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2.4.1  Introduction 

Wave propagation in disordered media is a rich and long-standing problem that attracts 
many efforts, both theoretical and experimental. After almost a century of a complete 
sway of radiative transport and diffusion approaches, it recently became clear that 
the interference of multiply-scattered fields (which is neglected in classical diffusion 
theory) dramatically affects all wave processes, especially in systems with fluctuations. 
The most startling manifestation of this effect is the strong localization of electromagnetic 
radiation in weakly-disordered random media. Since Anderson’s seminal paper,1 localiza-
tion has attracted ever-increasing attention from physicists and engineers. Without 
attempting an exhaustive review of available literature we note that the bibliography 
related to this rather young area already numbers in hundreds of original articles, reviews, 
and books (see, e.g., the review,2 the monographs,3 and references therein). Worthy of 
notice are the great number of meetings dedicated to the 50 years’ anniversary of Anderson 
localization (half-a-year non-stop workshop in Cambridge, conferences in Paris, Dresden, 
Santa Barbara, etc.) where physicists, mathematicians, chemists, engineers, biologists, and 
even economists not only presented a plethora of new results but also formulated a great 
many challenging questions.

A boost to the studies of Anderson localization in disordered optical and quantum sys-
tems was given recently by the creation of new materials with unique properties that have 
spurred the rise of new conceptual challenges and high-tech applications. The most 
impressive latest examples include photonic crystals, plasmonics, left-handed metamateri-
als, Bose–Einstein condensates, and graphene. Yet it should be remembered that most of 
the prospects for potential technological use of these materials rest on the predicted prop-
erties of ideal (e.g., perfectly periodic) systems. Even a small amount of disorder, however, 
which is inevitably present in any real sample, could affect its properties dramatically (see 
Figure 2.4.1). Therefore, when it comes to real applications, a comprehensive study of the 
effects of disorder is a must. Moreover, these investigations are of interest by itself because 
strongly disordered (with no periodic component) systems possess further unexpected 
physical properties, which make them potentially useful as an alternative to the pure peri-
odic configurations.

One-dimensional (1D) strong localization has received the most study, both analytically 
and numerically. In particular, the localization of the eigenstates in closed 1D disordered 
systems and the exponentially small (with respect to the length) transparency of open 
systems with 1D disorder have been scrutinized with mathematical rigor (e.g., see Ref. 4 
and references therein).

The most common physical manifestation of localization is the fact that sheets of per-
fectly transparent paper stacked together in large numbers reflect light as a good mirror.5 
Much less evident (though long predicted theoretically6) is that for each sufficiently long 
disordered 1D sample, there exists a random set of frequencies that go all the way through 
the sample almost unreflected, that is, with the transmission coefficient close to unit. High 
transparency is always accompanied by a relatively large concentration (localization) of 
energy around randomly located points inside the system. Along with these “classical” 
trademarks of strong localization there is a plethora of not-less-amazing effects that disor-
der can set up in one dimension. Examples are: random lasing,7,8 critical coupling,9 neck-
lace states,10,11 level crossing and repulsion,9 slow light and superluminal group velocities,12 
bistability and nonreciprocity of resonant transmission in nonlinear random media,13 
delocalization in metamaterials,14−16 and in graphene superlatices,17 and so on.
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Although, generally, a disordered 1D system is a mathematical abstraction, it can provide 
an adequate model for many actual physical objects. For example, randomly stratified media 
are found in numerous geological and biological settings, as well as in fabricated materials. 
Interference of waves in such systems determines the transport of seismic waves in the 
earth’s crust and sonic waves in the oceans; reflection and transmission from multilayer 
dielectric stacks used as optical reflectors, filters, and lasers; propagation and localization in 
single-mode optical fibers and microwave waveguides, etc. Even more important, it may be 
possible to utilize highly disordered samples for many applications. For instance, tunable 
switches or narrow-line laser sources can be created using randomly stacked systems.

Although the strong localization of waves in 1D random media has been well studied 
theoretically, most of the analytical results have been obtained for values averaged over 
ensembles of random realizations. These results are physically meaningful for the self-
averaging Lyapunov exponent (inverse localization length), which becomes nonrandom in 
the macroscopic limit. For non-self-averaging quantities (field amplitude and phase, inten-
sity, transmission and reflection coefficients, etc.), a system of any size is always meso-
scopic, and, therefore, mean values have little to do with the measurements at individual 
(usually small in number) samples. This is most pronounced when it comes to disorder-
induced resonances whose parameters are extremely sensitive to the fine structure of a 
particular sample and strongly fluctuate from realization to realization. In particular, the 
ensemble averaging wipes out all information about the frequencies and locations of indi-
vidual localized states within a particular sample, even though just this set of data is 
essential for applications. Another frustrating inconsistency between most of the existing 
theories and measurements is that in real systems, losses (absorption and leakage) are 
inevitably present, whereas mathematicians and theoreticians usually prefer lossless 
(Hermitian) models that are much easier to deal with.
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FIGURE 2.4.1
Transmission spectra of a regular periodic sample (thick black line) and of a sample whose period fluctuates in 
the range of 1%.
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In this chapter, we present a brief overview of methods and results regarding the trans-
port and localization in disordered 1D systems, followed by a detailed description of the 
current state-of-the-art in theoretical and experimental studies of the resonant properties 
of randomly layered media.

2.4.2  Lyapunov Exponent, Localization, and Transmission Lengths

Consider the 1D Helmholtz equation

	 ′′ + + =u x k x u x( ) [ ( )] ( )2
0 0ε δε 	 (2.4.1)

with the self-adjoined (currentless) boundary condition at a point x0

	 u x au x( ) ( ) ,0 0 0+ ′ = 	 (2.4.2)

where a is any real number. It is easy to show that Equation 2.4.2 means that the modulus 
of the reflection coefficient from the point x0 equals to one. The functions ξ and φ deter-
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Assuming that δε(x) is a statistically homogeneous random function with zero average, 
δε( )x = 0 , and disappearing at infinity correlations, W x x

x
( ) ( ) ( )= →→∞δε δε0 0 , the 

following statement is true:4 in the limit |x| → ∞, the ratio ξ(x,k)/x approaches a non-
random limit that is positive for all k:
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In principle, this result follows from the Furstenberg theorem,18 which holds that, under 
some conditions, the specific logarithm of the product of N transfer matrices Mj tends to a 
positive limit as N goes to infinity:
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Equation 2.4.5 presents two fundamental properties of a 1D random system satisfying 
the above-listed conditions:

	 1.	The Lyapunov exponent, γ(k), is a self-averaging quantity; that is, at any single 
random realization it tends to the ensemble-averaged nonrandom mean value 
when the size of the realization increases infinitely.

	 2.	For a single random realization, the amplitude of the wave function increases 
exponentially with nonrandom increment γ(k) on both sides of the point, at which 
the currentless boundary condition (2.4.2) holds.

The inverse of the Lyapunov exponent

	
lloc = 1

2γ 	
(2.4.6)

is called the localization length. The meaning of this term becomes clear if one considers 
two solutions of Equation 2.4.1, u1(x) and u2(x), in the interval 0 ≤ x ≤ L (closed 1D system), 
each satisfying the boundary condition (2.4.2) at x = 0 and x = L, respectively, and therefore 
each increasing exponentially away from these points. An eigenfunction, ψn(x), of this 
system can be constructed from u1(x) and u2(x) under the condition that these functions 
and their derivatives match at some point xn inside the interval. Obviously, an eigenfunction, 
ψn(x), obtained in this way is localized; that is, its envelop, A2(x), decreases exponentially 
on both sides of xn:
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In the case of the white-noise disorder [δε(x) is a δ-correlated random process], the closed 
Fokker–Planck equation for the probability density distribution, P(ξ, z), of the quantity ξ(x) 
can be derived and solved using a averaging over rapid random phase.4,19 This is impossi-
ble if δε(x) has a finite correlation radius, and the random-phase approximation breaks 
down (as well as the single-parameter scaling theory of localization). In this case, the 
ordered cummulant method of Van-Kampen can be used to obtain the weak disorder 
expansion of the Lyapunov exponent γ(k).20 The first term of this expansion can be obtained 
from Equation 2.4.4 by solving the equation for the phase perturbatively and substituting 
the result into the integral for ξ(x,k). The limit |x| → ∞ yields the famous result
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2
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(2.4.8)

which means that the localization is due to the resonant Brag backscattering provided by 
the 2k Fourier component of the random potential. Higher orders of the weak disorder 
expansion have been calculated and can be found in the literature.20,21

The notion of the Lyapunov exponent is related to the eigenvalues boundary problem, 
and therefore is well defined only for closed disordered systems. From the physical point 
of view, not less relevant is the scattering problem that addresses the transmission, reflec-
tion, and propagation in open structures with fluctuating parameters.
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Transport properties of a 1D system of a finite length L can be described by the transfer 
matrix M̂ , which relates the amplitudes of the incident (AL ) and outgoing (BL) waves on 
one side of the sample to those on the other side (AR and BR ):
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Assuming time-reversal invariance, the transfer matrix M̂  can be written as
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where t T i= exp( )φt , and r T i= −1 exp( )φr  are the transmission and reflection ampli-
tudes, respectively; T ≡ |t|2 is the transmission coefficient. In what follows, the quantity 

l L T LLtr( ) ln ( )= − 
−11

2  is called the transmission length.
Evidently, the solution of the boundary value problem (2.4.1), (2.4.2) and the solution of 

the scattering problem in the limit L → ∞ are uniquely related; that is,
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where ˆ ′M  is an elementary linear transformation of the transfer matrix M̂ .
When the size L of the system is much larger than the localization length lloc, the trans-

mission coefficient T becomes exponentially small (with the probability exponentially 
close to one), and statistically independent of the phases ϕt and ϕr. As a result, each matrix 
M̂  and ˆ ′M  factorizes into a product of a large factor 1/ T  and a matrix of the order of 
unity, which is statistically independent of T. This means that, asymptotically for large L, 
one can write
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where the second term in the asymptotic expansion is independent of the first one, and 
their cummulants are of the order of unity. Apparently, in the limit L → ∞, the transmis-
sion length coincides with the inverse Lyapunov exponent (localization length):

	 l ltr loc= . 	 (2.4.12)

This fact is generally recognized. However, it was shown recently14 that, surprisingly 
enough, lloc and ltr can be different in stacks made of alternating right- and left-handed 
dielectric layers with random refractive indices and thicknesses.
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The equality Equation 2.4.12 means, in particular, that the localization length can be 
probed noninvasively from the transmission coefficient, without measurements of the 
field amplitude inside random samples.

2.4.3  Statistics of the Transmission in 1D Disordered Systems

2.4.3.1  Transport and Localization in Randomly Layered Media

2.4.3.1.1  Normal Incidence: Transfer Matrix Method

One of the most efficient theoretical methods of studying general properties of transmis-
sion in 1D disordered systems is based on the composition rule for a chain of statistically 
identical and independent random scatterers.22 For stratified media, the method is straight-
forward and involves the calculation of the transfer matrix M̂  using the following exact 
recurrence relations for the transmission coefficients (for details, see Ref. 14 and references 
therein):
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Here Tn and Rn are, respectively, the total transmission and reflection coefficients of a 
stack of n layers, tn and rn are the (complex) transmission and the reflection amplitudes 
of a single layer. Equations 2.4.13 and 2.4.14 are general and, taking into account all mul-
tiply-scattered fields, present exact solutions that can be used for direct numerical 
simulations.

For a sample composed of N statistically identical and independent random layers of 
normal (with positive refractive index) dielectrics, the following expression for the average 
inverse transmission length can be derived from Equations 2.4.13 and 2.4.14:14
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where d is the average width of the layers, and the inverse localization length is
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Note that when N → ∞, Equation 2.4.15 transforms into Equation 2.4.12, that is, the 
localization and transmission lengths become equal.
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In the case of weak scattering, the reflection from a single layer is small, |rn| << 1 and 
Equation 2.4.16 yields:
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In the derivation of Equation 2.4.17, it was assumed that the width of each layer was 
distributed uniformly over the interval [d − δ, d + δ], and the refractive index did not 
fluctuate. Nevertheless, the functional λ-dependences, Equation 2.4.17, of the localization 
length in weakly disordered systems are rather general (e.g., see Ref. 23).

2.4.3.1.2  Oblique Incidence: Reduction to the Oscillatory Problem

An original efficient method of calculating the localization length was developed in Ref. 
24. It uses the fact that the reflection from an adequately long, randomly layered sample 
differs from unity by an exponentially small number, 1 − R(L) ~ exp(−L/lloc), and, therefore, 
the flux along the system is also exponentially small. This a priori information enables one 
to assume (with an exponential accuracy) that the field in each layer inside the sample is a 
standing wave, and to reduce the wave propagation problem to the oscillatory one, with 
the real-valued wave amplitude being a single unknown. This simplifies the problem sig-
nificantly as compared to the conventional transfer matrix method, where the evolution of 
two independent waves in each layer is considered. Using this method, the oblique inci-
dence of electromagnetic waves on a randomly layered medium was studied.24 Two effects 
not found at normal incidence were predicted: dependence of the localization length on 
the polarization and the decrease of the localization length as a result of the internal reflec-
tions from layers with small refractive indices. The attenuation rate for p-polarized radia-
tion is shown to be always smaller than that of s-polarized waves, which is to say that an 
adequately long, randomly layered sample polarizes transmitted radiation. The localiza-
tion length for p-polarization depends nonmonotonically on the angle of propagation and, 
under certain conditions, turns to infinity at some angle, which means that typical (non-
resonant) random realizations become transparent at this angle of incidence (stochastic 
Brewster effect).

2.4.3.2  Transport and Localization in Continuous Active Media

2.4.3.2.1  Invariant Embedding Method

An alternative approach to the 1D random scattering problem is the invariant embedding 
method,25 which amounts to finding the solution of the following system of (exact) first-
order Langevin-type equations for the reflection and transmission coefficients:
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Equations 2.4.18 and 2.4.19 can be treated statistically by means of exact numerical calcula-
tions and approximate analytical methods as well. A Fokker–Planck equation can be derived, 
which, in the case of the white-noise disorder, yields the distribution function for the reflec-
tion coefficient R(L) = |r(L)|2. In the absence of absorption or amplification, this distribution 
function provides complete information on the transmission coefficient T = |t(L)|2.

The problem becomes much more complicated in the case of lossy media where the 
energy conservation law not only connects T and R but also involves a random amount of 
the absorbed intensity. In the paper,26 the asymptotically exact expressions for all moments 
of the transmission coefficient have been obtained by mapping the Fokker–Planck prob-
lem onto a Shrödinger equation with imaginary time. In particular, it has been shown that 
in the case of small absorption, lloc << la (la is the absorption length),
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is a disorder-induced absorption length, which lies between the localization and absorp-
tion lengths, see Ref. 26

	 l l laloc in� � .

This means that in the localized regime, the disorder causes drastic enhancement of the 
attenuation of the average transmission coefficient as compared to that in the correspond-
ing pure (δε = 0) sample (lin << la). Note that the disorder-induced absorption length for the 
localized waves, Equation 2.4.21, is also significantly smaller (i.e., the effect of absorption 
is much stronger) than that in the diffusive regime: l l lain loc� .

In contrast to Equation 2.4.20, the contributions from scattering and absorption to the 
average decrement of the transmission coefficient (or to the Lyapunov exponent) are 
additive:
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It can be shown that ln 〈T(L)〉 and 〈lnT(L)〉 are different not only in lossy media (compare 
Equations 2.4.20 and 2.4.22) but also in nonabsorbing (la → ∞) systems. This is because 
lnT(L)/L is a self-averaging quantity (see Equations 2.4.8 and 2.4.11), with very narrow 
distribution (δ function at L → ∞) centered at its mean value. This means that at a ran-
domly chosen realization, lnT(L) will be found in a small vicinity of its average value with 
a probability exponentially close to one, and therefore the value of a function F[lnT(L)] will 
be close to F[〈lnT(L)〉] with the same probability. In particular, the transmission coefficient 
typically is exponentially small:
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On the other hand, T(L) itself is a strongly fluctuating random variable with broad 
distribution. It turns out that the main contribution to its average value comes not from the 
typical (nontransparent) realizations but from low-probable ones, so-called resonant 
realizations (see Section 2.4.4), corresponding to the non-Gaussian tail of the distribution 
of lnT, where the transmission coefficient is of the order of unity. This is due to these 
resonantly transparent realizations that the average transmission is much larger than the 
typical one. For example,4 in the lossless media with delta-correlated disorder
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while both Ttyp(L) and 〈T(L)〉 are exponentially decaying functions of L (the difference is in 
the attenuation rate). More than that, there are quantities for which the typical and mean 
values have completely different functional dependencies. An example of how misleading 
a formally calculated mean value can be is the energy flux, J = 2Im(u*u′), created by a point 
source located at the perfectly reflecting edge (x = 0) of a disordered sample of length L. As 
shown in Ref. 2, the mean flux does not interact with disorder and is equal to its value in 
the homogeneous sample: 〈 J(L)〉 = 2/k. This result is physically meaningless because to 
obtain it experimentally, averaging over an exponentially large number of realizations is 
necessary. At the same time, the measurement at a single random sample will give (with a 
probability exponentially close to unity) the typical value, which is exponentially small as 
a result of the localization effect: Jtyp = exp(〈lnJ〉) ~ exp(−L/lloc). This is because lnJ is an 
additive self-averaging quantity.

The typical-medium approach in the theory of Mott–Anderson localization in electron 
systems is discussed in Ref. 27.

An outstanding distinction between the transmission at typical and resonant configura-
tions of amplifying random media has been found in Ref. 28. It has been shown that in 
random systems with complex dielectric permittivity, ε(x) = ε0 + δε(x) + iΓ, the inverse 
Lyapunov exponent is always negative, independent of the sign of Γ;29 that is, the typical 
transmission through a finite disordered dielectric sample is exponentially small for both 
absorbing and amplifying disordered samples. To the contrary, the mean value of the 
transmission coefficient in random media with gain (Γ > 0) diverges (because of the infi-
nitely increasing resonant intensity) even at samples of finite size. To obtain physically 
meaningful finite values of the transmission, the nonlinear effect of saturation should be 
included in the model.

2.4.3.3  Transport and Localization in 1D Periodic Structures with Disorder

The study of the effects of disorder on the wave properties of periodic structures is essen-
tial for better understanding the physics of the interplay between periodicity and disorder, 
and also for practical applications. Indeed, though considerable effort has been expended 
to develop highly periodic structures, deviations from periodicity inevitably present in 
any manufactured photonic crystal can significantly modify its optical characteristics. To 
reveal the most general transport properties of disordered 1D structures that are periodic 
on average (1D photonic crystals), the Helmholtz Equation 2.4.1 can be used, in which ε0 is 
a periodic function of the coordinate x, and 〈δε(x)〉 = 0. Three types of periodic systems 
with weakly-perturbed periodicity were studied in Ref. 30: (i) stacks of alternating discrete 
dielectric layers with constant permittivities, ε(1) and ε(2), and fluctuating width of each 
layer, di = d + δdi; (ii) samples of the same geometry but with constant di = d and 
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( ) ( )= + ; (iii) continuous periodic media with ε(x) = Acos qx + 

δε(x). The quantities δdi, δεj, and δε are assumed to be random variables with known 
statistics. For numerical simulations of the propagation in discrete systems (i) and (ii), the 
transfer matrix approach (Section 2.4.3.1) is appropriate, whereas for the continuous 
model (iii), the invariant embedding method (Section 2.4.3.2) is best suited.

The following property is found to be universal, independent of the geometry of the 
system and of the type of disorder for the frequencies of the incident wave belonging to a 
band gap of the underlying periodic structure, weak disorder enhances (in contrast to 
homogeneous in average random 1D systems) the transparency. Moreover, the localization 
length and the transmission coefficient grow when the strength of the disorder increases. 
This is because in the presence of disorder, the channels of the propagation that are closed 
in the perfectly periodic system open up as a result of the partial filling of the density of  
photonic states in the gap by the tails of this density from the transparency zones bordering 
the gap.

In contrast to the band gap, the features of the transmission for frequencies in the trans-
parency zone depend on the type of disorder. For these frequencies, the surprising non-
monotonic dependence of the localization length on the strength of disorder was observed 
in stratified media with geometrical disorder and constant dielectric permittivities [type 
(i)]. In such a medium, the initial decrease of the transmission coefficient is a classical 
manifestation of Anderson localization, which is usually stronger for larger fluctuations 
(see previous sections). When the fluctuations of the width become adequately large, the 
decrease gives way to the enhancement of the transmission for increasing disorder. To 
explain this rather counterintuitive result, we note that in the strong localization regime, 
the inverse localization length is approximately equal to30

	

1
1

l
R

loc
≈ ,

	
(2.4.24)

where R1 is the reflection coefficient of a single layer. This means that, in this case, the total 
transmission of a stack is completely determined by the mean value of the reflection coef-
ficient of a single element. For a dielectric layer, R1 is a periodic function of the width d of 
the layer, and the averaging in Equation 2.4.24 means the integration of R1 over d in an 
interval Δd, in which the fluctuations δdi are distributed. Evidently, if the disorder is strong, 
Δd ≃ d, the increase of the interval of the integration of the periodic function causes a 
decrease of 〈R1〉.

In a system of the second type (random ε), R1 is proportional to δε and the growth of its 
variance enhances the strength of a single scattering, leading to a monotonic increase of 〈R1〉. 
On further increase of the disorder, all three types of random systems finally lose all traces 
of the underlying periodicity, the band structure disappears, and waves of all frequencies 
experience the same disordered medium that becomes homogeneous in average.

2.4.4  Disorder-Induced Resonances in 1D Systems

2.4.4.1  Exploration by Analogy: Deterministic Model of Random Resonances

As shown in Section 2.4.1, disorder can strongly affect the transport properties of periodic 
systems, sometimes to the point where the photonic band structure is completely destroyed. 
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As fluctuations of the dielectric and geometrical parameters are inevitably present in any 
manufactured periodic sample, this could create a serious obstacle in the efficient practical 
use of photonic crystals. Therefore, nowadays considerable efforts of researches and pro-
ducers go into the control of fluctuations. However, if rather than combating imperfections 
of periodicity, one fabricated highly disordered samples, they could be equally well har-
nessed, for example, for creating tunable resonant elements. This is because 1D random 
configurations have a unique band structure that for some applications has obvious advan-
tages over those of photonic crystals.

The transparency spectrum of a typical 1D random sample consists of very narrow 
bands separated by broad gaps (Figure 2.4.2). For adequately long structures, the bands are 
so narrow that they can be treated as (quasi)-resonances that are well pronounced; that is, 
their widths are much smaller than the distances between them, both in the frequency 
domain and in real space. Physically, at each resonant frequency, an open random 1D con-
figuration can be considered as an open resonator with high quality factor. An important 
advantage of application features of such a system is that, in contrast to a regular resonator 
whose modes occupy all inner space, in a 1D random structure, each eigenfrequency 
(mode) is localized inside its own effective “cavity” whose size is much smaller than that 
of the sample. Figure 2.4.3 shows the intensities of the fields generated by a resonant fre-
quency (central curve), and by two off-resonance, typical frequencies (side curves) with 
exponentially small transmission coefficients. Another important advantage of disordered 
samples is that they are much easier to fabricate as they do not require precise 
periodicity.

The existence of disorder-induced resonances in 1D random media was predicted a 
while ago.6 The random set of resonant frequencies is a sort of 1D optical “speckle pattern,” 
which is individual for each random configuration and represents its unique “fingerprint.” 
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Although the resonances indirectly manifest themselves in the dominant contribution to 
the mean transmission coefficient (see Section 2.4.3.2), the ensemble-averaged quantities 
do not provide any information about the frequencies, locations, and spatial intensity dis-
tribution of the individual localized states, yet just this set of data is essential for applica-
tions (e.g., random lasing). Unfortunately, an explicit, general analytical solution of 
Equation 2.4.1 with arbitrary function δε(x) does not exist, and standard approximate 
methods (e.g., small perturbations expansion) are of little help, because the adequate 
description of strong localization calls for the summation of infinite number of multiply-
scattered fields. On the other hand, direct optical measurements of the field inside a given 
disordered sample are generally not feasible.

In such a situation, the question arises as to whether the outgoing radiation bears the 
necessary information on what happens inside the sample or, more specifically, whether 
the parameters and internal structure of individual resonances can be retrieved from the 
standard external measurements of the transmission and reflection amplitudes.

The positive answer to this question is given by means of the approach developed by 
Bliokh et al.,31 which is based on the concept that the fundamental properties of resonances 
are universal and independent of the physical nature of the system, regular or random, 
whether it is a quantum-mechanical potential well, an optical or microwave resonator, or 
a 1D random medium.32 The distinguishing feature of a random structure is that there are 
no regular walls in it, and the strong reflection that locks the radiation in an effective reso-
nant cavity is the result of Anderson localization. Moreover, different segments of the 
sample turn out to be transparent for different frequencies; that is, each localized mode is 
associated with its own resonator.

In the framework of approach,31 the problem of the transport and localization in a 1D 
random medium is mapped onto an exactly solvable quantum mechanical problem of tun-
neling and resonant transmission through an effective deterministic potential. With the 
formulae derived on the basis of this mapping, the parameters of the individual reso-
nances, in particular, their spectral and spatial widths, field amplitudes, and transmission 
coefficients, can be calculated. These results also enable solving inverse problems, namely, 
to find (with some accuracy) the absorption rate of the medium and the positions of the 
effective cavities, using the measured transmission and reflection coefficients as the input 
data. The analytical results deduced from quantum-mechanical analogy are in close agree-
ment with the results of direct numerical simulations.

Random dielectric medium

FIGURE 2.4.3
(See color insert.) Amplitude of the field inside the sample as a function of the coordinate for three different 
wavelengths. (Reprinted with permission from K. Bliokh et al., Rev. Mod. Phys. 80, 1201, 2008. Copyright 2008 
by the American Physical Society.)
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The idea of this mapping was inspired by the well-pronounced similarity between 
Figures 2.4.3 and 2.4.4 obtained for a random stack of layers, and the corresponding depen-
dencies calculated for a regular potential well bounded at both sides by two potential 
barriers (e.g., see Ref. 33). Although the physics of the propagation in each system is totally 
different (interference of the multiply-scattered random fields in a randomly layered 
medium, and tunneling through a regular two-humped potential), the affinity between 
them stands out. Indeed, in both cases, the transmission coefficients are exponentially 
small for most of the frequencies (energies) and have well-pronounced resonant maxima 
(sometimes of the order of unity) at discrete points corresponding to the eigen levels of 
each system. The energy at resonant frequencies is localized, and the transmission depends 
drastically on the position of the area of localization.

Figure 2.4.4 presents the transparencies of three segments of the sample cut in accor-
dance with the central curve (resonant wave) in Figure 2.4.3 and separately illuminated by 
the same resonant (for the whole sample) wave. It is seen that at the resonant frequency, the 
middle part where the energy is concentrated is almost transparent, whereas the side sec-
tions are practically opaque. This qualitatively corresponds to what happens to quantum 
particles in a potential well. Moreover, even quantitatively, the intensity distributions pre-
sented in Figure 2.4.3 and the corresponding values of the transmission coefficients com-
pare favorably with those calculated quantum-mechanically by solving Equation 2.4.1, 
with the random function δε(x) being replaced by a regular potential profile with properly 
chosen parameters.

For any (not too high) energy, the transmission coefficient of a two-humped potential 
profile (potential well) can be calculated in the Wentzel–Kramers–Brillouin (WKB) 
approximation,33 which yields expressions independent of the “fine structure” of the 
profile and uniquely determined by the size of the well and by the tunneling transparen-
cies of the bounding barriers. To use these formulae for the quantitative description of 
the wave transmission through a random sample, it is necessary to express the parame-
ters of the effective potential through the parameters of the disordered system in hand. 
For an ensemble of 1D random realizations, those parameters are the length L of the 
samples and the (self-averaging) localization length lloc (Equation 2.4.6). Note that in the 
localized regime, L >> lloc >> λ. This inequality justifies the validity of the WKB approxi-
mation. To estimate the length of the effective well, we note that the appearance of a 
transparent segment (effective well) inside a random sample is the result of a very spe-
cific (and therefore low-probable) combination of phases of the multiply-scattered fields. 
Obviously, the longer such segment the less the probability of its occurrence. On the 

“Barrier”

(a) (b) (c)

“Barrier”“Cavity”

FIGURE 2.4.4
(See color insert.) Amplitude of the field as a function of the coordinate inside the whole sample, in the (a), (b), 
and (c) parts taken as a separate sample each. (Reprinted with permission from K. Bliokh et al., Rev. Mod. Phys. 
80, 1201, 2008. Copyright 2008 by the American Physical Society.)
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other hand, the typical scale in the localized regime is lloc. Hence, the minimal and thus 
the most probable size of the effective well, lres, is of the order of the localization length, 
which we assume (as a result of self-averaging) to be the same in all realizations. Under 
this assumption, different values of the resonant transmission coefficients and different 
intensities can be reproduced by variations of the location of the well in the correspond-
ing quantum-mechanical formulae.

If the center of the transparent segment of a resonant realization is shifted a distance d 
from the center of the sample, the lengths of the nontransparent parts of the resonant real-
izations become

	
L

L l
d1 2 2, = − ±res ,

	
(2.4.25)

and the transmission coefficients of the confining barriers are
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Substituting Equations 2.4.25 and 2.4.26 into the corresponding WKB formulae, we obtain
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where Tres(d) and Ares(d) are, respectively, the transmission coefficient and the peak ampli-
tude of the field pumped into the cavity located at a point d by an incident resonant mono-
chromatic wave of unit amplitude. Note that |Ares|2 is asymmetric with respect to T1 and 
T2, which means that the intensity induced in an effective cavity by the resonant incident 
wave depends on the direction of incidence.34 The width of high (Tres ~ 1) resonances in a 
long sample is exponentially small:
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(2.4.29)

Equation 2.4.27 shows that the transmission coefficient of a disordered sample at a reso-
nance is independent of the length of the sample and is governed exclusively by the loca-
tion of the effective cavity. This rather counterintuitive result is totally different from that 
for the typical (nonresonant) transmission, which decays exponentially with the increase 
of the length L.

From Equation 2.4.28 it follows that the amplitudes of the centrally located (d << lloc) 
strong resonances are an exponentially increasing functions of the length of the sample:
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Whereas the transmission is maximal when the effective cavity is located precisely in the 
middle of the sample, Tres(d = 0) = 1, the largest amplitude can be pumped in a resonator 
shifted from the center toward the input by the distance

	 d lA = − .0 27 loc , 	 (2.4.31)

which is independent of the length of the sample.
It should be emphasized that in a disordered sample, for each resonant frequency, ωres, 

there exists its own “strange resonator,” which (unlike regular potential wells) is transpar-
ent only for this particular ωres. These resonators are located at different random points; 
therefore, it should be remembered that the coordinate d in Equations 2.4.25 through 2.4.28 
is frequency-dependent: d = d(ωres). The structure of the effective cavities is described below.

To test the ability of the above-introduced deterministic model to describe quantitatively 
the resonances in randomly layered samples, extensive numerical experiments were 
carried out. The comparison of the results of direct numerical simulations with those given 
by Equations 2.4.27 through 2.4.31 demonstrates that the seemingly rough analogy based 
on just one fitting parameter (localization length) performs surprisingly well.31 For exam-
ple, not only the coordinate of the effective cavity with the highest resonant amplitude is 
independent of the total length of the sample and proportional to lloc, as predicted by 
Equation 2.4.31, but also the coefficient in Equation 2.4.31 coincides with that obtained in 
numerical simulations with an accuracy ~10%.

To provide an adequate description of the resonances in real dielectric structures, the 
absorption should be incorporated in the model. Although in quantum-mechanical prob-
lems losses are rather uncommon, the absorption of light in a dielectric medium can be 
taken into account by formally adding to the corresponding effective potential a negative 
imaginary part proportional to the imaginary part of the permittivity. If the spatial decre-
ment of the wave energy due to loss, Γ = 1/la ~ Imε0, is small compared to the inverse local-
ization length, la >> lloc, calculations of the resonant transmittance and intensity yield35 
(compare with Equations 2.4.27 and 2.4.28):
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The connection between the resonant reflection and transmission coefficients follows 
from the energy conservation law and in, a case of small losses, takes the form

	 R T l Ares res res res Re= − − | |1 2
0Γ ε , 	 (2.4.34)

where the last term is due to absorption in the medium. The width of the resonant peak in 
the reflection is determined by the absorption in the medium and by the transmittance of 
the effective walls that form the effective wells, and is equal to
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When the parameter
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even small absorption (la >> lloc or la >> L), which practically does not affect the typical 
transmission, suppresses dramatically both the reflected and transmitted fluxes at reso-
nances. Interestingly, the resonant reflection coefficient, Equation 2.4.34, is a nonmonotonic 
function of the dissipation rate Γ, and turns to zero when b = −2sinh(d/lloc). This effect is known 
in optics and microwave electronics as critical coupling.36 As no energy is reflected from the 
sample at critical coupling, it corresponds to the resonance with the highest intensity.

2.4.4.2  How Is an Effective Cavity Built Up?

The model presented above gives a more penetrating insight into the mechanism of forma-
tion of localized modes and allows an explanation of how and why the characteristics of a 
resonance (Q-factor, transmission coefficient, linewidth, etc.) depend on the parameters of 
the effective cavity (location, size, and absorption rate) associated with it. It is now clear 
that the resonant transmission through a random sample takes place at a frequency ωres if 
around some (random) point inside this sample there exists an area of length lres ≳ lloc 
which is transparent for this frequency.

Here another question arises: why do effective resonant cavities exist in 1D disordered 
samples? In other words, why are different segments of a random configuration transpar-
ent or opaque for the wave with a given wave number k? To answer this question recall 
that in the case of weak scattering, the so-called resonance reflection takes place; that is, 
the reflection coefficient of an adequately long segment [x − a,x + a] of a random medium is 
proportional to the amplitude of the 2k-harmonic in the power spectrum, �ε( , ),2k x  of its 
dielectric constant ε(x).37 This amplitude can be calculated as
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This expression is known as a window Fourier transformation with a rectangular win-
dow function. To investigate the structure of a resonant configuration, we first determined 
the resonant wave numbers for which the transparency T(k) of this configuration exceeded, 
for example, 0.5. For each of those waves, the spatial distributions of the amplitude and of 
the corresponding local power spectrum (2.4.37) were juxtaposed. An example is shown in 
Figure 2.4.5. One can see that in the areas where the field is localized, the function �ε( , )2k x  
is strongly suppressed, whereas in the nontransparent parts it has well-pronounced max-
ima. Therefore, the resonant cavity for a frequency ωres arises in the area of a disordered 
sample where, accidentally, the harmonic with wave number qres = 2kres in the power spec-
trum of the (random) permittivity has small amplitude.

This result is of profound importance for the correct understanding of the resonant 
transparency of 1D random systems. It has been commonly accepted that, in accordance 
with the celebrated formula (2.4.8), high (not “typical,” exponentially small) transparency 
at a given frequency requires the suppression of the corresponding spatial spectral 
component in the whole sample. A fundamentally new outcome of the above consideration 
is that for arising of a localized eigenmode, which provides resonant transmission, 
it  suffices for the 2kres-harmonic to be suppressed in a much smaller area of size lres ≳ lloc. 
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Obviously, the probability of such a random event is exponentially (with respect to L/lres >> 1) 
larger than that of the same to occur simultaneously in the whole random configuration. 
This not only explains the observed high spectral density of the eigenstate (2.4.3) but also 
provides a background for harnessing disordered 1D systems in designing tunable light-
tailoring devices (see Section 2.4.7).

2.4.4.3  Coupling and Level Repulsion

An adequately long, disordered 1D sample can contain several isolated regions where the 
spectral harmonics with wave numbers close to qres are suppressed. The spatial overlap of the 
wave functions localized in such regions couples these modes and leads to the formation of 
the so-called necklace states, which have been predicted theoretically in the studies by Lifshits 
and Kirpichenkov38 and by Pendry11 and observed and studied experimentally in Refs. 9 and 
39. These states have broadened spectral lines7 and contribute substantially to the overall 
transmission in localized regime. An example of a necklace state is shown in Figure 2.4.6.

Necklace states can be easily incorporated in the modeling scheme as two or more poten-
tial wells coupled by the evanescent fields that tunnel through barriers separating the 
wells.9,32 The temporal dynamics of the field in such a chain of coupled resonators is 
described by a system of oscillator equations with an external force, damping, and coupling 
coefficient, which account for the incident wave, the finite Q-factors, and the spatial overlap 
of the modes, respectively. In the simplest case of two cavities with coordinates d1 and d2, 
the equations that provided an effective description of coupled modes can be written as:32
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Here ψi(τ) is the field in the ith effective resonator, τ = ω0t is the dimensionless time 
(ω0 is a characteristic central frequency of the problem), and 1 − Δi (|Δi| << 1) is the dimen-
sionless (in units of ω0) eigenfrequency of the ith resonator. The effective external force f 
is
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where ψ0 and ν, (|ν − 1| << 1), are the amplitude and the frequency of the external field,  
exciting the first (close to the input) resonator. The coupling coefficient q << 1 of two cavi-
ties, which is due to the spatial overlap of modes, is equal to
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with d being the distance between the effective cavities.
The Q-factors describing the losses of energy in the ith resonator are:40
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where Γi is the dissipation rate in the ith resonator, vg is the wave group velocity inside 
the resonator, and li is the cavity length. The last term in Equation 2.4.42 accounts for the 
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Necklace state. Normalized wave intensity as a function of the coordinate (layer number).
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leakage of the energy from the system; therefore, analogously to Equation 2.4.26, the trans-
mission coefficients T1,2 are given by32
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Substitution ψi = Aiexp(−ivτ) reduces Equations 2.4.38 and 2.4.39 to a couple of algebraic 
equations, from which the eigenfrequencies of two complex independent eigenmodes of 
the system can be found:
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We have assumed here that Q1 = Q2 = Q. Depending on the parameters, Equation 2.4.44 
describes either level anticrossing (level repulsion) or the coupling of isolated resonators to 
form collective eigenmodes. The anticrossing takes place when the eigenfrequencies of 
two cavities come close and are transformed into double-peaked, more extended modes. 
The gap between eigenfrequencies is equal to

	 G qe = ∆ − ∆ +( ) ,1 2
2 2

	 (2.4.45)

and is minimal at the resonance, Δ1 = Δ2. Note that the level repulsion of modes, that is 
generally agreed to be an inherent feature of diffusion, arises here in the regime of strong 
localization. Away from resonance, |Δ1 − Δ2| >> q, the eigenmodes tend to the modes of 
isolated resonators. The shapes of the modes are exchanged when passing through the 
resonance; that is, + (−) eigenmodes correspond to the first (second) resonator at Δ1 << Δ2, 
and to the second (first) resonator when Δ1 >> Δ2.

The frequency (ν) dependences of the amplitudes A1 and A2 of the oscillations induced 
in the cavities by incident monochromatic waves are determined by the ratio between the 
coupling coefficient q and losses Q−1. Both amplitudes are at maximum at two frequencies
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There are two different regimes of the excitation of coupled resonators, depending on the 
value of the qQ factor, as shown in Figure 2.4.7 for the case of identical (Δ1 = Δ2 = 0) cavities.32 
When losses are small, so that the condition qQ > 1 holds, there are two collective anticross-

ing resonant modes with the frequency gap G q QA = − −2 2  and equal field amplitudes in 
both resonators. As qQ decreases, the resonant peaks in the spectra are located near each 
other and meet when qQ = 1. In the regime qQ < 1, there is one peak at ν = 1.

The parameter qQ that appears in the model has a simple physical meaning: it 
determines whether the two resonators should be considered as essentially coupled or 
isolated.  When Q−1 << q, the losses are negligible and the field characteristics are 
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essentially determined by the coupling. Remarkably, in this case the field intensity in the 
first (incoming) resonator is negligible at ν = 1, and almost all the energy is concentrated 
in the second resonator: A2 >> A1. On the contrary, when the losses prevail over the cou-
pling, Q−1 >> q, the incident wave only excites the first resonator, and the energy is con-
centrated mostly in it: A1 >> A2.

2.4.4.4  Bistability of Anderson Localized States in Nonlinear Random Media

A combination of disorder and nonlinearity offers a multitude of striking physical 
phenomena, some of which still remain enigmatic and call for further investigation. In 
particular, nonlinear interactions between electromagnetic radiation and disorder 
influences the interference of the multiply-scattered waves and can affect localization in 
rather unusual ways. This area has long been the subject of keen scientific interest that has 
quickened recently, mostly as a result of the creation of high-power lasers and of the latest 
advancement in studies of Bose–Einstein condensates. Although publications on the 
transport and localization in nonlinear random media are numerous, the overwhelming 
majority of the analytical results have a common shortcoming: they are related to ensem-
ble-averaged characteristics, which are of a little use when individual localized states are 
concerned. A breakthrough in the theoretical study of the disorder-induced resonances 
has been made possible with the above-presented quantum-mechanical deterministic 
model, in which the nonlinearity was incorporated. Surprisingly, this rather simple 
approach not only offered a clearer insight into the physics of the resonances in nonlinear 
random media but also performed well in their quantitative description.13

According to the model, the transmittance spectrum T(k) in the vicinity of a resonant 
wavelength, |k − kres| << kres is given by the Lorentzian dependence
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FIGURE 2.4.7
(See color insert.) Near-resonant transmission of an incident wave through two coupled open resonators at 
different values of qQ. The normalized (i.e., multiplied by the factor 2Q−1) absolute values of the field amplitudes 
in two resonators, |Aout| (a) and |Ain| (b), are shown. (Reprinted with permission from K. Bliokh et al., Rev. 
Mod. Phys. 80, 1201, 2008. Copyright 2008 by the American Physical Society.)
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where Iin and Iout are the intensities of the incident and outgoing waves, respectively. The 
resonant transmission coefficient Tres = T(d) is given by Equation 2.4.32, where d = d(kres).

Obviously, the nonlinearity becomes most noticeable at the points where the resonances 
are located and the intensity is maximal, I = Ires. It changes the effective refractive index of 
the medium leading to the intensity-dependent shift of the resonant wave number: 
k k Ires res res→ � ( ) (Figure 2.4.8).

As the values of Ires and Iout are unambiguously connected, the resonant wave number is 
a function of the output intensity, and Equation 2.4.47 establishes a relation between the 
input and output wave intensities, which in the case of weak Kerr-type nonlinearity is 
cubic with respect to Iout.13 It has a universal form typical of nonlinear resonators with opti-
cal bistability.41 The ultimate dependence Iout(Iin) is of the S-type, and, in some range of 
parameters, the stationary transmission spectrum T(k) is a three-valued function. Typically, 
one of the solutions is unstable, whereas the other two form a hysteresis loop in the Iout(Iin) 
dependence.13 Figure 2.4.8 shows nonlinear deformations of the resonant transmission 
spectra T(k), which at large values of the parameter χIin (χ is the Kerr coefficient) exhibit 
transitions to bistability. The analytical dependence T(k), derived from Equation 2.4.47, 
with parameters found from the numerical experiments, are in excellent agreement with 
the direct numerical simulations.

The adequacy of the model has also been substantiated by numerical modeling in time 
domain. In these simulations, the transitional oscillations and reshaping of the transmit-
ted pulse that typically accompany switching between two regimes of transmission in 
deterministic bistable nonlinear structures42 have been found in disordered nonlinear 
samples. Nonreciprocity (diode-like unidirectional propagation) of resonant tunneling 
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the incident wave. The light-gray stripe indicates the three-valued region. Only the lower and upper branches 
of the transmission spectrum are stable. (Reprinted with permission from I. Shadrivov et al., Phys. Rev. Lett. 
104, 123902, 2010. Copyright 2010 by the American Physical Society.)
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through a nonlinear random structure that stems from the intrinsic asymmetry of disor-
der has also been observed.

2.4.5  Experimental Studies of Resonances

Comprehensive experimental studies of localized states and disorder-induced resonances 
were carried out in the microwave frequency range (14 GHz ≤ f ≤ 20 GHz).9,35 A long metal-
lic single-mode (at these frequencies) waveguide filled with randomly arranged, weakly 
absorbing dielectric slabs were used as 1D disordered system. The experimental setup 
allowed measurements of the complex transmission and reflection amplitudes and the 
complex field inside the waveguide for different random configurations. Figure 2.4.9 
depicts the intensity I(x,f ) ≡ |A(x,f )|2 generated inside a sample by an incident monochro-
matic wave with frequency f, as a function of coordinate x and frequency f.35 Although the 
“fine structure” of the field changes dramatically from sample to sample, the general fea-
tures intrinsic in all 1D disordered systems are clearly recognized in the results of a single 
measurement presented, as an example, in Figure 2.4.9. Localized states (resonances) 
excited by the incident wave are clearly seen in Figure 2.4.9. When b >> 1 (Equation 2.4.36), 
the highest of them are located in the left (close to the input) part of the sample. The trans-
mitted signal is suppressed by losses below the experimental noise and is indiscernible in 
Figure 2.4.9 even at resonant frequencies. At the same time, the resonances manifest them-
selves (and can be easily detected) by sharp dips in the frequency dependence of the reflec-
tion coefficient (see Figure 2.4.10). Moreover, at different values of b (i.e., of Γ) localized 
eigenstates are excited and detectable in reflection in different regions of the system, thus 
providing a possibility for scanning the sample through variations of losses. This means 
that dissipation, which usually impairs the excitation and observation of resonances in 1D 
random samples improves essentially the “observability” of the localized states.
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FIGURE 2.4.9
Intensity versus frequency and position inside the sample. (Reprinted with permission from K. Bliokh et al., 
Phys. Rev. Lett. 97, 2439094, 2006. Copyright 2006 by the American Physical Society.)
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In the study by Blikoh et al.,9 the same setup was used to explore experimentally the 
dynamics of formation of the necklace states and to study their spectral and transport 
properties. Measurements were made in a sequence of configurations in which the spacing 
between two randomly located scatterers could change steps in a controlled way. The posi-
tion at which the air gap was introduced was chosen to correspond to the peak of a single 
Anderson localized mode of the unperturbed random sample. This allowed to manipulate 
the frequency of the selected mode in a manner similar to the tuning of a defect state 
through a band gap in a periodic structure. In doing so, the mode frequency shifted and 
crossed the frequencies of other localized states, which made it possible to study the cou-
pling of modes. Changing the air spacing at points where other states have been localized, 
allowed to couple several localized modes, thereby creating necklace states extended 
throughout the sample. The spectral positions of the localized states as functions of the air 
gap introduced into the sample are plotted in Figure 2.4.11. The frequencies of modes 
either cross or anticross, in reasonable compliance with Equation 2.4.44. Direct measure-
ments of the electromagnetic field inside the samples have revealed that in the case of 
anticrossing (regions 1,2,4,5 in Figure 2.4.11), the coupling within the sample was accompa-
nied by the theoretically predicted exchange of shapes. In contrast, when modes crossed 
(region 3 in Figure 2.4.11) they did not exchange shapes and remained practically indepen-
dent of each other. When the frequencies of the modes were closest, the two localized 
states coupled into double-peaked modes signifying the formation of quasi-extended 
necklace states.

The minimum frequency differences were calculated for the interacting pairs 1,2,4,5 in 

Figure 2.4.11, as G q QA = − −2 2  with q and Q found from Equations 2.4.41 and 2.4.42, and 
then compared to the measured values of the gap. A comparison of the measured and 
calculated data is presented in Figure 2.4.12 for the following parameters of the system:9 
f0 = ω0/2π = 15.5 GHz, lloc = 12 mm, ω0Γ = 7 × 107s−1, and vg = c/2.4. Good agreement exists 
between the experiment and the model.
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FIGURE 2.4.10
Spectrum of reflection for Figure 2.4.9. (Reprinted with permission from K. Bliokh et al., Phys. Rev. Lett. 97, 
2439094, 2006. Copyright 2006 by the American Physical Society.)



79Anderson Localization of Light in Layered Dielectric Structures

Anderson localization of millimeter electromagnetic waves (75–110 GHz) has been stud-
ied experimentally,12 utilizing 100-layer dielectric stacks of randomly shuffled quartz and 
Teflon wafers. Exponentially small transmission at typical frequencies, resonant transmis-
sion at eigenfrequencies, and enhanced absorption have been observed. Slow light and 
superluminal group velocities, which in contrast to photonic crystals were not associated 
with any periodicity in the system, have also been discovered.
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2.4.5.1  Inverse Scattering Problems and Remote Sensing of Disordered Samples

Microwave experiments9,12,35 made it possible to test immediately the validity of the model 
introduced in Section 2.4.4. Theoretical predictions based on the model have been checked 
against the results of measurements carried out at a large number of random configurations 
and in a wide range of parameters. It turned out that Equations 2.4.23 and 2.4.32 through 
2.4.35 not only provided a new insight into the physics of the experimentally observed fea-
tures presented in the previous subsection but also were in a good quantitative agreement 
with the measured data. This was made possible using these equations as a basis for formu-
lation and solving a classical wave inverse problem: retrieval of internal characteristics of a 
medium of propagation from parameters of the external fields. In practice, an algorithm of 
remote sensing of random samples have been developed, which has enabled nonintrusive 
detection and monitoring of the disorder-induced resonances and determination of the 
absorption and localization lengths by measuring the reflected and transmitted fields. The 
algorithm is very simple. Indeed, Equations 2.4.23 and 2.4.32 through 2.4.35 can be treated 
as four algebraic equations for four unknowns, and by solving them one can find the loca-
tion, d, and the size, lres, of an effective cavity for each resonant frequency, and the localiza-
tion and absorption lengths of the sample. Then, the intensity, Ares, pumped in a cavity by 
the incident wave can be calculated by Equation 2.4.30.

In such a manner, these parameters had been retrieved in Ref. 12 for many disordered 
configurations, using the directly measured values of Tres, Rres, δf = cδkres, and lloc. An exam-
ple is presented in Table 2.4.1. Shown in columns 2, 3, and 4 are 1 − Rres, Tres, and δf, respec-
tively, measured for the resonances indicated in column 1. The loss tangent, 
tan( )α ε= Γc f/ Re 0 , is given in column 6. The value of the loss tangent averaged over the 
five resonances equals 8.35 × 10−4. The genuine weighted loss tangent for the disordered 
quartz/Teflon system was 5.2 × 10−4, so that the measured and retrieved values of the 
absorption agreed to within the accuracy of the experiment. Similar experiments in the 
centimeter-wavelength range35 also yielded retrieved data consistent with the true 
values.

The remote sensing procedure can be also applied for monitoring nonlinear disordered 
samples. In this instance, Tres, kres, and Q are determined from the transmission spectrum 
in the linear regime as it was described above, and the additional external parameter of the 
medium—Kerr coefficient—is retrieved from the measured shift of the transmission spec-
tral line when the intensity changes. This enables one to obtain the whole dependence 
Iout(Iin, k) for any given resonance performing external measurements of T(k) at only two 
different intensities of the incident wave.

TABLE 2.4.1

Measured and Calculated Parameters Associated with Five Resonances

Frequency (GHz) 1 – Rres Tres δf (GHz) G e◊/ 102 tan α · 104

f1 = 83.5 0.978 0.75 0.40 0.83 4.77

f2 = 92.0 0.998 0.33 0.39 2.6 13.45

f3 = 105.7 0.993 0.31 0.34 2.25 10.14

f4 = 101.8 0.87 0.18 0.25 1.33 6.22

f5 = 99.8 0.77 0.30 0.45 1.5 7.16

Source:	 Reprinted with permission from J. Scales et al., Phys. Rev. B 76, 085118, 2007. Copyright 2007 by the 
American Physical Society.

Note:	 The localization length is 1 cm (obtained from the nonresonant transmission coefficient).
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2.4.6  Anderson Localization in Exotic Materials

2.4.6.1  Suppression of Anderson Localization in Disordered Metamaterials

The theoretical study of any newly discovered physical phenomenon or laboratory-created 
material always starts from a simplified, ideal model, which makes it possible to under-
stand the underlying principles and to explain the basic features observed in the pioneer-
ing experiments. More in-depth investigations call for more realistic models. Sooner or 
latter, in particular when it comes to applications, taking account of disorder becomes nec-
essary. Such is indeed the case in the current status of research on metamaterials and 
graphene.

Unusual physical properties of metamaterials open up unique possibilities for numer-
ous applications in modern optics and microelectronics. As all real metamaterials are 
always disordered (mostly as a result of inevitable fabrication errors), the investigation of 
the effects of random scattering on their transport properties is not only a fundamental 
academic problem but is also of significant practical importance.

The analytical and numerical analyses based on the transfer matrix method presented 
in Section 2.4.3 show that in stratified media with alternating layers of right- and left-
handed materials (mixed stacks), the localization properties differ dramatically from 
those exhibited by conventional disordered materials. In particular, at long wavelengths, 
the localization length of mixed stacks with random refractive indices and nonfluctuat-
ing thicknesses is proportional to the sixth power of the wavelength, the result that has 
been neither predicted nor observed in conventional 1D random media.14,15 It means 
that left-handed metamaterials can substantially suppress Anderson localization in 1D 
disordered systems. The suppression reveals itself also in the vanishing of the disorder-
induced resonances when left-handed layers are added to a random stack of normal 
dielectrics. This is attributable to the lack of phase accumulation over a mixed sample, 
due to the cancellation of the phase across alternating left- and right-handed layers. 
When both refractive index and thickness of the layers constituting a mixed stack fluctu-
ate the transmission length in the long-wave range of the localized regime exhibits the 
well-known quadratic power wavelength dependence with different coefficients of pro-
portionality for mixed and homogeneous (only metalayers) random stacks. However, the 
transmission length of a mixed stack differs from the reciprocal of the Lyapunov expo-
nent of the corresponding infinite stack, presenting a unique example of a 1D disordered 
system, in which the localization and transmission lengths are different. In contrast to 
normal disordered materials, the characteristic ballistic and localization lengths of 
mixed stacks are also different, at least in the weak scattering limit. The crossover region 
from localization to the ballistic regime is relatively narrow for both mixed and homo-
geneous stacks.

Polarization effects have been considered in Ref. 36. It is shown that the transport length 
strongly depends on the angle of incidence for both vertical (p) and horizontal (s) polariza-
tions of the incident wave. In particular, when the angle of incidence exceeds a critical 
angle, an additional exponential decay arises due to the internal reflection from the indi-
vidual layers. In mixed stacks with only refractive-index disorder, p-polarized waves are 
strongly localized, whereas for the s-polarization the localization is substantially 
suppressed at all angles of incidence. The Brewster anomaly angle depends on both 
the polarization and the nature of disorder, that is, disorder in either the permittivity or 
the permeability. For incidence at the Brewster angle, localization is suppressed, and, in 
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contrast to the case of normal incidence, the localization length is proportional to the 
square of the variance of the fluctuations rather than to the variance itself.

The effects of absorption on 1D transport and localization have been studied both ana-
lytically and numerically.15 It turns out that the crossover region is particularly sensitive to 
losses, so that even small absorption noticeably suppresses frequency-dependent oscilla-
tions in the transmission length. The disorder-induced resonances, which present an 
important signature of the localization regime, are also strongly affected (suppressed) by 
absorption.

The frequency dependence (dispersion) of the permittivity, ε, and/or permeability, μ, has 
a profound effect on Anderson localization leading to rather unusual, sometimes counter-
intuitive phenomena. The most exotic behavior is observed in mixed stacks at the frequen-
cies, at which ε or μ turns to zero. In this instance, the waves are delocalized for normal 
incidence, whereas the localization is enhanced when disorder is present in both permit-
tivity and permeability of the layers.

2.4.6.2  Transport and Localization in Disordered Graphene Superlattices

Shortly after the discovery of highly unusual physical properties of graphene, it was real-
ized that the electron transport in this material had many common features with the prop-
agation of light in dielectrics. In mathematical terms, under some (rather general) 
conditions, Dirac equations describing the charge transport in a graphene superlattice cre-
ated by applying an inhomogeneous external electric potential could be reduced to 
Maxwell equations for the propagation of light in a dielectric medium. The role of the 
refractive index of this effective medium is played by the quantity neff = E − U, where E and 
U are, respectively, the dimensionless energy of the charge carrier and the scalar potential 
of the external electric field. It is easy to see that if the potential is a piecewise constant 
function of one coordinate, the corresponding graphene superlattice reproduces a layered 
dielectric structure.17 In particular, a layer, in which the potential exceeds the energy of the 
particle, U > E, is similar to a slab with negative refractive index (metamaterial). It is 
because of this similarity that a junction of two regions having opposite signs of E − U (so-
called p–n junction) focuses Dirac electrons in graphene in the same way as an interface 
between left- and right-handed dielectrics focuses electromagnetic waves.43 However, the 
analogy is not complete: although the equations are akin, the boundary conditions are, 
generally, different. Comparing these conditions one can infer that in the particular case of 
normal incidence, the transmission of Dirac electrons through a junction is similar to the 
transmission of light through an interface between two media with different refractive 
indices but equal impedances. Such an interface is absolutely transparent to light and 
therefore to the Dirac electrons in graphene as well. This explains the Klein paradox (per-
fect transmission through a high potential barrier) in graphene systems, and leads to the 
surprising conclusion that Dirac electrons are delocalized in a disordered 1D graphene 
structure, providing a minimal nonzero overall conductivity, which cannot be destroyed 
by fluctuations, no matter how strong they are.44 Nevertheless, many features of Anderson 
localization can be found in random graphene systems.17 There exist a discrete random set 
of angles (or a discrete random set of energies for each given angle) for which the corre-
sponding wave functions are exponentially localized. Depending on the type of unper-
turbed system, the disorder could either suppress or enhance the transmission. The 
transmission of a graphene system built of alternating p–n and n–p junctions has an 
anomalously narrow angular spectrum and, in some range of directions, it is practically 
independent of the amplitude of the fluctuations of the potential.



83Anderson Localization of Light in Layered Dielectric Structures

Disorder manifests itself in various other situations, including graphene devices consid-
ered in Ref. 48, and the localization of acoustics waves in disordered and partially disor-
dered one-dimensional structures.49–53

2.4.7  Conclusion

The term “disorder” usually bears a negative connotation. It is deemed obvious (both in 
everyday life and in physics and engineering as well) that irregularities are always injuri-
ous and detrimental. Contrary to this widely held view, here we argue that if treated prop-
erly, disorder can be taken advantage of in numerous technical applications. The unique 
spectral properties of wave transport in the localized regime presented in this chapter lead 
one to believe that exploiting randomness can be an effective strategy for creating light-
tailoring devices, in particular switchable mirrors and tunable resonant micro- and 
nano-cavities.

Nowadays photonic crystals are the most extensively used for these purposes. The abil-
ity of perfectly periodic structures to manipulate light have long been demonstrated with 
regard to high-Q cavity resonances, spontaneous emission control, cavity quantum elec-
trodynamical effects, and so on.45 However, although in laboratory studies photonic crys-
tals perform wholly satisfactorily, practical applications are frequently problematic because 
of the heavy demands on the accuracy of manufacturing: even small deviations from peri-
odicity could modify dramatically the optical characteristics and hinder the performance 
of crystal-based devices. That is why significant effort and financial resources are expended 
to eliminate disorder and to develop pure, ideally regular structures. Yet, a different 
approach is a possibility: rather than combat the imperfections in periodicity, one can 
attempt harnessing highly disordered samples as high-Q resonators in optical and micro-
wave switches, filters, and amplifiers. Despite the random character of Anderson modes, 
their behavior and evolution are rather deterministic, and, therefore, these modes can be 
used for efficient control of light similar to regular cavity modes.

To suit the optical device designer’s requirements, the transmission should be fast-tun-
able. Resonant cavities in photonic crystals are created by implanting specially designed 
defects. Then, the transmission can be controlled by varying the spacing between the given 
frequency of the incident radiation and the resonant frequency of the cavity, which has to 
be easily tunable. However, any shift of the spectral line usually requires structural changes 
of the whole sample,45,46 which makes such methods practically unusable.

As the localization length (and therefore the typical transmission coefficient) of a 1D ran-
dom configuration is determined by the power spectrum of disorder, Equation 2.4.8, it is 
obvious that the frequency spectrum of the transmission can be tailored by varying the 
spatial structure of the correlation function.47 Although the physical idea is trivial, its imple-
mentation for designing fast-tunable optical devices is problematic because, just as it is in 
the case of photonic crystals, it needs a rearrangement of the sample as a whole. This how-
ever does not mean that unique transport properties of disordered systems cannot be uti-
lized. More sophisticated analysis of the nature of the disorder-induced resonances leads to 
the conclusion that they are extremely sensitive to changes of the parameters of the medium 
only inside the effective cavities where eigenmodes are localized. Figure 2.4.13 presents the 
numerically calculated dependence of the resonant transmission coefficient on the variations 
of the dielectric constant, T(δε), in an area occupying 1/50 of the total length of a random 
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stack of layers. It is seen that 1% change in the permittivity only in this area already results 
in a decrease in T by the factor 103. This example gives good grounds to believe that one can 
switch a sample from reflection to transmission or tune the emission of a source located 
inside the sample by external actions; for example, illuminating it by electromagnetic radia-
tion that changes the dielectric constant of the material due to nonlinear effects.
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