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We show how to realize a single-photon Dicke state in a large one-dimensional array of two-level systems,
and discuss how to test its quantum properties. The realization of single-photon Dicke states relies on the
cooperative nature of the interaction between a field reservoir and an array of two-level-emitters. The
resulting dynamics of the delocalized state can display Rabi-like oscillations when the number of two-level
emitters exceeds several hundred. In this case, the large array of emitters is essentially behaving like a
‘‘mirror-less cavity’’. We outline how this might be realized using a multiple-quantum-well structure or a
dc-SQUID array coupled to a transmission line, and discuss how the quantum nature of these oscillations
could be tested with an extension of the Leggett-Garg inequality.

T
ypically, the bigger the object, the more it interacts with its surroundings. Quantum interference between
beams of molecules containing 60 to 430 atoms passing through diffraction gratings1–4 has been observed,
and such semi-macroscopic quantum behaviour has been given the moniker of a ‘‘Schrödinger-kitten’’. The

achievement of Bose-Einstein condensation in dilute atom gases (or in quantum-well microcavities5) has also
pushed the boundaries of macroscopic quantum coherence6. In solid-state systems, quantum interference has been
observed in certain macroscopic objects such as superconducting quantum interference devices (SQUIDs), which
can be prepared and observed in a superposition state of a macroscopic electric current circulating in opposite
directions7,8. Very recently, quantum superposition states involving the ground state and the first excited state of
the quantized fundamental oscillation modes of macroscopic mechanical resonators have also been created9–11.

When an ensemble of atoms interacts with a common radiation field each atom can no longer be regarded as an
individual radiation source, but the whole ensemble of atoms can be regarded as a macroscopic dipole
moment12,13. This collective behaviour leads to cooperative radiation, i.e. the so-called superradiance, introduced
by Dicke in 1954. Superradiance, and its extended effects, has also been observed in solid state systems such as
quantum dots14, quantum wells15, and coupled cavities16. This effect is generally characterized by an enhanced
emission intensity that scales as the square of the number of atoms.

Recently, a particularly interesting consequence of this cooperative interaction was discussed by Svidzinsky
et al17–19. In their work they showed that there could be cooperative delocalized effects even when just a single
photon is injected into a large cloud of atoms. The state created via this mechanism is a highly-entangled Dicke
state20. This state represents a coherent excitation distributed throughout a macroscopic ensemble. An interesting
open question is if such a state can be realized and manipulated in a solid-state environment.

To answer this question we analyze what happens when a single-photon is injected into a large one-dimensional
array of two-level-emitters (TLE). We find that because of the cooperative interaction between light and matter
the structure acts like an effective optical cavity without mirrors19, and realizes a one-dimensional variation of the
Dicke-state discussed by Svidzinsky et al17–19. We show that the delocalized state formed in this emitter-array can
exhibit quantum behaviour through the coherent oscillatory dynamics of the state. We discuss how such a
phenomenon might be realized in a multiple-quantum-well (MQW) array or a dc-SQUID array coupled to a
transmission line, and discuss physically-realistic parameters. To show how the quantum features of such an
experiment might be verified, we apply the Markovian extension21 of the Leggett-Garg (LG) inequality22, to
examine the quantum coherence of the delocalized state over the MQW structure and the dc-SQUID array.
Finally, we discuss two other potential candidates for the experimental realization of our proposal.
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Results
We consider an array containing N two-level emitters coupled to a
photonic reservoir. A photon with wavevector k0 is incident on the
array, as shown in Fig. 1(a). If the N-TLE array uniformly absorbs
this incident photon (in practice, one can detune the incident photon
from resonance, such that TLEs are equally likely to be excited23),
the N-TLE can be in a collective excited state with one excitation
delocalized over the whole system. Post-selecting this state (since in

the vast majority of cases the photon will not be absorbed) results in
the superposition state

zj ik0
~

1ffiffiffiffi
N
p

X
j

eik0zj jj i ð1Þ

of the exciton in this N-TLE structure, where zj is the position of the
jth TLE. The state

jj i~ g1,g2, . . . ,gj{1,ej,gjz1, . . . ,gN

��� E
ð2Þ

describes the state with the jth TLE being in its excited state.
Including the coupling between the TLE array and the 1D radiation
fields, the state vector of the total system at time t can be written as:

y tð Þj i~bz tð Þzj ik0
0j izb\ tð Þ \j ik0

0j iz
X

kz

bkz tð Þ gj i 1kzj i, ð3Þ

where j0æ denotes the zero-photon state, 1kzj i denotes one photon in
the kz-mode, and jgæ is the TLE ground state. Note that the super-
position state zj ik0

is a Dicke state19,24,25, and \j ik0
is a summation

over all other Dicke states orthonormal to zj ik0
(the set of Dicke

states are listed in Table I). The interaction between the TLE array
and radiation fields can then be described by26,27

Hint~
X

kz

XN

j~1

�hgkz s{
j a{kz

e i vkz {v0ð Þt{ikz zj½ �zh:c:
n o

, ð4Þ

where vkz is the frequency of the kz-mode photon, v0 is the excita-
tion energy of the TLE, s{

j is the lowering operator for the jth TLE,

a{kz
is the creation operator for one photon in the kz-mode, and gkz is

the coupling strength between TLE and the kz-mode photon.
In the limit of k0L?1 (L is the total length of the array), from the

time-dependent Schrödinger equation

i�h
L
Lt

y tð Þj i~Hint y tð Þj i,ð5Þ

the probability amplitudes obey the equations28

_bg tð Þ~{i
X
kz ,j

gh j 0h jgkz s
z
j akz gj i 1kzj i e{i vkz {v0ð Þteikz zj

h i
bkz tð Þ, ð6Þ

_bkz tð Þ~{i
X

g,j

gh j 1kzh jgkz s
{
j a{kz

gj i 0j i ei vkz {v0ð Þte{ikz zj

h i
bg tð Þ, ð7Þ

where g 5 1 and H. Integrating Eq. (7) to obtain bkz and inserting
into Eq. (6), the dynamical evolution of the Dicke state zj ik0

can be
written as19:

_bz tð Þ~{
1
N

ðt

0
dt’
X

kz

XN

i,j~1

g2
kz

ei vkz {v0ð Þ t’{tð Þei kz{k0ð Þ zi{zjð Þ
h i

bz t’ð Þ: ð8Þ

With the approximation g2
kz

<g2
k0

and
P

kz
?Lph

�
2pð Þ

Ð
dq, Eq. (8)

can be expressed as:
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� �� �( )

,

ð9Þ

where Lph is the quantization length of the radiation field, v is the
speed of light, h is the spacing between TLEs in the TLE array, and j is
a counting index, since the value of (zi 2 zj) can range between 2Nh
and Nh. The dynamical evolution of the Dicke state zj ik0

can thus be
obtained by solving Eq. (9).

Figure 1 | Dynamical evolution of the Dicke state and the density of states
of the radiation field in the two-level-emitter array. (a) Schematic

diagram of the two-level-emitter array. The array contains N two-level

emitters coupled to the one-dimensional photon reservoir. With proper

excitation energy, the incident photon can excite one of the N two-level

emitters, and the Dicke state can be formed. The dynamical evolutions of

the Dicke state zj ik0
for the TLE array containing (b) 20 (red dashed), 60

(blue dotted), and (c) 200 (black-solid) two-level emitters. These

evolutions are obtained by solving the time-dependent Schrödinger

equation [Eq. (5),(9) ] in the limit of k0L ? 1. The period of the

oscillations for the black solid curve in (c) is 0.054 time units. Here, the unit

of time is normalized by the spontaneous decay rate CTLE of a single two-

level emitter. The insets in (b) and (c) show that the normalized density of

states of the radiation field in the TLE array containing 20 (red dashed), 60

(blue dotted) [the inset in (b)], and 300 (black solid) [the inset in (c)] two-

level emitters. The green dashed-dotted curve of the inset in (c) is a

Lorentzian fit for N5200.
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For the array containing N TLEs, the dynamical evolution of
the state zj ik0

can be enhanced by the superradiant effect, Carray 5

N CTLE, as shown in the red dashed and blue dotted curves shown in
Fig. 1(b). For an extremely large array (L ? l, where l is the wave-
length of the emitted photon), the probability to be absorbed across
the whole sample is made uniform by sufficiently detuning the incid-
ent photon energy from that of the TLEs23. As mentioned earlier this
means that the majority of photons pass through unabsorbed. Later
we will discuss how the absorbtion event can be signalled by a two-
photon correlation when this scheme is realized by arrays of
quantum wells or superconducting qubits.

The solid curve in Fig. 1(c) represents Rabi-like oscillations
together with an exponential decay. The enhanced decay rate pro-
portional to N is a quantum effect, but may also be described in a
semi-classical way by regarding the N TLEs as N classical harmonic

oscillators17. For N ? 1, the summation
X

i,j~1
N in Eq. (8) can be

replaced by the integration (N/L)2 #dz #dz9, showing that the effective
coupling strength g between the state zj ik0

and the field is
g~

ffiffiffiffi
N
p

gk0 . The period of oscillations is therefore enhanced by a
factor

ffiffiffiffi
N
p

compared to the bare excitation-photon coupling.
The excitation dynamics of the other Dicke states \j ik0

can also be
obtained by solving Eq. (6) and (7). For large N, the Dicke states aj ik0

with a = N cannot reveal Rabi-like oscillations in their excitation
dynamics because \j ik0

is the superposition state of only few TLE
excited states jjæ. However, for states aj ik0

with a , N, the excitation
dynamics can also show Rabi-like oscillations but the frequency of
the oscillation is much smaller than that of the state zj ik0

. For
example, from Eq. (6) and (7), the dynamical evolution of the
Dicke state N{1j ik0

can be written as:
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X

kz

g2
kz
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N N{1ð Þ

XN{1

i,j~1
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" #

z

(

N{1ð Þ
N

XN

i,j~1

eikz zi{zjð Þ{ 1
N

eik0zN
XN{1

i

e{ik0zize{ik0zN
XN{1

j

eik0zj

 !
:

XN

i,j~1

eikz zi{zjð Þ
)

ei vkz {v0ð Þ t’{tð ÞbN{1 t’ð Þ:

ð10Þ

In the curly brackets of Eq. (10), the leading term resembles Eq. (8)
and therefore leads to Rabi-like oscillations. However, the prefactor

1
N N{1ð Þmakes the Rabi frequency (N 2 1) times smaller than that

of b1(t). The origin of the frequency suppression by a prefactor
1

N{1
comes from the fact that the coefficient of the state jNæ, which does
not participate in Rabi-like oscillations, is (N 2 1) times larger than
those of the other states (see Methods for a detailed derivation). One
could interpret this as a partial localization of the excitation in the
array, suppressing the cooperative delocalized coherent oscillation
effect. Since the rest of the terms in the curly brackets cannot result in
oscillatory behaviour19, we can conclude that some of the Dicke states
\j ik0

can have Rabi-like oscillations in their excitation dynamics, but

the difference in the Rabi frequency makes the excitation dynamics of
zj ik0

distinct from other Dicke states.

Effective two-level system. To illustrate that the Rabi-like oscillation
is mathematically equivalent to an effective quantum coherent
oscillations between two states (e.g., a spin or a single excitation
cavity-QED system), we transform the Eq. (9) into the energy
representation via ~bz Eð Þ~

Ð?
0 bz tð ÞeiEtdt, and obtain29:

Ez
1
N

Lph

2p
g2

k0

ð?
{?

dq

PN
j~0 N{jð Þ2cos jqhð Þ½ �

E{vq

( )
bz Eð Þ~{i:ð11Þ

Equation (11) thus indicates that the density of states (DOS) D(q) of
the radiation field in the TLE array,

D qð Þ!
XN

j~0

N{jð Þcos jqhð Þ½ �, ð12Þ

where q ; kz 2 k0, j is a counting index, and h denotes the separation
between each period. The insets in Fig. 1(b) and 1(c) show the DOS
for TLE array containing different number of emitters. As can be
seen, when increasing the number of periods N, the line-shape of
D(q) (black solid curve in the inset of Fig. 1(c)) becomes Lorentzian-
like. Therefore, the TLE array coupled to radiation fields can be
interpreted as a Dicke state zj ik0

coupled to a Lorentzian-like
continuum, as shown in Fig. 2(a). Following the study by Elattari
and Gurvitz29, for large N, our system can be mapped to the Dicke
state zj ik0

coherently coupled to a resonant state jk0æ with a
Markovian dissipation as depicted in Fig. 2(b). The remaining part
of the DOS which does not fit the Lorenzian distribution can be
treated as an effective polarization decay.

Extension of the Leggett-Garg Inequality. In order to verify the
quantum coherence of the delocalized state rigorously one could
apply a test like the Leggett-Garg (LG) inequality22. The LG inequa-
lity depends on the fact that at a macroscopic level several assump-
tions about our observations of classical reality can be made: realism,
locality, and the possibility of non-invasive measurement. However,
a direct application of this inequality to our system seems extremely
challenging because the measurement of a photon leaving the system,
and the measurements of the states30,31, are fundamentally invasive.
To test the inequality unambiguously would require a fast projective
(quantum non-demolition) measurement of the single photon state
jk0æ, or the Dicke state zj ik0

. Such measurements are now in prin-
ciple possible in optical32,33 and microwave34,35 cavities, but not in the
effective cavity we describe here.

Some progress can be made by making further assumptions. It was
shown by Huelga et al36–38 and others21,35 that the assumption of
Markovian dynamics eliminates the need to assume non-invasive
measurements if we can reliably prepare the system in a desired state
(then the invasive nature of the second measurement, e.g., because of
the destruction of the photon, does not affect the inequality). Under
this Markovian assumption the inequality can be written in terms of
population measurements of the state we wish to measure (which in
general we describe as a single-state projective operator Q 5 jqæÆqj,
for some measurable state of the system jqæ),

Table I | The set of all Dick states19. Here, | j æ 5 | g1, g2, …, gj–1, ej, gj11, …, gNæ describes the state with the jth two-level emitter in its excited state

zj ik0
~

1ffiffiffiffi
N
p

X
j
exp ik0zj
� �

jj i

1j ik0
~

1ffiffiffi
2
p exp ik0z1ð Þ 1j i{exp ik0z2ð Þ 2j ið Þ

2j ik0
~

1ffiffiffi
6
p exp ik0z1ð Þ 1j izexp ik0z2ð Þ 2j i{2exp ik0z3ð Þ 3j ið Þ..

.

N{1j ik0
~

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N N{1ð Þ

p exp ik0z1ð Þ 1j izexp ik0z2ð Þ 2j iz . . . zexp ik0zN{1ð Þ N{1j i{ N{1ð Þexp ik0zNð Þ Nj i½ �
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LPQ tð Þ
�� ��: 2 PQ tð ÞPQhj i{ PQ 2tð ÞPQih jƒ PQh i, ð13Þ

where ÆPQæ is the expectation value of the zero-time population PQ ;
PQ(t 5 0), and ÆPQ(t)PQæ is the two-time correlation function.

To apply this to the system we have been discussing we must
formalize further how, for large N, the system can be mapped to
an effective two-level system [as shown in Fig. 2(c)]. The dynamics
of this effective model can be described by a Markovian master
equation:

_r~L r½ �~ 1
i�h

~Hef f ,r
� �

z
X

r½ �, ð14Þ

where

~Hef f ~�hg s{zszð Þ
X

r½ �~k srs{{
1
2

s{sr{
1
2

rs{s

	 

zc rrr{{

1
2

r{rr{
1
2

rr{r

	 

:
ð15Þ

Here, L is the Liouvillian of the system, ~Hef f is the coherent inter-
action in this effective cavity-QED system, s{~ k0j ik0

zh j sz~ð
zj ik0

k0h jÞ denotes the lowering (raising) operator for the Dicke state

zj ik0
, and g~

ffiffiffiffi
N
p

gk0 . The state jvacæ is the vacuum state which in
the full basis is jgæ fl j0æ, i.e. no excitation in the Dicke state or in the
resonant state k0. In the self-energy S[r], the s 5 jvacæÆk0j operators
describe the loss of the photon from the system with rate k, and
the r~ vacj ik0

zh j operators describe the loss of polarization with
rate c.

Note that if the zero-time state is the steady state then this is
equivalent to the original22 LG inequality, but again demands non-
invasive measurements. If the zero-time state is not the steady state,
but some prepared state e.g. r(0) 5 Q, PQ(0) 5 1, then a violation of
this variant of the Leggett-Garg inequality indicates behaviour only

beyond a classical Markovian regime, i.e. a strong indication of the
quantumness of this delocalized state, though not irrefutable proof.

Experimental Realizations. In the experimental realizations dis-
cussed below, there are several experimentally-accessible systems
that can mediate the one-dimensional coupling between two-level
emitters and the photon fields. To show that this effect can be
realized in a solid-state environment, we first consider in detail
how to use a multiple-quantum-well (MQW) structure as the two-
level-emitter array. In such a MQW structure, each single quantum
well can be regarded as a two-level emitter. The quantum-well
exciton will be confined in the growth direction (chosen to be the
z-axis) and free to move in the x-y-plane. Due to the relaxation of
momentum conservation in the z-axis, the coupling between the
photon fields and the quantum wells is one-dimensional. There-
fore, if we assume a incident photon with wavevector k0 on the
MQW along the z-axis, the interacting Hamiltonian can be written
exactly the same as the form in Eq. (4). Furthermore, quantum wells
have the remarkable advantage that the phase factor ik0zj in zj ik0

can be fixed during the quantum-well growth process, and since the
photon fields travel in MQW only along the z-axis, a one-
dimensional waveguide is not required.

To elaborate on the physical parameters necessary to realize the
single-photon Dicke state we assume a MQW structure with a period
of 400 nm, where each quantum well consists of one GaAs layer
of thickness 5 nm (sandwiched between two AlGaAs slabs). The
exciton energy �hv0 of a single quantum well can take the value39

1.514 eV which results in the decay rate we utilized in Fig. 1, such
that the resonant photon wavelength l5 2pc/v0< 820 nm. To
identify when the state has been created, a pair of identical photons
with wavevector k0 are produced by the two-photon down-conver-
sion crystal, as shown in Fig. 3(a). One of the photons is directed to
the detector-1 (D1) and the other along the growth direction of the

Figure 2 | Correspondence of the two-level-emitter array to other systems. (a) The two-level-emitter array coupled to the radiation field can be

interpreted as the Dicke state zj ik0
coupled to a Lorentzian-like continuum spectrum if N is large enough. (b) The system can be further mapped to a

Dicke state coherently coupled to a resonant state | k0æ with a Markovian dissipation. The coupling strength g between zj ik0
and | k0æ is g~

ffiffiffiffi
N
p

gk0 .
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MQW. The distance between the crystal and D1 is arranged to be the
same as that between the crystal and the MQW. Once there is a click
in D1, there should be one photon simultaneously sent into the
MQW. The photon incident on the MQW generally passes through
the MQW and registers a count in detector-2 (D2), but it could also
excite one of the multiple quantum wells and form a delocalized
exciton. The presence of a count in D1 and the absence of a count
in D2 therefore tells us that the MQW has been prepared in the
superposition state zj ik0

. Since the interaction between the photon
fields and the MQW structure is identical to Eq. (4), the exciton
dynamics of the zj ik0

and the density of states of the photon fields
in MQW can show the same behaviours as those in Fig. 1(b) and (c)
(here one unit of time is 10 picoseconds) when the MQW contains
corresponding number N of the quantum wells.

For a MQW structure containing a large number of quantum wells
(i.e., N $ 200), the dynamical evolution of the superposition state
zj ik0

shows Rabi-like oscillations. However, one should note that
the Rabi-like oscillations here are different from the Rabi oscillations
reported in secondary emission spectra40,41 of excitons in MQW
structures. The secondary emission occurs when the MQW is illu-
minated by coherent light, and emission occurs in a direction differ-
ent from the excitation direction. However, in our system, the
incident excitation is a single photon, and the detector-2 [see

Fig. 3(a)] receiving the emitted photon is positioned along the excita-
tion direction. Furthermore, the MQW system we consider is Bragg-
arranged (i.e., the inter-well spacing equals half the wavelength of
light at the exciton frequency), for which the Rabi oscillations in
secondary emission cannot appear41. Therefore, the Rabi-like oscilla-
tions in Fig. 1(c) are different from those in secondary emission but
are a result of the coherent oscillations between the delocalized
exciton state zj ik0

and the resonant photon state jk0æ.
If we can deterministically prepare the state j1æ (dropping the k0

subscript for brevity) as described in Fig. 3(a), we can construct the
inequality [Eq. (13)] with jqæ 5 j1æ by preparing that state so P1(0)
5 1, and then (invasively) measuring the state of the quantum wells
at a time t later (see below). This is then equivalent to the test to
eliminate purely Markovian dynamics36–38.

The correlation function ÆP1(t)P1æ, where P1(0) 5 1, can be
calculated from

Pz tð ÞPzh i~Tr Pzexp Ltð Þzj i zh j½ � ð16Þ

In Fig. 3(b), we plot Lpz
tð Þ

�� �� as a function of time (solid black curve).
The behaviour is oscillatory but damped due to the couplings to the
Markovian photon dissipation and the excitonic polarization decay.
A considerable violation (. 1) of the inequality of Eq. (13) appears in
the region above the blue dashed line in Fig. 3(b). The violation there
comes from the coherent oscillations between the states j1æ and jk0æ,
and is beyond the classical Markovian description.

The Dicke state j1æ describes a particular coherent superposition
of a single excitation across all N quantum wells. It has been shown
that four-wave mixing and pump probe techniques30,31 can be used to
measure the state of multiple excitations across multiple wells.
Moreover, as we discussed before, only a few of the other Dicke states
(jHæ) lead to Rabi-like oscillations with different oscillation frequen-
cies. Thus it seems feasible that such an experiment can be used to
determine the excitation density.

Similarly, if we could deterministically prepare the state jk0æ, we
could construct the inequality (Eq. (13), with jqæ 5 jk0æ) by preparing
that state (so Pk0 0ð Þ~1), and then measuring when a single photon is
detected at detector D2. The second measurement needed to con-
struct the correlation functions in Eq. (13) is then simply given by the
superoperator

J rð Þ~k vacj ik0
k0h jr k0j ik0

vach j, ð17Þ

where jvacæ is the vacuum state. Again, we can assume the second
measurement is just a normal projective measurement (after rescal-
ing by k), Pk0: k0j i k0h j. Thus, while the photon measurement is
much simpler than the quantum well one described earlier, in our
scheme it is not clear if we can deterministically know when jk0æ
is created in the same way that j1æ is, as jk0æ is an effective state of

the field modes. In Fig. 3(b), we plot LPk0
tð Þ

��� ��� as a function of time

(dashed red curve). Again a considerable violation (. 1) of the
inequality of Eq. (13) appears, and indicates behaviour beyond the
classical Markovian description.

Superconducting transmission line resonator coupled to N dc-
SQUID-based charge qubits. The second realization provided here
is to consider a superconducting transmission line resonator coupled
to N dc-SQUID-based charge qubits16,42, as depicted in Fig. 4(a). With
proper gate voltage, the Cooper-pair box formed by the dc-SQUID
with two Josephson junctions can behave like a two-level system8

(charge qubit). The interacting Hamiltonian can adopt the form in
Eq. (4). The incident photon with wavevector k0 propagating in the
one-dimensional transmission line would excite one of the charge
qubits and form the delocalized state zj ik0

over the N charge qubits.
For the physical parameters we assume that the level separation of
the charge qubit is 5 GHz, the relaxation rate of the excited state is

Figure 3 | Multiple-quantum-well structure. A schematic diagram of the

GaAs/AlGaAs MQW structure. We assume that the MQW structure is

grown along the z-axis, with a period of 400 nm, and each quantum well

consists of one GaAs layer of thickness 5 nm (sandwiched between two

AlGaAs slabs). The exciton energy �hv0 of a single quantum well is set to

be39 1.514 eV, such that the resonant photon wavelength l5 2pc/v0<
820 nm. A pair of identical photons with wavevector k0 could be produced

by a two-photon down-conversion crystal. One of the photons is directed

to the detector-1 (D1) and the other along the growth direction of the

MQW. (b) The inequality LPQ tð Þ
�� ��[Eq. (13)] as a function of time for the

state | qæ5 | k0æ(red dashed curve) and qj i~ zj ik0
(black solid curve) in a

MQW system containing 200 periods. The region above the blue dashed

line indicates the violation regime. In plotting this panel, the coupling

constant g5 8.3 meV, between zj ik0
and | k0æ, is determined from the

period of the Rabi-like oscillations in Fig. 1(c). The photon loss k5

3.3 meV is obtained from the width of the Lorentzian fitting (the green

dashed-dotted curve in the inset of Fig. 1(c). Here we have set the excitonic

polarization decay rate c as the spontaneous emission rate of the general

GaAs/AlGaAs quantum well c5CQW5 100 (1/ns).
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0.7 MHz, and inter-SQUID spacing is half the wavelength of the
light at the exciton frequency. Having an identical interaction be-
tween the dc-SQUID array and the photon fields as that in Eq. (4),
the excitation dynamics can represent the same behaviours as shown
in fig. 1(b) and (c) (where the one unit of time is microseconds).

For a SQUID-array coupled to a transmission line, the measure-
ment of the population of individual superconducting qubits has
been achieved43. Recently, the progress in generating and measuring
single microwave photons44–48 propagating in the transmission
line42,49,50 make it easier to generate and detect single-photon Dicke
states. Therefore, one can take this advantage to achieve the mea-
surement of the qubit state through measuring the microwave pho-
tons. In this way, if we could prepare the state j1æ, the inequality Eq.
(13) can thus be constructed with jqæ 5 jk0æ by preparing the Dicke
state j1æ (so Pk0 0ð Þ~0). Similarly, since we are not concerned with
events after the second measurement, the second measurement is just
a projective measurement, Pk0: k0j i k0h j.

The correlation function Pk0 tð ÞPk0h i, where Pk0 0ð Þ~0, can be cal-
culated from

Pk0 tð ÞPk0h i~Tr Pk0 exp Ltð Þzj i zh j½ �: ð18Þ

In Fig. 4(b), we plot Lpz
tð Þ

�� �� as a function of time. Since the initial
state is prepared in the Dicke state j1æ, the curve starts at the origin

instead of the unity. Due to the couplings to the Markovian photon
dissipation and the polarization decay, the behaviour is oscillatory
but damped. A considerable violation (. 1) of the inequality of Eq.
(13) appears in the region above the blue dashed line in Fig. 4(b).
The violation again comes from the coherent oscillations between
the states j1æ and jk0æ, and is beyond the classical Markovian
description.

Of course, ultimately we cannot distinguish classical non-Markovian
dynamics from quantum dynamics with this method, though cer-
tain complex Markovian systems can produce nonmonotonic and
complex behaviour21 which is important to eliminate. To really
show that either the large array of quantum wells or the dc-
SQUID arrays is behave like a cavity without a mirror and exhibit
quantum Rabi oscillations, more work needs to be done on full-
state tomography techniques and precise measurements of exci-
tonic states, so that either the full Leggett-Garg inequality, or some
other test, can be investigated. One possibility to realize the full,
non-invasive, LG inequality test for the circuit-QED case is to
include an additional off-resonance cavity which dispersively mea-
sures the overall occupation of the qubits11 (i.e., 0 or 1 delocalized
excitation). This could satisfy the criteria of the original LG inequality.

Discussion
In summary, we investigated the dynamical evolution of the deloca-
lized state of a two-level-emitter array state. When the array contains
a large number of emitters, the dynamical evolution shows Rabi-like
oscillatory behaviour. By showing that the DOS of the radiation field
in the TLE array is Lorentzian-like, the whole system can be mapped
to an effective two-level system (e.g., like a single excitation cavity-
QED system). For the physical implementation we suggested a multi-
plequantum- well structure, and also a dc-SQUID array structure,
and discussed their relevant physical parameters. We also applied a
Markovian variation of the original Leggett-Garg inequality, to
examine the quantum coherence.

There are other experimentally-accessible systems that can medi-
ate one-dimensional coupling between two-level emitters and the
photon fields. Below we provide two potential candidates:

(I) Consider N two-level quantum dots positioned near a metal
nanowire, due to the quantum confinement, the surface plasmons
propagate along the axis direction on the surface of the nanowire.
The coupling between quantum dots and the surface plasmons
enable51 the incident surface plasmons to excite one of the N
quantum dots and the delocalized exciton over the N dots can
then be formed.

(II) The strong coupling between a microwave photon and electron
spins could enable a long-lived quantum memory element for
superconducting qubits. In a ensemble of spins, a coherent
memory52 has been realized by using a pulsed magnetic field
gradient. Though the quantum memory of the collective states
in the electron spin ensemble is carried out in three-dimension,
our theory can still be applied due to the similarity in the coop-
erative nature of the delocalized state. Therefore, it is possible to
utilize the coherent quantum memory of a spin ensemble to
examine some of the results we discuss in this work.

Methods
Details of the derivation of Eq. (8) and (10). Integrating Eq. (7) to obtain bkz tð Þ and
inserting into Eq. (6), we obtain28

_bg tð Þ~{
X
kz ,g’

g2
kz

ðt

0
dt’

XN

i,j~1

gh j 0h jsz
j akz gj i 1kzj i gh j 1kzh js{

j a{
kz

g’j i 0j i
(

exp i vkz {v0ð Þt½ �exp ikz zi{zj
� �� �� �

bg’ t’ð Þ,

ð19Þ

where g 5 1 and H. Here b1 and bH are coupled due to the fact that they decay to a
common ground state. This coupling is referred as Fano coupling (or Agarwal-Fano

Figure 4 | dc-SQUID array structure. (a) N dc-SQUID-based charge

qubits coupled to a one-dimensional transmission line. A Cooper-pair box

formed by a dc-SQUID with two Josephson junctions can act like a two-

level system by properly tuning the gate voltage. The incident photon in the

transmission line can excite one of the charge qubits. A delocalized state

spread over the charge-qubit array can therefore be formed. Here we

assume that the level separation of the charge qubit is 5 GHz, the relaxation

rate of the excited state is 1 MHz, and the inter-SQUID spacing is half the

wavelength of the light at the excitation frequency. (b) The inequality

LPQ tð Þ
�� �� [Eq. (13)] is shown as a function of time for the state | qæ 5 | k0æ,
with the initial state being in the Dicke state zj ik0

in a dc-SQUID charge-

qubit array containing 200 periods. In plotting this panel, the coupling

constant g 5 5.8 meV, between zj ik0
and | k0æ, is determined from the

period of the Rabi-like oscillations in Fig. 1(c). The photon loss k 5 2.3

meV is obtained from the width of the Lorentzian fit [the green dashed-

dotted curve in the inset of Fig. 1(c)]. Here we have set the excitonic

polarization decay rate c equal to the relaxation rate of the charge qubit

c 5 0.7(1/ms).
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coupling). However, as the number of periods N ? 1, this coupling is suppressed19.
Eq. (19) therefore becomes

_bg tð Þ~{
X

kz

g2
kz

ðt

0
dt’

XN

i,j~1

gh j 0h jsz
j akz gj i 1kzj i gh j 1kzh js{

j a{
kz

gj i 0j i
(

exp i vkz {v0ð Þt½ �exp ikz zi{zj
� �� �� �

bg t’ð Þ:

ð20Þ

The dynamical evolution of the Dicke state j1æ (dropping the k0 subscript for brevity)
can be written as:

_bz tð Þ~{
X

kz

g2
kz

ðt

0
dt’

XN

i,j~1

zh jsz
j gj i gh js{

j zj i ei vkz {v0ð Þt eikz zi{zjð Þ
h i( )

bz t’ð Þ, ð21Þ

given that zj i~ 1ffiffiffiffi
N
p

XN

‘~1
eik0 z‘ ‘j i, zh jsz

j gj i gh js{
j zj i in Eq. (21) thus gives

1
N

e{ik0 zi{zjð Þ . We can then exactly obtain Eq. (8).

Similarly, from Eq. (20), the dynamical evolution of the Dicke state jN 2 1æ
(dropping the k0 subscript for brevity) can be written as:

_bN{1 tð Þ~{
X

kz

g2
kz

ðt

0
dt’

XN

i,j~1

N{1h jsz
j gj i gh js{

j N{1j i
(

exp i vkz {v0ð Þt½ �exp ikz zi{zj
� �� �� �

bN{1 t’ð Þ

ð22Þ

given that

N{1j i~ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N N{1ð Þ

p eik0 z1 1j izeik0z2 2j iz . . . zeik0zN{1 N{1j i{ N{1ð Þeik0 zN Nj i
� �

(as listed in Table I),
PN

i,j~1 N{1h jsz
j gj i gh js{

j N{1j ieikz zi{zjð Þ in Eq. (22) can be
calculated as:

XN

i,j~1

N{1h jsz
j gj i gh js{

j N{1j ieikz zi{zjð Þ~ 1
N N{1ð Þ

XN{1

i,j{1

ei kz{k0ð Þ zi{zjð Þ
"

zN{1ð Þ2
XN

i,j~1

eikz zi{zjð Þ{ N{1ð Þeikz zN
XN{1

i~1

e{ik0 zi z
XN{1

j~1

eik0 zj

 !
:
XN

i,j~1

eikz zi{zjð Þ
#
:

ð23Þ

By inserting this into Eq. (22) we then obtain Eq. (10).

Details of the derivation of Eq. (13). For clarity we present here a proof of Eq. (13),
which originally appeared in21. We start the proof with the two-time state-state
correlation ÆPQ(t)PQ(0)æ, which can be explicitly described by

PQ tð ÞPQ 0ð Þh i~
X
mn

pn 0ð ÞPQmVmn t,0ð ÞPQn , ð24Þ

where pn(0) is the probability of measuring the state n at the time origin t 5 0, and PQn

is the result returned by the measurement apparatus (which we later assume to be one,
but leave general here). If only a single state k contributes to the measurement
observable, the above equation can be written as

PQ tð ÞPQ 0ð Þh i~pk 0ð ÞPQkVmn t,0ð ÞPQk

~pk 0ð ÞP2
Qk
Vkk t,0ð Þ:

ð25Þ

The difference between the temporal correlations 2 ÆPQ(t)PQ(0)æ and ÆPQ(2t)PQ(0)æ is
then of the form

2 PQ tð ÞPQ 0ð Þh i{ PQ 2tð ÞPQ 0ð Þh i~pk 0ð ÞP2
Qk

2Vkk t,0ð Þ{Vkk 2t,0ð Þ½ �: ð26Þ

Let us proceed to consider the maximum value of 2Vkk(t, 0) 2 Vkk(2t, 0) for classical
and Markovian dynamics. As stated by Chapman-Kolmogorov equation, the
propagator Vkk(2t, 0) can be represented by a decomposition over intermediate states

Vkk 2t,0ð Þ~
X

n

Vkn 2t,tð ÞVnk t,0ð Þ: ð27Þ

We then have

2Vkk t,0ð Þ{Vkk 2t,0ð Þ~2Vkk t,0ð Þ{
X

n

Vkn 2t,tð ÞVnk t,0ð Þ

~Vkk t,0ð Þ 2{Vkk t,0ð Þ½ �{
X

n;n=k

Vkn 2t,tð ÞVnk t,0ð Þ

~Vkk tð Þ 2{Vkk tð Þ½ �{
X

n;n=k

Vkn tð ÞVnk tð Þ,

ð28Þ

for the propagators which are dependent on the time difference. The maximum
occurs when Vkk(t) 5 1, and the difference between temporal correlations becomes

2 PQ tð ÞPQ 0ð Þh i{ PQ 2tð ÞPQ 0ð Þh i~pk 0ð ÞP2
Qk

~PQk PQh i:
ð29Þ

Given that PQk ~1 we have the upper bound in Eq. (3). Similarly, the lower bound of
the temporal correlation difference is 2 ÆPQæ.
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