is the width of G(v). [Here it is assumed, for simplicity, that
G(v) is a smooth function, the shape of which is characterized by a
single width d, such as a Lorentzian or a Gaussian distribution.

For n?lc, we can obtain from equation (37) with the account of
equation (29) that

PT
2 t~ntð Þ<1{ R{Rrep

� �
t n?lcð Þ, ð40Þ

where the repopulation rate

Rrep~
1
t

X?
l~1

a lð Þ

 

2: ð41Þ

Equation (40) shows that repopulation somewhat reduces the decay
rate R.

Consider the conditions under which the effect of repopulation is
negligibly small, i.e., Rrep=R. It is easy to see that

Rrep*
1
t

a 1ð Þ

 

2lc*R2tlc~R2max t,d{1� 

: ð42Þ

Here to obtain the first, second, and third relations, we used equa-
tions (41), (36), and (39), respectively. Thus, the inequality Rrep=R
holds, when the following conditions are valid simultaneously,

Rt=1, ð43aÞ

R=d: ð43bÞ

Condition (43a) is inherent in the present formalism, since it is
assumed here that the interval between measurements is so small
that the change of the initial state is small during the time t.
Condition (43b) implies that the coupling to the reservoir is suffi-
ciently weak, which holds when the function G(v) is sufficiently
broad and smooth. This condition is very close to the condition of
an exponential decay37, RGR=d, where RGR is the golden-rule
(unperturbed) decay rate.

Under conditions (43), the result (40) can be extended to all times.
Consider some time t9 satisfying the condition lct=t’{1. Then it is
easy to show that

PT
2 t~nt’ð Þ<1{ R{Rrep

� �
t’n<e{ R{Rrepð Þt<e{Rt : ð44Þ

The last expression in equation (44) shows that the effect of repopu-
lation on Zeno and anti-Zeno dynamics can be neglected under
conditions (43).

The situation is significantly different, when d is very small or
vanishes. In this case of a strong coupling, the free evolution of the
initial state is not exponential, but rather oscillatory, involving depopu-
lations and repopulations of the initial state37. Then condition (43b) is
violated, and the approximate result (40) also does not hold, since the
inequality n?lc cannot be fulfilled in the short-time region. Now Zeno
and anti-Zeno dynamics significantly depend on repopulation.

As a simple example, consider the extreme case d 5 0, i.e.,

G vð Þ~g2d v{v0ð Þ: ð45Þ

Then equation (36) becomes

a lð Þ~{Rteilt v2{v0ð Þ, ð46Þ

where, in view of equation (30),

R~2pg2F v0,tð Þ: ð47Þ

For n?1, equation (38) with the account of equations (29) and (46)
yields Rt=1ð Þ

PT
2 t~ntð Þ<e{Rtz

R2t2

2

< 1{Rtz
R2t2

2

� �
z

R2t2

2

~1{RtzR2t2:

ð48Þ

Equation (48) shows that now repopulation modifies significantly, at
least, the second-order term in the exponential decay (29). Similarly,
one can expect that higher-order terms are also modified by repopu-
lation, though this modification is out of the scope of the present
theory. The second- and higher-order terms become important for
t *> R{1, i.e., now repopulation significantly affects the quantum
Zeno/anti-Zeno dynamics, at least, for sufficiently long times.

The QZE on resonant Rabi oscillations was studied for discrete
measurements in Refs. 19, 20, 22, 23, 25, 38. Now the ‘‘reservoir’’ is
described by equation (45) with v0 5 v2, whereas 2g is the Rabi-
oscillation frequency. In this case, for sufficiently short t satisfying
equation (43a), the Zeno dynamics for all times has the form

PT
2 t~ntð Þ~ 1ze{2Rt

2
, ð49Þ

where, in accordance with equation (47),

R~g2t: ð50Þ
A similar result also holds, when discrete measurements are substi-
tuted by weak continuous measurements39. Up to the second order in
time, equation (49) coincides with equation (48), whereas for
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t *> R{1, equation (49) significantly differs from equation (29), in
agreement with the above discussion. The QZE and QAZE with the
account of repopulation in a case when equation (45) does not hold
were studied in Ref. 40.

Discussion
In this paper, we investigated the QAZE for a two-level subsystem
embedded in a three-level atom. Instead of considering projection
measurements, we studied quasi-measurements by pumping the
population of the excited state to an auxiliary state. Since the pumped
population returns to the excited state by a fast spontaneous decay,
the complete process of the quasi-measurement is finished. Along
with the fast spontaneous decay, there is a photon emitted in the
corresponding mode.

We found that the effective decay rate of the survival probability
still remains as the overlap integral of the measurement-induced
level-broadening function and the interacting spectral distribution.
In conclusion, without projection measurements, we can observe both
the QAZE and the QZE by means of quasi-measurements.

Moreover, we derived a correction to the previously known QZE/
QAZE decay rate due to repopulation of the initial level. We obtained
a quantitative criterion for the weakness of the repopulation effect and
showed that repopulation can be neglected for a weak atom-reservoir
coupling (when the free evolution of the initial level is exponential),
but cannot be neglected for the case of a strong coupling.

Generally speaking, the QZE and QAZE stem from frequent deco-
herence events, which destroy the off-diagonal density matrix ele-
ments. When the diagonal elements in the density matrix remain
unchanged after these processes, the above decoherence is actually
dephasing between the initial and final states, e.g., between the first
and second terms on the right hand side of equation (5). And the
model in this paper is precisely of this type. Other methods include
measurements as in Refs. 26–28,39,41 and even a classical random
field42. Note that the above decoherence can take effect due to not
only dephasing, but also a destruction of the final states40,43. On the
other hand, the decoherence can be suppressed by a train of ultrafast
off-resonant optical pulses44.

We mention also a dynamic treatment of the QZE and the QAZE
in a solid-state system45,46. This work45,46 significantly differs from the
present paper in several respects, including the free evolution of the
system, the measurement scheme, and the theoretical treatment. In
particular, in Refs. 45, 46 the measurements are performed due to a
static, non-resonant Coulomb interaction, which differs both phys-
ically and formally from the quasi-measurements by resonant laser
pulses considered here.

Methods
Time evolution in spontaneous decay. We present the detailed calculations for
the free evolution. We can integrate equation (6b) to have a formal solution for bk(t), i.e.,

bk tð Þ~bk t0ð Þ{i
ðt

t0

gka t’ð Þei vk{v2ð Þt’dt’

^bk t0ð Þ{ia t0ð Þ
ðt

t0

gkei vk{v2ð Þt’dt’

~bk t0ð Þ{a t0ð Þgkh vk{v2,t,t0ð Þ,

ð51Þ

where in the second line we have used the short-time approximation a t’ð Þ^a t0ð Þ and
h(v,t,t0) is given by equation (8). By substituting equation (51) into equation (6a) and
making use of the short-time approximation, we have

a tð Þ~a t0ð Þ{i
X

k

ðt

t0

gkbk t’ð Þe{i vk{v2ð Þt’dt’

^a t0ð Þ 1z
X

k

g2
k

h v2{vk,t{t0,0ð Þ{i t{t0ð Þ
v2{vk

" #

{
X

k

gkbk t0ð Þh(v2{vk,t,t0):

ð52Þ

Derivation of equations (35) and (36). The quantity a(j,m) is given by equation (7a) with
t 5 tj21 1 t, t0 5 tj21, and

a t0ð Þ~0, bk t0ð Þ~b
j{1,mð Þ

k , ð53Þ

where b
j,mð Þ

k is the amplitude of the kth mode at the end of the jth cycle if the excitation
leaves the atom in the mth cycle. Using equation (7b) in the interval (tm, tj) with the
initial conditions

a t0ð Þ~0, bk t0ð Þ~b
m,mð Þ

k , ð54Þ

and in the interval (tm21, tm21 1 t) with the initial conditions

a t0ð Þ~am{1
1 , bk t0ð Þ~0, ð55Þ

we obtain that

b
j,mð Þ

k ~b
m,mð Þ

k

~{am{1
1 gkh vk{v2 ,tm{1zt,tm{1ð Þ

<{gkh vk{v2 ,tm{1zt,tm{1ð Þ:

ð56Þ

On using equation (56) in equation (53), we obtain from equation (7a) that

a j,mð Þ~
X

k

g2
k h vk{v2,tm{1zt,tm{1ð Þh v2{vk,tj{1zt,tj{1

� �
: ð57Þ

Then, using equations (31) and (32) and the equality

h v,t,t0ð Þ~i t{t0ð Þeiv tzt0ð Þ=2sinc
v t{t0ð Þ

2
, ð58Þ

we recast equation (57) in the form

a j,mð Þ~{2pt

ð?
{?

dvG vð ÞF v,tð Þei v2{vð Þ j{mð Þt: ð59Þ

This equality implies equations (35) and (36).>
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