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2.4.1 Introduction 

Wave	propagation	in	disordered	media	is	a	rich	and	long-standing	problem	that	attracts	
many	 efforts,	 both	 theoretical	 and	 experimental.	 After	 almost	 a	 century	 of	 a	 complete	
sway	 of	 radiative	 transport	 and	 diffusion	 approaches,	 it	 recently	 became	 clear	 that	
the	 interference	 of	 multiply-scattered	 fields	 (which	 is	 neglected	 in	 classical	 diffusion	
theory)	dramatically	affects	all	wave	processes,	especially	 in	systems	with	fluctuations.	
The	most	startling	manifestation	of	this	effect	is	the	strong	localization	of	electromagnetic	
radiation	in	weakly-disordered	random	media.	Since	Anderson’s	seminal	paper,1	localiza-
tion	 has	 attracted	 ever-increasing	 attention	 from	 physicists	 and	 engineers.	 Without	
attempting	 an	 exhaustive	 review	 of	 available	 literature	 we	 note	 that	 the	 bibliography	
related	to	this	rather	young	area	already	numbers	in	hundreds	of	original	articles,	reviews,	
and	 books	 (see,	 e.g.,	 the	 review,2	 the	 monographs,3	 and	 references	 therein).	 Worthy	 of	
notice	are	the	great	number	of	meetings	dedicated	to	the	50	years’	anniversary	of	Anderson	
localization	(half-a-year	non-stop	workshop	in	Cambridge,	conferences	in	Paris,	Dresden,	
Santa	Barbara,	etc.)	where	physicists,	mathematicians,	chemists,	engineers,	biologists,	and	
even	economists	not	only	presented	a	plethora	of	new	results	but	also	formulated	a	great	
many	challenging	questions.

A	boost	to	the	studies	of	Anderson	localization	in	disordered	optical	and	quantum	sys-
tems	was	given	recently	by	the	creation	of	new	materials	with	unique	properties	that	have	
spurred	 the	 rise	 of	 new	 conceptual	 challenges	 and	 high-tech	 applications.	 The	 most	
impressive	latest	examples	include	photonic	crystals,	plasmonics,	left-handed	metamateri-
als,	Bose–Einstein	condensates,	and	graphene.	Yet	it	should	be	remembered	that	most	of	
the	prospects	for	potential	technological	use	of	these	materials	rest	on	the	predicted	prop-
erties	of	ideal	(e.g.,	perfectly	periodic)	systems.	Even	a	small	amount	of	disorder,	however,	
which	is	inevitably	present	in	any	real	sample,	could	affect	its	properties	dramatically	(see	
Figure	2.4.1).	Therefore,	when	it	comes	to	real	applications,	a	comprehensive	study	of	the	
effects	of	disorder	is	a	must.	Moreover,	these	investigations	are	of	interest	by	itself	because	
strongly	 disordered	 (with	 no	 periodic	 component)	 systems	 possess	 further	 unexpected	
physical	properties,	which	make	them	potentially	useful	as	an	alternative	to	the	pure	peri-
odic	configurations.

One-dimensional	(1D)	strong	localization	has	received	the	most	study,	both	analytically	
and	numerically.	In	particular,	the	localization	of	the	eigenstates	in	closed	1D	disordered	
systems	 and	 the	 exponentially	 small	 (with	 respect	 to	 the	 length)	 transparency	 of	 open	
systems	with	1D	disorder	have	been	scrutinized	with	mathematical	rigor	(e.g.,	see	Ref.	4	
and	references	therein).

The	most	common	physical	manifestation	of	localization	is	the	fact	that	sheets	of	per-
fectly	transparent	paper	stacked	together	in	large	numbers	reflect	light	as	a	good	mirror.5	
Much	less	evident	(though	long	predicted	theoretically6)	is	that	for	each	sufficiently	long	
disordered	1D	sample,	there	exists	a	random	set	of	frequencies	that	go	all	the	way	through	
the	sample	almost	unreflected,	that	is,	with	the	transmission	coefficient	close	to	unit.	High	
transparency	is	always	accompanied	by	a	relatively	large	concentration	(localization)	of	
energy	around	randomly	 located	points	 inside	 the	system.	Along	with	 these	“classical”	
trademarks	of	strong	localization	there	is	a	plethora	of	not-less-amazing	effects	that	disor-
der	can	set	up	in	one	dimension.	Examples	are:	random	lasing,7,8	critical	coupling,9	neck-
lace	states,10,11	level	crossing	and	repulsion,9	slow	light	and	superluminal	group	velocities,12	
bistability	 and	 nonreciprocity	 of	 resonant	 transmission	 in	 nonlinear	 random	 media,13	
delocalization	in	metamaterials,14−16	and	in	graphene	superlatices,17	and	so	on.
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Although,	generally,	a	disordered	1D	system	is	a	mathematical	abstraction,	it	can	provide	
an	adequate	model	for	many	actual	physical	objects.	For	example,	randomly	stratified	media	
are	found	in	numerous	geological	and	biological	settings,	as	well	as	in	fabricated	materials.	
Interference	 of	 waves	 in	 such	 systems	 determines	 the	 transport	 of	 seismic	 waves	 in	 the	
earth’s	 crust	 and	 sonic	 waves	 in	 the	 oceans;	 reflection	 and	 transmission	 from	 multilayer	
dielectric	stacks	used	as	optical	reflectors,	filters,	and	lasers;	propagation	and	localization	in	
single-mode	optical	fibers	and	microwave	waveguides,	etc.	Even	more	important,	it	may	be	
possible	to	utilize	highly	disordered	samples	for	many	applications.	For	instance,	tunable	
switches	or	narrow-line	laser	sources	can	be	created	using	randomly	stacked	systems.

Although	the	strong	localization	of	waves	in	1D	random	media	has	been	well	studied	
theoretically,	most	of	the	analytical	results	have	been	obtained	for	values	averaged	over	
ensembles	of	 random	realizations.	These	 results	are	physically	meaningful	 for	 the	self-
averaging	Lyapunov	exponent	(inverse	localization	length),	which	becomes	nonrandom	in	
the	macroscopic	limit.	For	non-self-averaging	quantities	(field	amplitude	and	phase,	inten-
sity,	 transmission	and	 reflection	coefficients,	 etc.),	 a	 system	of	any	size	 is	 always	meso-
scopic,	and,	therefore,	mean	values	have	little	to	do	with	the	measurements	at	individual	
(usually	small	in	number)	samples.	This	is	most	pronounced	when	it	comes	to	disorder-
induced	resonances	whose	parameters	are	extremely	sensitive	to	the	fine	structure	of	a	
particular	sample	and	strongly	fluctuate	from	realization	to	realization.	In	particular,	the	
ensemble	averaging	wipes	out	all	information	about	the	frequencies	and	locations	of	indi-
vidual	 localized	 states	 within	 a	 particular	 sample,	 even	 though	 just	 this	 set	 of	 data	 is	
essential	for	applications.	Another	frustrating	inconsistency	between	most	of	the	existing	
theories	 and	 measurements	 is	 that	 in	 real	 systems,	 losses	 (absorption	 and	 leakage)	 are	
inevitably	 present,	 whereas	 mathematicians	 and	 theoreticians	 usually	 prefer	 lossless	
(Hermitian)	models	that	are	much	easier	to	deal	with.
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FIGURE 2.4.1
Transmission	spectra	of	a	regular	periodic	sample	(thick	black	line)	and	of	a	sample	whose	period	fluctuates	in	
the	range	of	1%.
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In	this	chapter,	we	present	a	brief	overview	of	methods	and	results	regarding	the	trans-
port	and	localization	in	disordered	1D	systems,	followed	by	a	detailed	description	of	the	
current	state-of-the-art	in	theoretical	and	experimental	studies	of	the	resonant	properties	
of	randomly	layered	media.

2.4.2 Lyapunov Exponent, Localization, and Transmission Lengths

Consider	the	1D	Helmholtz	equation

	 ′′ + + =u x k x u x( ) [ ( )] ( )2
0 0ε δε 	 (2.4.1)

with	the	self-adjoined	(currentless)	boundary	condition	at	a	point	x0

	 u x au x( ) ( ) ,0 0 0+ ′ = 	 (2.4.2)

where	a	is	any	real	number.	It	is	easy	to	show	that	Equation	2.4.2	means	that	the	modulus	
of	the	reflection	coefficient	from	the	point	x0 equals	to	one.	The	functions	ξ	and	φ	deter-
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satisfy	the	following	(nonlinear)	equations:
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Assuming	that	δε(x)	is	a	statistically	homogeneous	random	function	with	zero	average,	
δε( )x = 0 ,	 and	 disappearing	 at	 infinity	 correlations,	 W x x

x
( ) ( ) ( )= →→∞δε δε0 0 ,	 the	

	following	 statement	 is	 true:4	 in	 the	 limit	 |x|	→	∞,	 the	 ratio	 ξ(x,k)/x	 approaches	 a	 non-	
random	limit	that	is	positive	for	all	k:
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In	principle,	this	result	follows	from	the	Furstenberg	theorem,18	which	holds	that,	under	
some	conditions,	the	specific	logarithm	of	the	product	of	N	transfer	matrices	Mj	tends	to	a	
positive	limit	as	N	goes	to	infinity:
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Equation	2.4.5	presents	two	fundamental	properties	of	a	1D	random	system	satisfying	
the	above-listed	conditions:

	 1.	The	 Lyapunov	 exponent,	 γ(k),	 is	 a	 self-averaging	 quantity;	 that	 is,	 at	 any	 single	
random	 realization	 it	 tends	 to	 the	 ensemble-averaged	 nonrandom	 mean	 value	
when	the	size	of	the	realization	increases	infinitely.

	 2.	For	 a	 single	 random	 realization,	 the	 amplitude	 of	 the	 wave	 function	 increases	
exponentially	with	nonrandom	increment	γ(k)	on	both	sides	of	the	point,	at	which	
the	currentless	boundary	condition	(2.4.2)	holds.

The	inverse	of	the	Lyapunov	exponent

	
lloc = 1

2γ 	
(2.4.6)

is	called	the	localization	length.	The	meaning	of	this	term	becomes	clear	if	one	considers	
two	solutions	of	Equation	2.4.1,	u1(x)	and	u2(x),	in	the	interval	0	≤	x	≤	L	(closed	1D	system),	
each	satisfying	the	boundary	condition	(2.4.2)	at	x	=	0	and	x	=	L,	respectively,	and	therefore	
each	 increasing	 exponentially	 away	 from	 these	 points.	 An	 eigenfunction,	 ψn(x),	 of	 this	
system	can	be	constructed	from	u1(x)	and	u2(x)	under	the	condition	that	these	functions	
and	their	derivatives	match	at	some	point	xn	inside	the	interval.	Obviously,	an	eigenfunction,	
ψn(x),	obtained	in	this	way	is	localized;	that	is,	its	envelop,	A2(x),	decreases	exponentially	
on	both	sides	of	xn:
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In	the	case	of	the	white-noise	disorder	[δε(x)	is	a	δ-correlated	random	process],	the	closed	
Fokker–Planck	equation	for	the	probability	density	distribution,	P(ξ,	z),	of	the	quantity	ξ(x)	
can	be	derived	and	solved	using	a	averaging	over	rapid	random	phase.4,19	This	is	impossi-
ble	 if	 δε(x)	 has	 a	 finite	 correlation	 radius,	 and	 the	 random-phase	 approximation	 breaks	
down	 (as	 well	 as	 the	 single-parameter	 scaling	 theory	 of	 localization).	 In	 this	 case,	 the	
ordered	 cummulant	 method	 of	 Van-Kampen	 can	 be	 used	 to	 obtain	 the	 weak	 disorder	
expansion	of	the	Lyapunov	exponent	γ(k).20	The	first	term	of	this	expansion	can	be	obtained	
from	Equation	2.4.4	by	solving	the	equation	for	the	phase	perturbatively	and	substituting	
the	result	into	the	integral	for	ξ(x,k).	The	limit	|x|	→	∞	yields	the	famous	result
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which	means	that	the	localization	is	due	to	the	resonant	Brag	backscattering	provided	by	
the	2k	Fourier	component	of	 the	random	potential.	Higher	orders	of	 the	weak	disorder	
expansion	have	been	calculated	and	can	be	found	in	the	literature.20,21

The	notion	of	the	Lyapunov	exponent	is	related	to	the	eigenvalues	boundary	problem,	
and	therefore	is	well	defined	only	for	closed	disordered	systems.	From	the	physical	point	
of	view,	not	less	relevant	is	the	scattering	problem	that	addresses	the	transmission,	reflec-
tion,	and	propagation	in	open	structures	with	fluctuating	parameters.
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Transport	properties	of	a	1D	system	of	a	finite	length	L	can	be	described	by	the	transfer	
matrix	 M̂ ,	which	relates	the	amplitudes	of	the	incident	(AL )	and	outgoing	(BL)	waves	on	
one	side	of	the	sample	to	those	on	the	other	side	(AR	and	BR ):
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Assuming	time-reversal	invariance,	the	transfer	matrix	M̂ 	can	be	written	as
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where	t T i= exp( )φt ,	and	r T i= −1 exp( )φr 	are	the	transmission	and	reflection	ampli-
tudes,	respectively;	T	≡	|t|2	is	the	transmission	coefficient.	In	what	follows,	the	quantity	

l L T LLtr( ) ln ( )= − 
−11

2 	is	called	the	transmission	length.
Evidently,	the	solution	of	the	boundary	value	problem	(2.4.1),	(2.4.2)	and	the	solution	of	

the	scattering	problem	in	the	limit	L	→	∞	are	uniquely	related;	that	is,
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where	 ˆ ′M 	is	an	elementary	linear	transformation	of	the	transfer	matrix	M̂ .
When	the	size	L	of	the	system	is	much	larger	than	the	localization	length	lloc,	the	trans-

mission	 coefficient	 T	 becomes	 exponentially	 small	 (with	 the	 probability	 exponentially	
close	to	one),	and	statistically	independent	of	the	phases	ϕt	and	ϕr.	As	a	result,	each	matrix	
M̂ 	and	 ˆ ′M 	 factorizes	into	a	product	of	a	large	factor	1/ T 	and	a	matrix	of	the	order	of	
unity,	which	is	statistically	independent	of	T.	This	means	that,	asymptotically	for	large	L,	
one	can write
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where	the	second	term	in	the	asymptotic	expansion	is	independent	of	the	first	one,	and	
their	cummulants	are	of	the	order	of	unity.	Apparently,	in	the	limit	L	→	∞,	the	transmis-
sion	length	coincides	with	the	inverse	Lyapunov	exponent	(localization	length):

	 l ltr loc= . 	 (2.4.12)

This	 fact	 is	generally	 recognized.	However,	 it	was	shown	recently14	 that,	 surprisingly	
enough,	 lloc	and	 ltr	 can	be	different	 in	stacks	made	of	alternating	right-	and	 left-handed	
dielectric	layers	with	random	refractive	indices	and	thicknesses.
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The	 equality	 Equation	 2.4.12	 means,	 in	 particular,	 that	 the	 localization	 length	 can	 be	
probed	 noninvasively	 from	 the	 transmission	 coefficient,	 without	 measurements	 of	 the	
field	amplitude	inside	random	samples.

2.4.3 Statistics of the Transmission in 1D Disordered Systems

2.4.3.1 Transport and Localization in Randomly Layered Media

2.4.3.1.1  Normal Incidence: Transfer Matrix Method

One	of	the	most	efficient	theoretical	methods	of	studying	general	properties	of	transmis-
sion	in	1D	disordered	systems	is	based	on	the	composition	rule	for	a	chain	of	statistically	
identical	and	independent	random	scatterers.22	For	stratified	media,	the	method	is	straight-
forward	and	involves	the	calculation	of	the	transfer	matrix	 M̂ 	using	the	following	exact	
recurrence	relations	for	the	transmission	coefficients	(for	details,	see	Ref.	14	and	references	
therein):
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Here	Tn	and	Rn	are,	respectively,	the	total	transmission	and	reflection	coefficients	of	a	
stack	of	n	layers,	tn	and	rn	are	the	(complex)	transmission	and	the	reflection	amplitudes	
of	a	single	layer.	Equations	2.4.13	and	2.4.14	are	general	and,	taking	into	account	all	mul-
tiply-scattered	 fields,	 present	 exact	 solutions	 that	 can	 be	 used	 for	 direct	 numerical	
simulations.

For	a	sample	composed	of	N	 statistically	 identical	and	 independent	random	layers	of	
normal	(with	positive	refractive	index)	dielectrics,	the	following	expression	for	the	average	
inverse	transmission	length	can	be	derived	from	Equations	2.4.13	and	2.4.14:14

	

1 1 1 1

1

2
2

2
2l N l Nd

r
t

t

N

tr loc
Re

( )
,= +

−

−( )














 	

(2.4.15)

where	d	is	the	average	width	of	the	layers,	and	the	inverse	localization	length	is
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Note	 that	 when	 N	→	∞,	 Equation	 2.4.15	 transforms	 into	 Equation	 2.4.12,	 that	 is,	 the	
localization	and	transmission	lengths	become	equal.
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In	the	case	of	weak	scattering,	the	reflection	from	a	single	layer	is	small,	|rn|	<<	1	and	
Equation	2.4.16	yields:
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In	 the	derivation	of	Equation	2.4.17,	 it	was	assumed	 that	 the	width	of	 each	 layer	was	
distributed	 uniformly	 over	 the	 interval	 [d	−	δ,	 d	+	δ],	 and	 the	 refractive	 index	 did	 not	
fluctuate.	Nevertheless,	the	functional	λ-dependences,	Equation	2.4.17,	of	the	localization	
length	in	weakly	disordered	systems	are	rather	general	(e.g.,	see	Ref.	23).

2.4.3.1.2  Oblique Incidence: Reduction to the Oscillatory Problem

An	original	efficient	method	of	calculating	the	localization	length	was	developed	in	Ref.	
24.	It	uses	the	fact	that	the	reflection	from	an	adequately	long,	randomly	layered	sample	
differs	from	unity	by	an	exponentially	small	number,	1	−	R(L)	~	exp(−L/lloc),	and,	therefore,	
the	flux	along	the	system	is	also	exponentially	small.	This	a priori	information	enables	one	
to	assume	(with	an	exponential	accuracy)	that	the	field	in	each	layer	inside	the	sample	is	a	
standing	wave,	and	to	reduce	the	wave	propagation	problem	to	the	oscillatory	one,	with	
the	real-valued	wave	amplitude	being	a	single	unknown.	This	simplifies	the	problem	sig-
nificantly	as	compared	to	the	conventional	transfer	matrix	method,	where	the	evolution	of	
two	independent	waves	in	each	layer	is	considered.	Using	this	method,	the	oblique	inci-
dence	of	electromagnetic	waves	on	a	randomly	layered	medium	was	studied.24	Two	effects	
not	found	at	normal	incidence	were	predicted:	dependence	of	the	localization	length	on	
the	polarization	and	the	decrease	of	the	localization	length	as	a	result	of	the	internal	reflec-
tions	from	layers	with	small	refractive	indices.	The	attenuation	rate	for	p-polarized	radia-
tion	is	shown	to	be	always	smaller	than	that	of	s-polarized	waves,	which	is	to	say	that	an	
adequately	long,	randomly	layered	sample	polarizes	transmitted	radiation.	The	localiza-
tion	length	for	p-polarization	depends	nonmonotonically	on	the	angle	of	propagation	and,	
under	certain	conditions,	turns	to	infinity	at	some	angle,	which	means	that	typical	(non-
resonant)	 random	realizations	become	transparent	at	 this	angle	of	 incidence	 (stochastic	
Brewster	effect).

2.4.3.2 Transport and Localization in Continuous Active Media

2.4.3.2.1  Invariant Embedding Method

An	alternative	approach	to	the	1D	random	scattering	problem	is	the	invariant	embedding	
method,25	which	amounts	to	finding	the	solution	of	the	following	system	of	(exact)	first-
order	Langevin-type	equations	for	the	reflection	and	transmission	coefficients:
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Equations	2.4.18	and	2.4.19	can	be	treated	statistically	by	means	of	exact	numerical	calcula-
tions	and	approximate	analytical	methods	as	well.	A	Fokker–Planck	equation	can	be	derived,	
which,	in	the	case	of	the	white-noise	disorder,	yields	the	distribution	function	for	the	reflec-
tion	coefficient	R(L)	=	|r(L)|2.	In	the	absence	of	absorption	or	amplification,	this	distribution	
function	provides	complete	information	on	the	transmission	coefficient	T	=	|t(L)|2.

The	 problem	 becomes	 much	 more	 complicated	 in	 the	 case	 of	 lossy	 media	 where	 the	
energy	conservation	law	not	only	connects	T	and	R	but	also	involves	a	random	amount	of	
the	absorbed	intensity.	In	the	paper,26	the	asymptotically	exact	expressions	for	all	moments	
of	the	transmission	coefficient	have	been	obtained	by	mapping	the	Fokker–Planck	prob-
lem	onto	a	Shrödinger	equation	with	imaginary	time.	In	particular,	it	has	been	shown	that	
in	the	case	of	small	absorption,	lloc	<<	la	(la	is	the	absorption	length),
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is	a	disorder-induced	absorption	length,	which	lies	between	the	localization	and	absorp-
tion	lengths,	see	Ref.	26

	 l l laloc in� � .

This	means	that	in	the	localized	regime,	the	disorder	causes	drastic	enhancement	of	the	
attenuation	of	the	average	transmission	coefficient	as	compared	to	that	in	the	correspond-
ing	pure	(δε	=	0)	sample	(lin	<<	la).	Note	that	the	disorder-induced	absorption	length	for	the	
localized	waves,	Equation	2.4.21,	is	also	significantly	smaller	(i.e.,	the	effect	of	absorption	
is	much	stronger)	than	that	in	the	diffusive	regime:	l l lain loc� .

In	contrast	to	Equation	2.4.20,	the	contributions	from	scattering	and	absorption	to	the	
average	 decrement	 of	 the	 transmission	 coefficient	 (or	 to	 the	 Lyapunov	 exponent)	 are	
additive:
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It	can	be	shown	that	ln	〈T(L)〉	and	〈lnT(L)〉	are	different	not	only	in	lossy	media	(compare	
Equations	 2.4.20	 and	 2.4.22)	 but	 also	 in	 nonabsorbing	 (la	→	∞)	 systems.	 This	 is	 because	
lnT(L)/L	 is	 a	 self-averaging	 quantity	 (see	 Equations	 2.4.8	 and	 2.4.11),	 with	 very	 narrow	
distribution	 (δ	 function	at	L	→	∞)	 centered	at	 its	mean	value.	This	means	 that	at	a	 ran-
domly	chosen	realization,	lnT(L)	will	be	found	in	a	small	vicinity	of	its	average	value	with	
a	probability	exponentially	close	to	one,	and	therefore	the	value	of	a	function	F[lnT(L)]	will	
be	close	to	F[〈lnT(L)〉]	with	the	same	probability.	In	particular,	the	transmission	coefficient	
typically	is	exponentially	small:
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On	 the	 other	 hand,	 T(L)	 itself	 is	 a	 strongly	 fluctuating	 random	 variable	 with	 broad	
distribution.	It	turns	out	that	the	main	contribution	to	its	average	value	comes	not	from	the	
typical	 (nontransparent)	 realizations	 but	 from	 low-probable	 ones,	 so-called	 resonant	
realizations	(see	Section	2.4.4),	corresponding	to	the	non-Gaussian	tail	of	the	distribution	
of	 lnT,	 where	 the	 transmission	 coefficient	 is	 of	 the	 order	 of	 unity.	 This	 is	 due	 to	 these	
resonantly	transparent	realizations	that	the	average	transmission	is	much	larger	than	the	
typical	one.	For	example,4	in	the	lossless	media	with	delta-correlated	disorder
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while	both	Ttyp(L)	and	〈T(L)〉	are	exponentially	decaying	functions	of	L	(the	difference	is	in	
the	attenuation	rate).	More	than	that,	there	are	quantities	for	which	the	typical	and	mean	
values	have	completely	different	functional	dependencies.	An	example	of	how	misleading	
a	formally	calculated	mean	value	can	be	is	the	energy	flux,	J	=	2Im(u*u′),	created	by	a	point	
source	located	at	the	perfectly	reflecting	edge	(x	=	0)	of	a	disordered	sample	of	length	L.	As	
shown	in	Ref.	2,	the	mean	flux	does	not	interact	with	disorder	and	is	equal	to	its	value	in	
the	 homogeneous	 sample:	 〈 J(L)〉	=	2/k.	 This	 result	 is	 physically	 meaningless	 because	 to	
obtain	it	experimentally,	averaging	over	an	exponentially	large	number	of	realizations	is	
necessary.	At	the	same	time,	the	measurement	at	a	single	random	sample	will	give	(with	a	
probability	exponentially	close	to	unity)	the	typical	value,	which	is	exponentially	small	as	
a	 result	 of	 the	 localization	 effect:	 Jtyp	=	exp(〈lnJ〉)	~	exp(−L/lloc).	 This	 is	 because	 lnJ	 is	 an	
additive	self-averaging	quantity.

The	typical-medium	approach	in	the	theory	of	Mott–Anderson	localization	in	electron	
systems	is	discussed	in	Ref.	27.

An	outstanding	distinction	between	the	transmission	at	typical	and	resonant	configura-
tions	of	amplifying	random	media	has	been	found	in	Ref.	28.	It	has	been	shown	that	in	
random	 systems	 with	 complex	 dielectric	 permittivity,	 ε(x)	=	ε0	+	δε(x)	+	iΓ,	 the	 inverse	
Lyapunov	exponent	is	always	negative,	independent	of	the	sign	of	Γ;29	that	is,	the	typical	
transmission	through	a	finite	disordered	dielectric	sample	is	exponentially	small	for	both	
absorbing	 and	 amplifying	 disordered	 samples.	 To	 the	 contrary,	 the	 mean	 value	 of	 the	
transmission	coefficient	in	random	media	with	gain	(Γ	>	0)	diverges	(because	of	the	infi-
nitely	 increasing	 resonant	 intensity)	 even	at	 samples	of	finite	 size.	To	obtain	physically	
meaningful	finite	values	of	the	transmission,	the	nonlinear	effect	of	saturation	should	be	
included	in	the	model.

2.4.3.3 Transport and Localization in 1D Periodic Structures with Disorder

The	study	of	the	effects	of	disorder	on	the	wave	properties	of	periodic	structures	is	essen-
tial	for	better	understanding	the	physics	of	the	interplay	between	periodicity	and	disorder,	
and	also	for	practical	applications.	Indeed,	though	considerable	effort	has	been	expended	
to	develop	highly	periodic	 structures,	deviations	 from	periodicity	 inevitably	present	 in	
any	manufactured	photonic	crystal	can	significantly	modify	its	optical	characteristics.	To	
reveal	the	most	general	transport	properties	of	disordered	1D	structures	that	are	periodic	
on	average	(1D	photonic	crystals),	the	Helmholtz	Equation	2.4.1	can	be	used,	in	which	ε0	is	
a	periodic	 function	of	 the	coordinate	x,	 and	 〈δε(x)〉	=	0.	Three	 types	of	periodic	 systems	
with	weakly-perturbed	periodicity	were	studied	in	Ref.	30:	(i)	stacks	of	alternating	discrete	
dielectric	 layers	 with	 constant	 permittivities,	 ε(1)	 and	 ε(2),	 and	 fluctuating	 width	 of	 each	
layer,	 di	=	d + δdi;	 (ii)	 samples	 of	 the	 same	 geometry	 but	 with	 constant	 di	=	d	 and	
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δε(x).	 The	 quantities	 δdi,	 δεj,	 and	 δε	 are	 assumed	 to	 be	 random	 variables	 with	 known	
	statistics.	For	numerical	simulations	of	the	propagation	in	discrete	systems	(i)	and	(ii),	the	
transfer	 matrix	 approach	 (Section	 2.4.3.1)	 is	 appropriate,	 whereas	 for	 the	 continuous	
model (iii),	the	invariant	embedding	method	(Section	2.4.3.2)	is	best	suited.

The	 following	property	 is	 found	 to	be	universal,	 independent	of	 the	geometry	of	 the	
system	and	of	the	type	of	disorder	for	the	frequencies	of	the	incident	wave	belonging	to	a	
band	 gap	 of	 the	 underlying	 periodic	 structure,	 weak	 disorder	 enhances	 (in	 contrast	 to	
homogeneous	in	average	random	1D	systems)	the	transparency.	Moreover,	the	localization	
length	and	the	transmission	coefficient	grow	when	the	strength	of	the	disorder	increases.	
This	is	because	in	the	presence	of	disorder,	the	channels	of	the	propagation	that	are	closed	
in	the	perfectly	periodic	system	open	up	as	a	result	of	the	partial	filling	of	the	density	of		
photonic	states	in	the	gap	by	the	tails	of	this	density	from	the	transparency	zones	bordering	
the	gap.

In	contrast	to	the	band	gap,	the	features	of	the	transmission	for	frequencies	in	the	trans-
parency	zone	depend	on	the	type	of	disorder.	For	these	frequencies,	the	surprising	non-
monotonic	dependence	of	the	localization	length	on	the	strength	of	disorder	was	observed	
in	stratified	media	with	geometrical	disorder	and	constant	dielectric	permittivities	[type	
(i)].	 In	 such	 a	 medium,	 the	 initial	 decrease	 of	 the	 transmission	 coefficient	 is	 a	 classical	
manifestation	of	Anderson	localization,	which	is	usually	stronger	for	larger	fluctuations	
(see	previous	sections).	When	the	fluctuations	of	the	width	become	adequately	large,	the	
decrease	gives	way	 to	 the	enhancement	of	 the	 transmission	 for	 increasing	disorder.	To	
explain	this	rather	counterintuitive	result,	we	note	that	in	the	strong	localization	regime,	
the	inverse	localization	length	is	approximately	equal	to30
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where	R1	is	the	reflection	coefficient	of	a	single	layer.	This	means	that,	in	this	case,	the	total	
transmission	of	a	stack	is	completely	determined	by	the	mean	value	of	the	reflection	coef-
ficient	of	a	single	element.	For	a	dielectric	layer,	R1	is	a	periodic	function	of	the	width	d	of	
the	layer,	and	the	averaging	in	Equation	2.4.24	means	the	integration	of	R1	over	d	 in	an	
interval	Δd,	in	which	the	fluctuations	δdi	are	distributed.	Evidently,	if	the	disorder	is	strong,	
Δd	≃	d,	 the	 increase	 of	 the	 interval	 of	 the	 integration	 of	 the	 periodic	 function	 causes	 a	
decrease	of	〈R1〉.

In	a	system	of	the	second	type	(random	ε),	R1	is	proportional	to	δε	and	the	growth	of	its	
variance	enhances	the	strength	of	a	single	scattering,	leading	to	a	monotonic	increase	of	〈R1〉.	
On	further	increase	of	the	disorder,	all	three	types	of	random	systems	finally	lose	all	traces	
of	the	underlying	periodicity,	the	band	structure	disappears,	and	waves	of	all	frequencies	
experience	the	same	disordered	medium	that	becomes	homogeneous	in	average.

2.4.4 Disorder-Induced Resonances in 1D Systems

2.4.4.1 Exploration by Analogy: Deterministic Model of Random Resonances

As	shown	in	Section	2.4.1,	disorder	can	strongly	affect	the	transport	properties	of	periodic	
systems,	sometimes	to	the	point	where	the	photonic	band	structure	is	completely	destroyed.	
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As	fluctuations	of	the	dielectric	and	geometrical	parameters	are	inevitably	present	in	any	
manufactured	periodic	sample,	this	could	create	a	serious	obstacle	in	the	efficient	practical	
use	of	photonic	crystals.	Therefore,	nowadays	considerable	efforts	of	researches	and	pro-
ducers	go	into	the	control	of	fluctuations.	However,	if	rather	than	combating	imperfections	
of	periodicity,	one	fabricated	highly	disordered	samples,	they	could	be	equally	well	har-
nessed,	for	example,	for	creating	tunable	resonant	elements.	This	is	because	1D	random	
configurations	have	a	unique	band	structure	that	for	some	applications	has	obvious	advan-
tages	over	those	of	photonic	crystals.

The	 transparency	 spectrum	 of	 a	 typical	 1D	 random	 sample	 consists	 of	 very	 narrow	
bands	separated	by	broad	gaps	(Figure	2.4.2).	For	adequately	long	structures,	the	bands	are	
so	narrow	that	they	can	be	treated	as	(quasi)-resonances	that	are	well	pronounced;	that	is,	
their	widths	are	much	smaller	 than	the	distances	between	them,	both	 in	the	frequency	
domain	and	in	real	space.	Physically,	at	each	resonant	frequency,	an	open	random	1D	con-
figuration	can	be	considered	as	an	open	resonator	with	high	quality	factor.	An	important	
advantage	of	application	features	of	such	a	system	is	that,	in	contrast	to	a	regular	resonator	
whose	 modes	 occupy	 all	 inner	 space,	 in	 a	 1D	 random	 structure,	 each	 eigenfrequency	
(mode)	is	localized	inside	its	own	effective	“cavity”	whose	size	is	much	smaller	than	that	
of	the	sample.	Figure	2.4.3	shows	the	intensities	of	the	fields	generated	by	a	resonant	fre-
quency	(central	curve),	and	by	two	off-resonance,	 typical	 frequencies	 (side	curves)	with	
exponentially	small	transmission	coefficients.	Another	important	advantage	of	disordered	
samples	 is	 that	 they	 are	 much	 easier	 to	 fabricate	 as	 they	 do	 not	 require	 precise	
periodicity.

The	 existence	 of	 disorder-induced	 resonances	 in	 1D	 random	 media	 was	 predicted	 a	
while	ago.6	The	random	set	of	resonant	frequencies	is	a	sort	of	1D	optical	“speckle	pattern,”	
which	is	individual	for	each	random	configuration	and	represents	its	unique	“	fingerprint.”	
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FIGURE 2.4.2
Transmission	coefficient	T	as	a	function	of	the	wave	frequency.
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Although	the		resonances	indirectly	manifest	themselves	in	the	dominant	contribution	to	
the	mean	transmission	coefficient	(see	Section	2.4.3.2),	the	ensemble-averaged	quantities	
do	not	provide	any	information	about	the	frequencies,	locations,	and	spatial	intensity	dis-
tribution	of	the	individual	localized	states,	yet	just	this	set	of	data	is	essential	for	applica-
tions	 (e.g.,	 random	 lasing).	 Unfortunately,	 an	 explicit,	 general	 analytical	 solution	 of	
Equation	 2.4.1	 with	 arbitrary	 function	 δε(x)	 does	 not	 exist,	 and	 standard	 approximate	
methods	 (e.g.,	 small	 perturbations	 expansion)	 are	 of	 little	 help,	 because	 the	 adequate	
description	of	strong	localization	calls	for	the	summation	of	infinite	number	of	multiply-
scattered	fields.	On	the	other	hand,	direct	optical	measurements	of	the	field	inside	a	given	
disordered	sample	are	generally	not	feasible.

In	such	a	situation,	the	question	arises	as	to	whether	the	outgoing	radiation	bears	the	
necessary	information	on	what	happens	inside	the	sample	or,	more	specifically,	whether	
the	parameters	and	internal	structure	of	individual	resonances	can	be	retrieved	from	the	
standard	external	measurements	of	the	transmission	and	reflection	amplitudes.

The	positive	answer	to	this	question	is	given	by	means	of	the	approach	developed	by	
Bliokh	et al.,31	which	is	based	on	the	concept	that	the	fundamental	properties	of	resonances	
are	universal	and	independent	of	the	physical	nature	of	the	system,	regular	or	random,	
whether	it	is	a	quantum-mechanical	potential	well,	an	optical	or	microwave	resonator,	or	
a	1D	random	medium.32	The	distinguishing	feature	of	a	random	structure	is	that	there	are	
no	regular	walls	in	it,	and	the	strong	reflection	that	locks	the	radiation	in	an	effective	reso-
nant	 cavity	 is	 the	 result	 of	 Anderson	 localization.	 Moreover,	 different	 segments	 of	 the	
sample	turn	out	to	be	transparent	for	different	frequencies;	that	is,	each	localized	mode	is	
associated	with	its	own	resonator.

In	the	framework	of	approach,31	the	problem	of	the	transport	and	localization	in	a	1D	
random	medium	is	mapped	onto	an	exactly	solvable	quantum	mechanical	problem	of	tun-
neling	and	resonant	transmission	through	an	effective	deterministic	potential.	With	the	
formulae	 derived	 on	 the	 basis	 of	 this	 mapping,	 the	 parameters	 of	 the	 individual	 reso-
nances,	in	particular,	their	spectral	and	spatial	widths,	field	amplitudes,	and	transmission	
coefficients,	can	be	calculated.	These	results	also	enable	solving	inverse	problems,	namely,	
to	find	(with	some	accuracy)	the	absorption	rate	of	the	medium	and	the	positions	of	the	
effective	cavities,	using	the	measured	transmission	and	reflection	coefficients	as	the	input	
data.	The	analytical	results	deduced	from	quantum-mechanical	analogy	are	in	close	agree-
ment	with	the	results	of	direct	numerical	simulations.

Random dielectric medium

FIGURE 2.4.3
(See color insert.)	Amplitude	of	the	field	inside	the	sample	as	a	function	of	the	coordinate	for	three	different	
wavelengths.	(Reprinted	with	permission	from	K.	Bliokh	et	al.,	Rev.	Mod.	Phys.	80,	1201,	2008.	Copyright	2008	
by	the	American	Physical	Society.)
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The	 idea	 of	 this	 mapping	 was	 inspired	 by	 the	 well-pronounced	 similarity	 between	
Figures	2.4.3	and	2.4.4	obtained	for	a	random	stack	of	layers,	and	the	corresponding	depen-
dencies	 calculated	 for	 a	 regular	 potential	 well	 bounded	 at	 both	 sides	 by	 two	 potential	
	barriers	(e.g.,	see	Ref.	33).	Although	the	physics	of	the	propagation	in	each	system	is	totally	
different	 (interference	 of	 the	 multiply-scattered	 random	 fields	 in	 a	 randomly	 layered	
medium,	and	tunneling	through	a	regular	two-humped	potential),	the	affinity	between	
them	 stands	 out.	 Indeed,	 in	 both	 cases,	 the	 transmission	 coefficients	 are	 exponentially	
small	for	most	of	the	frequencies	(energies)	and	have	well-pronounced	resonant	maxima	
(sometimes	of	the	order	of	unity)	at	discrete	points	corresponding	to	the	eigen	levels	of	
each	system.	The	energy	at	resonant	frequencies	is	localized,	and	the	transmission	depends	
drastically	on	the	position	of	the	area	of	localization.

Figure	2.4.4	presents	 the	transparencies	of	 three	segments	of	 the	sample	cut	 in	accor-
dance	with	the	central	curve	(resonant	wave)	in	Figure	2.4.3	and	separately	illuminated	by	
the	same	resonant	(for	the	whole	sample)	wave.	It	is	seen	that	at	the	resonant	frequency,	the	
middle	part	where	the	energy	is	concentrated	is	almost	transparent,	whereas	the	side	sec-
tions	are	practically	opaque.	This	qualitatively	corresponds	to	what	happens	to	quantum	
particles	in	a	potential	well.	Moreover,	even	quantitatively,	the	intensity	distributions	pre-
sented	in	Figure	2.4.3	and	the	corresponding	values	of	the	transmission	coefficients	com-
pare	 favorably	 with	 those	 calculated	 quantum-mechanically	 by	 solving	 Equation	 2.4.1,	
with	the	random	function	δε(x)	being	replaced	by	a	regular	potential	profile	with	properly	
chosen	parameters.

For	any	(not	too	high)	energy,	the	transmission	coefficient	of	a	two-humped	potential	
profile	 (potential	 well)	 can	 be	 calculated	 in	 the	 Wentzel–Kramers–Brillouin	 (WKB)	
approximation,33	 which	 yields	 expressions	 independent	 of	 the	 “fine	 structure”	 of	 the	
profile	and	uniquely	determined	by	the	size	of	the	well	and	by	the	tunneling	transparen-
cies	of	the	bounding	barriers.	To	use	these	formulae	for	the	quantitative	description	of	
the	wave	transmission	through	a	random	sample,	it	is	necessary	to	express	the	parame-
ters	of	the	effective	potential	through	the	parameters	of	the	disordered	system	in	hand.	
For	 an	 ensemble	 of	 1D	 random	 realizations,	 those	 parameters	 are	 the	 length	 L	 of	 the	
samples	and	the	(self-averaging)	localization	length	lloc	(Equation	2.4.6).	Note	that	in	the	
localized	regime,	L	>>	lloc	>>	λ.	This	inequality	justifies	the	validity	of	the	WKB	approxi-
mation.	To	estimate	 the	 length	of	 the	effective	well,	we	note	 that	 the	appearance	of	a	
transparent	segment	(effective	well)	inside	a	random	sample	is	the	result	of	a	very	spe-
cific	(and	therefore	low-probable)	combination	of	phases	of	the	multiply-scattered	fields.	
Obviously,	 the	 longer	 such	 segment	 the	 less	 the	 probability	 of	 its	 occurrence.	 On	 the	

“Barrier”

(a) (b) (c)

“Barrier”“Cavity”

FIGURE 2.4.4
(See color insert.)	Amplitude	of	the	field	as	a	function	of	the	coordinate	inside	the	whole	sample,	in	the	(a),	(b),	
and	(c)	parts	taken	as	a	separate	sample	each.	(Reprinted	with	permission	from	K.	Bliokh	et	al.,	Rev.	Mod.	Phys.	
80,	1201,	2008.	Copyright	2008	by	the	American	Physical	Society.)
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other	hand,	the	typical	scale	in	the	localized	regime	is	lloc.	Hence,	the	minimal	and	thus	
the	most		probable	size	of	the	effective	well,	lres,	is	of	the	order	of	the	localization	length,	
which	we	assume	(as	a	result	of	self-averaging)	to	be	the	same	in	all	realizations.	Under	
this	assumption,	different	values	of	the	resonant	transmission	coefficients	and	different	
intensities	can	be	reproduced	by	variations	of	the	location	of	the	well	in	the	correspond-
ing	quantum-mechanical	formulae.

If	the	center	of	the	transparent	segment	of	a	resonant	realization	is	shifted	a	distance	d	
from	the	center	of	the	sample,	the	lengths	of	the	nontransparent	parts	of	the	resonant	real-
izations	become

	
L

L l
d1 2 2, = − ±res ,

	
(2.4.25)

and	the	transmission	coefficients	of	the	confining	barriers	are
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Substituting	Equations	2.4.25	and	2.4.26	into	the	corresponding	WKB	formulae,	we	obtain
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where	Tres(d)	and	Ares(d)	are,	respectively,	the	transmission	coefficient	and	the	peak	ampli-
tude	of	the	field	pumped	into	the	cavity	located	at	a	point	d	by	an	incident	resonant	mono-
chromatic	wave	of	unit	amplitude.	Note	that	|Ares|2	is	asymmetric	with	respect	to	T1	and	
T2,	which	means	that	the	intensity	induced	in	an	effective	cavity	by	the	resonant	incident	
wave	depends	on	the	direction	of	incidence.34	The	width	of	high	(Tres	~	1)	resonances	in	a	
long	sample	is	exponentially	small:
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(2.4.29)

Equation	2.4.27	shows	that	the	transmission	coefficient	of	a	disordered	sample	at	a	reso-
nance	is	independent	of	the	length	of	the	sample	and	is	governed	exclusively	by	the	loca-
tion	of	the	effective	cavity.	This	rather	counterintuitive	result	is	totally	different	from	that	
for	the	typical	(nonresonant)	transmission,	which	decays	exponentially	with	the	increase	
of	the	length	L.

From	 Equation	 2.4.28	 it	 follows	 that	 the	 amplitudes	 of	 the	 centrally	 located	 (d	<<	lloc)	
strong	resonances	are	an	exponentially	increasing	functions	of	the	length	of	the	sample:
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(2.4.30)
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Whereas	the	transmission	is	maximal	when	the	effective	cavity	is	located	precisely	in	the	
middle	of	the	sample,	Tres(d	=	0)	=	1,	the	largest	amplitude	can	be	pumped	in	a	resonator	
shifted	from	the	center	toward	the	input	by	the	distance

	 d lA = − .0 27 loc , 	 (2.4.31)

which	is	independent	of	the	length	of	the	sample.
It	should	be	emphasized	that	in	a	disordered	sample,	for	each	resonant	frequency,	ωres,	

there	exists	its	own	“strange	resonator,”	which	(unlike	regular	potential	wells)	is	transpar-
ent	only	for	this	particular	ωres.	These	resonators	are	 located	at	different	random	points;	
therefore,	it	should	be	remembered	that	the	coordinate	d	in	Equations	2.4.25	through	2.4.28	
is	frequency-dependent:	d	=	d(ωres).	The	structure	of	the	effective	cavities	is	described	below.

To	test	the	ability	of	the	above-introduced	deterministic	model	to	describe	quantitatively	
the	 resonances	 in	 randomly	 layered	 samples,	 extensive	 numerical	 experiments	 were	
carried	out.	The	comparison	of	the	results	of	direct	numerical	simulations	with	those	given	
by	Equations	2.4.27	through	2.4.31	demonstrates	that	the	seemingly	rough	analogy	based	
on	just	one	fitting	parameter	(localization	length)	performs	surprisingly	well.31	For	exam-
ple,	not	only	the	coordinate	of	the	effective	cavity	with	the	highest	resonant	amplitude	is	
independent	 of	 the	 total	 length	 of	 the	 sample	 and	 proportional	 to	 lloc,	 as	 predicted	 by	
Equation	2.4.31,	but	also	the	coefficient	in	Equation	2.4.31	coincides	with	that	obtained	in	
numerical	simulations	with	an	accuracy	~10%.

To	provide	an	adequate	description	of	the	resonances	in	real	dielectric	structures,	the	
absorption	should	be	incorporated	in	the	model.	Although	in	quantum-mechanical	prob-
lems	losses	are	rather	uncommon,	the	absorption	of	light	in	a	dielectric	medium	can	be	
taken	into	account	by	formally	adding	to	the	corresponding	effective	potential	a	negative	
imaginary	part	proportional	to	the	imaginary	part	of	the	permittivity.	If	the	spatial	decre-
ment	of	the	wave	energy	due	to	loss,	Γ	=	1/la	~	Imε0,	is	small	compared	to	the	inverse	local-
ization	 length,	 la	>>	lloc,	 calculations	 of	 the	 resonant	 transmittance	 and	 intensity	 yield35	
(compare	with	Equations	2.4.27	and	2.4.28):
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The	connection	between	 the	 resonant	 reflection	and	 transmission	coefficients	 follows	
from	the	energy	conservation	law	and	in,	a	case	of	small	losses,	takes	the	form

	 R T l Ares res res res Re= − − | |1 2
0Γ ε , 	 (2.4.34)

where	the	last	term	is	due	to	absorption	in	the	medium.	The	width	of	the	resonant	peak	in	
the	reflection	is	determined	by	the	absorption	in	the	medium	and	by	the	transmittance	of	
the	effective	walls	that	form	the	effective	wells,	and	is	equal	to
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When	the	parameter
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even	 small	 absorption	 (la	>>	lloc	 or	 la	>>	L),	 which	 practically	 does	 not	 affect	 the	 typical	
	transmission,	 suppresses	 dramatically	 both	 the	 reflected	 and	 transmitted	 fluxes	 at	 reso-
nances.	Interestingly,	the	resonant	reflection	coefficient,	Equation	2.4.34,	is	a	nonmonotonic	
function	of	the	dissipation	rate	Γ,	and	turns	to	zero	when	b = −2sinh(d/lloc).	This	effect	is	known	
in	optics	and	microwave	electronics	as	critical	coupling.36	As	no	energy	is	reflected	from	the	
sample	at	critical	coupling,	it	corresponds	to	the	resonance	with	the	highest	intensity.

2.4.4.2 How Is an Effective Cavity Built Up?

The	model	presented	above	gives	a	more	penetrating	insight	into	the	mechanism	of	forma-
tion	of	localized	modes	and	allows	an	explanation	of	how	and	why	the	characteristics	of	a	
resonance	(Q-factor,	transmission	coefficient,	linewidth,	etc.)	depend	on	the	parameters	of	
the	effective	cavity	(location,	size,	and	absorption	rate)	associated	with	it.	It	is	now	clear	
that	the	resonant	transmission	through	a	random	sample	takes	place	at	a	frequency	ωres	if	
around	 some	 (random)	 point	 inside	 this	 sample	 there	 exists	 an	 area	 of	 length	 lres ≳ lloc	
which	is	transparent	for	this	frequency.

Here	another	question	arises:	why	do	effective	resonant	cavities	exist	in	1D	disordered	
samples?	In	other	words,	why	are	different	segments	of	a	random	configuration	transpar-
ent	or	opaque	for	the	wave	with	a	given	wave	number	k?	To	answer	this	question	recall	
that	in	the	case	of	weak	scattering,	the	so-called	resonance	reflection	takes	place;	that	is,	
the	reflection	coefficient	of	an	adequately	long	segment	[x − a,x + a]	of	a	random	medium	is	
proportional	to	the	amplitude	of	the	2k-harmonic	in	the	power	spectrum,	 �ε( , ),2k x 	of	its	
dielectric	constant	ε(x).37	This	amplitude	can	be	calculated	as

	

�ε ε( , ) ( )2 2k x y yi ky

x a

x a

= .−

−

+

∫ e d

	

(2.4.37)

This	expression	is	known	as	a	window	Fourier	transformation	with	a	rectangular	win-
dow	function.	To	investigate	the	structure	of	a	resonant	configuration,	we	first	determined	
the	resonant	wave	numbers	for	which	the	transparency	T(k)	of	this	configuration	exceeded,	
for	example,	0.5.	For	each	of	those	waves,	the	spatial	distributions	of	the	amplitude	and	of	
the	corresponding	local	power	spectrum	(2.4.37)	were	juxtaposed.	An	example	is	shown	in	
Figure	2.4.5.	One	can	see	that	in	the	areas	where	the	field	is	localized,	the	function	 �ε( , )2k x 	
is	strongly	suppressed,	whereas	in	the	nontransparent	parts	it	has	well-pronounced	max-
ima.	Therefore,	the	resonant	cavity	for	a	frequency	ωres	arises	in	the	area	of	a	disordered	
sample	where,	accidentally,	the	harmonic	with	wave	number	qres	=	2kres	in	the	power	spec-
trum	of	the	(random)	permittivity	has	small	amplitude.

This	 result	 is	 of	 profound	 importance	 for	 the	 correct	 understanding	 of	 the	 resonant	
transparency	of	1D	random	systems.	It	has	been	commonly	accepted	that,	in	accordance	
with	the	celebrated	formula	(2.4.8),	high	(not	“typical,”	exponentially	small)	transparency	
at	 a	 given	 frequency	 requires	 the	 suppression	 of	 the	 corresponding	 spatial	 spectral	
	component	in the whole sample.	A	fundamentally	new	outcome	of	the	above	consideration	
is	 that	 for	 arising	 of	 a	 localized	 eigenmode,	 which	 provides	 resonant	 transmission,	
it  	suffices	 for	 the	 2kres-harmonic	 to	 be	 suppressed	 in	 a much smaller area of size lres ≳ lloc.	
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Obviously,	the	probability	of	such	a	random	event	is	exponentially	(with	respect	to	L/lres	>>	1)	
larger	than	that	of	the	same	to	occur	simultaneously	in	the	whole	random	configuration.	
This	not	only	explains	the	observed	high	spectral	density	of	the	eigenstate	(2.4.3)	but	also	
provides	a	background	for	harnessing	disordered	1D	systems	in	designing	tunable	light-
tailoring	devices	(see	Section	2.4.7).

2.4.4.3 Coupling and Level Repulsion

An	adequately	long,	disordered	1D	sample	can	contain	several	 isolated	regions	where	the	
spectral	harmonics	with	wave	numbers	close	to	qres	are	suppressed.	The	spatial	overlap	of	the	
wave	functions	localized	in	such	regions	couples	these	modes	and	leads	to	the	formation	of	
the	so-called	necklace	states,	which	have	been	predicted	theoretically	in	the	studies	by	Lifshits	
and	Kirpichenkov38	and	by	Pendry11	and	observed	and	studied	experimentally	in	Refs.	9	and	
39.	 These	 states	 have	 broadened	 spectral	 lines7	 and	 contribute	 substantially	 to	 the	 overall	
transmission	in	localized	regime.	An	example	of	a	necklace	state	is	shown	in	Figure	2.4.6.

Necklace	states	can	be	easily	incorporated	in	the	modeling	scheme	as	two	or	more	poten-
tial	 wells	 coupled	 by	 the	 evanescent	 fields	 that	 tunnel	 through	 barriers	 separating	 the	
wells.9,32	 The	 temporal	 dynamics	 of	 the	 field	 in	 such	 a	 chain	 of	 coupled	 resonators	 is	
described	by	a	system	of	oscillator	equations	with	an	external	force,	damping,	and	coupling	
coefficient,	which	account	for	the	incident	wave,	the	finite	Q-factors,	and	the	spatial	overlap	
of	the	modes,	respectively.	In	the	simplest	case	of	two	cavities	with	coordinates	d1	and	d2,	
the	equations	that	provided	an	effective	description	of	coupled	modes	can	be	written	as:32
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Normalized	wave	 (black	 line)	and	2k-harmonic	 (gray	area)	amplitudes	as	 functions	of	 the	coordinate	 (layer	
number).
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Here	ψi(τ)	 is	 the	field	 in	the	 ith	effective	resonator,	τ	=	ω0t	 is	 the	dimensionless	 time	
(ω0 is	a	characteristic	central	frequency	of	the	problem),	and	1	−	Δi	(|Δi|	<<	1)	is	the	dimen-
sionless	(in	units	of	ω0)	eigenfrequency	of	the	ith	resonator.	The	effective	external	force	f	
is
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(2.4.40)

where	ψ0	and	ν,	 (|ν − 1|	<<	1),	are	the	amplitude	and	the	frequency	of	the	external	field,		
exciting	the	first	(close	to	the	input)	resonator.	The	coupling	coefficient	q	<<	1	of	two	cavi-
ties,	which	is	due	to	the	spatial	overlap	of	modes,	is	equal	to
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with	d	being	the	distance	between	the	effective	cavities.
The	Q-factors	describing	the	losses	of	energy	in	the	ith	resonator	are:40
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where	Γi	 is	 the	dissipation	rate	in	the	 ith	resonator,	vg	 is	 the	wave	group	velocity	inside	
the resonator,	and	li	is	the	cavity	length.	The	last	term	in	Equation	2.4.42	accounts	for	the	
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Necklace	state.	Normalized	wave	intensity	as	a	function	of	the	coordinate	(layer	number).
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leakage	of	the	energy	from	the	system;	therefore,	analogously	to	Equation	2.4.26,	the	trans-
mission	coefficients	T1,2	are	given	by32
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Substitution	ψi	=	Aiexp(−ivτ)	reduces	Equations	2.4.38	and	2.4.39	to	a	couple	of	algebraic	
equations,	from	which	the	eigenfrequencies	of	two	complex	independent	eigenmodes	of	
the	system	can	be	found:
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(2.4.44)

We	have	assumed	here	 that	Q1	=	Q2	=	Q.	Depending	on	 the	parameters,	Equation	2.4.44	
describes	either	level	anticrossing	(level	repulsion)	or	the	coupling	of	isolated	resonators	to	
form	 collective	 eigenmodes.	 The	 anticrossing	 takes	 place	 when	 the	 eigenfrequencies	 of	
two	cavities	come	close	and	are	transformed	into	double-peaked,	more	extended	modes.	
The	gap	between	eigenfrequencies	is	equal	to

	 G qe = ∆ − ∆ +( ) ,1 2
2 2

	 (2.4.45)

and	is	minimal	at	 the	resonance,	Δ1	=	Δ2.	Note	that	 the	 level	repulsion	of	modes,	 that	 is	
generally	agreed	to	be	an	inherent	feature	of	diffusion,	arises	here	in	the	regime	of	strong	
localization.	Away	from	resonance,	|Δ1	−	Δ2|	>>	q,	 the	eigenmodes	tend	to	the	modes	of	
isolated	resonators.	The	shapes	of	 the	modes	are	exchanged	when	passing	 through	 the	
resonance;	that	is,	+	(−)	eigenmodes	correspond	to	the	first	(second)	resonator	at	Δ1	<<	Δ2,	
and	to	the	second	(first)	resonator	when	Δ1	>>	Δ2.

The	frequency	(ν)	dependences	of	the	amplitudes	A1	and	A2	of	the	oscillations	induced	
in	the	cavities	by	incident	monochromatic	waves	are	determined	by	the	ratio	between	the	
coupling	coefficient	q	and	losses	Q−1.	Both	amplitudes	are	at	maximum	at	two	frequencies
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(2.4.46)

There	are	two	different	regimes	of	the	excitation	of	coupled	resonators,	depending	on	the	
value	of	the	qQ	factor,	as	shown	in	Figure	2.4.7	for	the	case	of	identical	(Δ1	=	Δ2	=	0)	cavities.32	
When	losses	are	small,	so	that	the	condition	qQ	>	1	holds,	there	are	two	collective	anticross-

ing	resonant	modes	with	the	frequency	gap	G q QA = − −2 2 	and	equal	field	amplitudes	in	
both	resonators.	As	qQ	decreases,	the	resonant	peaks	in	the	spectra	are	located	near	each	
other	and	meet	when	qQ	=	1.	In	the	regime	qQ < 1,	there	is	one	peak	at	ν	=	1.

The	 parameter	 qQ	 that	 appears	 in	 the	 model	 has	 a	 simple	 physical	 meaning:	 it	
	determines	whether	the	two	resonators	should	be	considered	as	essentially	coupled	or	
isolated.  When	 Q−1	<<	q,	 the	 losses	 are	 negligible	 and	 the	 field	 characteristics	 are	
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	essentially	determined	by	the	coupling.	Remarkably,	in	this	case	the	field	intensity	in	the	
first	(incoming)	resonator	is	negligible	at	ν	=	1,	and	almost	all	the	energy	is	concentrated	
in	the	second	resonator:	A2	>>	A1.	On	the	contrary,	when	the	losses	prevail	over	the	cou-
pling,	Q−1	>>	q,	the	incident	wave	only	excites	the	first	resonator,	and	the	energy	is	con-
centrated	mostly	in	it:	A1	>>	A2.

2.4.4.4 Bistability of Anderson Localized States in Nonlinear Random Media

A	 combination	 of	 disorder	 and	 nonlinearity	 offers	 a	 multitude	 of	 striking	 physical	
phenomena,	some	of	which	still	 remain	enigmatic	and	call	 for	 further	 investigation.	 In	
particular,	 nonlinear	 interactions	 between	 electromagnetic	 radiation	 and	 disorder	
influences	the	interference	of	the	multiply-scattered	waves	and	can	affect	localization	in	
rather	unusual	ways.	This	area	has	long	been	the	subject	of	keen	scientific	interest	that	has	
quickened	recently,	mostly	as	a	result	of	the	creation	of	high-power	lasers	and	of	the	latest	
advancement	 in	 studies	 of	 Bose–Einstein	 condensates.	 Although	 publications	 on	 the	
transport	and	localization	in	nonlinear	random	media	are	numerous,	the	overwhelming	
majority	of	the	analytical	results	have	a	common	shortcoming:	they	are	related	to	ensem-
ble-averaged	characteristics,	which	are	of	a	little	use	when	individual	localized	states	are	
concerned.	A	breakthrough	in	the	theoretical	study	of	 the	disorder-induced	resonances	
has	 been	 made	 possible	 with	 the	 above-presented	 quantum-mechanical	 deterministic	
model,	 in	 which	 the	 nonlinearity	 was	 incorporated.	 Surprisingly,	 this	 rather	 simple	
approach	not	only	offered	a	clearer	insight	into	the	physics	of	the	resonances	in	nonlinear	
random	media	but	also	performed	well	in	their	quantitative	description.13

According	to	the	model,	the	transmittance	spectrum	T(k)	in	the	vicinity	of	a	resonant	
wavelength,	|k − kres|	<<	kres	is	given	by	the	Lorentzian	dependence
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FIGURE 2.4.7
(See color insert.)	Near-resonant	 transmission	of	an	 incident	wave	through	two	coupled	open	resonators	at	
different	values	of	qQ.	The	normalized	(i.e.,	multiplied	by	the	factor	2Q−1)	absolute	values	of	the	field	amplitudes	
in	two	resonators,	|Aout|	(a)	and	|Ain|	(b),	are	shown.	(Reprinted	with	permission	from	K.	Bliokh	et	al.,	Rev.	
Mod.	Phys.	80,	1201,	2008.	Copyright	2008	by	the	American	Physical	Society.)
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where	Iin	and	Iout	are	the	intensities	of	the	incident	and	outgoing	waves,	respectively.	The	
resonant	transmission	coefficient	Tres	=	T(d)	is	given	by	Equation	2.4.32,	where	d = d(kres).

Obviously,	the	nonlinearity	becomes	most	noticeable	at	the	points	where	the	resonances	
are	located	and	the	intensity	is	maximal,	I	=	Ires.	It	changes	the	effective	refractive	index	of	
the	 medium	 leading	 to	 the	 intensity-dependent	 shift	 of	 the	 resonant	 wave	 number:	
k k Ires res res→ � ( )	(Figure	2.4.8).

As	the	values	of	Ires	and	Iout	are	unambiguously	connected,	the	resonant	wave	number	is	
a	function	of	the	output	intensity,	and	Equation	2.4.47	establishes	a	relation	between	the	
input	and	output	wave	 intensities,	which	 in	 the	case	of	weak	Kerr-type	nonlinearity	 is	
cubic	with	respect	to	Iout.13	It	has	a	universal	form	typical	of	nonlinear	resonators	with	opti-
cal	bistability.41	The	ultimate	dependence	 Iout(Iin)	 is	of	 the	S-type,	and,	 in	some	range	of	
parameters,	the	stationary	transmission	spectrum	T(k)	is	a	three-valued	function.	Typically,	
one	of	the	solutions	is	unstable,	whereas	the	other	two	form	a	hysteresis	loop	in	the	Iout(Iin)	
dependence.13	 Figure	 2.4.8	 shows	 nonlinear	 deformations	 of	 the	 resonant	 transmission	
spectra	T(k),	which	at	large	values	of	the	parameter	χIin	(χ	is	the	Kerr	coefficient)	exhibit	
transitions	 to	 bistability.	 The	 analytical	 dependence	 T(k),	 derived	 from	 Equation	 2.4.47,	
with	parameters	found	from	the	numerical	experiments,	are	in	excellent	agreement	with	
the	direct	numerical	simulations.

The	adequacy	of	the	model	has	also	been	substantiated	by	numerical	modeling	in	time	
domain.	In	these	simulations,	the	transitional	oscillations	and	reshaping	of	the	transmit-
ted	 pulse	 that	 typically	 accompany	 switching	 between	 two	 regimes	 of	 transmission	 in	
deterministic	 bistable	 nonlinear	 structures42	 have	 been	 found	 in	 disordered	 nonlinear	
samples.	 Nonreciprocity	 (diode-like	 unidirectional	 propagation)	 of	 resonant	 tunneling	
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Nonlinear	deformations	of	the	transmission	spectrum	of	the	resonance	at	different	intensities	I I Iin in in
(3)( ) ( )1 2< < 	of	

the	incident	wave.	The	light-gray	stripe	indicates	the	three-valued	region.	Only	the	lower	and	upper	branches	
of	the	transmission	spectrum	are	stable.	(Reprinted	with	permission	from	I.	Shadrivov	et	al.,	Phys.	Rev.	Lett.	
104,	123902,	2010.	Copyright	2010	by	the	American	Physical	Society.)
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through	a	nonlinear	random	structure	that	stems	from	the	intrinsic	asymmetry	of	disor-
der	has	also	been	observed.

2.4.5 Experimental Studies of Resonances

Comprehensive	experimental	studies	of	localized	states	and	disorder-induced	resonances	
were	carried	out	in	the	microwave	frequency	range	(14	GHz	≤	f	≤	20	GHz).9,35	A	long	metal-
lic	single-mode	(at	these	frequencies)	waveguide	filled	with	randomly	arranged,	weakly	
absorbing	 dielectric	 slabs	 were	 used	 as	 1D	 disordered	 system.	 The	 experimental	 setup	
allowed	 measurements	 of	 the	 complex	 transmission	 and	 reflection	 amplitudes	 and	 the	
complex	 field	 inside	 the	 waveguide	 for	 different	 random	 configurations.	 Figure	 2.4.9	
depicts	the	intensity	I(x,f )	≡	|A(x,f )|2	generated	inside	a	sample	by	an	incident	monochro-
matic	wave	with	frequency	f,	as	a	function	of	coordinate	x	and	frequency	f.35	Although	the	
“fine	structure”	of	the	field	changes	dramatically	from	sample	to	sample,	the	general	fea-
tures	intrinsic	in	all	1D	disordered	systems	are	clearly	recognized	in	the	results	of	a	single	
measurement	 presented,	 as	 an	 example,	 in	 Figure	 2.4.9.	 Localized	 states	 (resonances)	
excited	by	the	incident	wave	are	clearly	seen	in	Figure	2.4.9.	When	b	>>	1	(Equation	2.4.36),	
the	highest	of	them	are	located	in	the	left	(close	to	the	input)	part	of	the	sample.	The	trans-
mitted	signal	is	suppressed	by	losses	below	the	experimental	noise	and	is	indiscernible	in	
Figure	2.4.9	even	at	resonant	frequencies.	At	the	same	time,	the	resonances	manifest	them-
selves	(and	can	be	easily	detected)	by	sharp	dips	in	the	frequency	dependence	of	the	reflec-
tion	coefficient	 (see	Figure	2.4.10).	Moreover,	at	different	values	of	b	 (i.e.,	of	Γ)	 localized	
eigenstates	are	excited	and	detectable	in	reflection	in	different	regions	of	the	system,	thus	
providing	a	possibility	for	scanning	the	sample	through	variations	of	losses.	This	means	
that	dissipation,	which	usually	impairs	the	excitation	and	observation	of	resonances	in	1D	
random	samples	improves	essentially	the	“observability”	of	the	localized	states.
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FIGURE 2.4.9
Intensity	versus	frequency	and	position	inside	the	sample.	(Reprinted	with	permission	from	K.	Bliokh	et	al.,	
Phys.	Rev.	Lett.	97,	2439094,	2006.	Copyright	2006	by	the	American	Physical	Society.)
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In	the	study	by	Blikoh	et al.,9	 the	same	setup	was	used	to	explore	experimentally	the	
dynamics	 of	 formation	 of	 the	 necklace	 states	 and	 to	 study	 their	 spectral	 and	 transport	
properties.	Measurements	were	made	in	a	sequence	of	configurations	in	which	the	spacing	
between	two	randomly	located	scatterers	could	change	steps	in	a	controlled	way.	The	posi-
tion	at	which	the	air	gap	was	introduced	was	chosen	to	correspond	to	the	peak	of	a	single	
Anderson	localized	mode	of	the	unperturbed	random	sample.	This	allowed	to	manipulate	
the	 frequency	 of	 the	 selected	 mode	 in	a	manner	 similar	 to	 the	 tuning	of	 a	defect	 state	
through	a	band	gap	in	a	periodic	structure.	In	doing	so,	the	mode	frequency	shifted	and	
crossed	the	frequencies	of	other	localized	states,	which	made	it	possible	to	study	the	cou-
pling	of	modes.	Changing	the	air	spacing	at	points	where	other	states	have	been	localized,	
allowed	 to	 couple	 several	 localized	 modes,	 thereby	 creating	 necklace	 states	 extended	
throughout	the	sample.	The	spectral	positions	of	the	localized	states	as	functions	of	the	air	
gap	 introduced	 into	 the	 sample	 are	 plotted	 in	 Figure	 2.4.11.	 The	 frequencies	 of	 modes	
either	cross	or	anticross,	in	reasonable	compliance	with	Equation	2.4.44.	Direct	measure-
ments	 of	 the	 electromagnetic	 field	 inside	 the	 samples	 have	 revealed	 that	 in	 the	 case	 of	
anticrossing	(regions	1,2,4,5	in	Figure	2.4.11),	the	coupling	within	the	sample	was	accompa-
nied	by	the	theoretically	predicted	exchange	of	shapes.	In	contrast,	when	modes	crossed	
(region	3	in	Figure	2.4.11)	they	did	not	exchange	shapes	and	remained	practically	indepen-
dent	 of	 each	 other.	 When	 the	 frequencies	 of	 the	 modes	 were	 closest,	 the	 two	 localized	
states	 coupled	 into	 double-peaked	 modes	 signifying	 the	 formation	 of	 quasi-extended	
necklace	states.

The	minimum	frequency	differences	were	calculated	for	the	interacting	pairs	1,2,4,5	in	

Figure	2.4.11,	as	G q QA = − −2 2 	with	q	and	Q	found	from	Equations	2.4.41	and	2.4.42,	and	
then	compared	 to	 the	measured	values	of	 the	gap.	A	comparison	of	 the	measured	and	
calculated	data	is	presented	in	Figure	2.4.12	for	the	following	parameters	of	the	system:9	
f0	=	ω0/2π	=	15.5	GHz,	 lloc	=	12	mm,	ω0Γ	=	7	×	107s−1,	and	vg	=	c/2.4.	Good	agreement	exists	
between	the	experiment	and	the	model.
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FIGURE 2.4.10
Spectrum	of	reflection	for	Figure	2.4.9.	 (Reprinted	with	permission	from	K.	Bliokh	et	al.,	Phys.	Rev.	Lett.	97,	
2439094,	2006.	Copyright	2006	by	the	American	Physical	Society.)
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Anderson	localization	of	millimeter	electromagnetic	waves	(75–110	GHz)	has	been	stud-
ied	experimentally,12	utilizing	100-layer	dielectric	stacks	of	randomly	shuffled	quartz	and	
Teflon	wafers.	Exponentially	small	transmission	at	typical	frequencies,	resonant	transmis-
sion	at	eigenfrequencies,	and	enhanced	absorption	have	been	observed.	Slow	 light	and	
superluminal	group	velocities,	which	in	contrast	to	photonic	crystals	were	not	associated	
with	any	periodicity	in	the	system,	have	also	been	discovered.
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FIGURE 2.4.11
Resonant	frequencies	of	excited	localized	modes	versus	the	driving	parameter—the	air	gap	inside	the	sample.	
Five	pair-interaction	regions	are	circled.	(Reprinted	with	permission	from	K.	Bliokh	et	al.,	Phys.	Rev.	Lett.	101,	
133901,	2008.	Copyright	2008	by	the	American	Physical	Society.)
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FIGURE 2.4.12
Experimentally	measured	and	 theoretically	 calculated	minimal	 frequency	gaps	 G q QA = − −2 2 	 for	pairs	of	
interacting	modes	1,2,4,5	presented	in	Figure	2.4.11.	(Reprinted	with	permission	from	K.	Bliokh	et	al.,	Phys.	Rev.	
Lett.	101,	133901,	2008.	Copyright	2008	by	the	American	Physical	Society.)
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2.4.5.1 Inverse Scattering Problems and Remote Sensing of Disordered Samples

Microwave	experiments9,12,35	made	it	possible	to	test	immediately	the	validity	of	the	model	
introduced	in	Section	2.4.4.	Theoretical	predictions	based	on	the	model	have	been	checked	
against	the	results	of	measurements	carried	out	at	a	large	number	of	random	configurations	
and	in	a	wide	range	of	parameters.	It	turned	out	that	Equations	2.4.23	and	2.4.32	through	
2.4.35	not	only	provided	a	new	insight	into	the	physics	of	the	experimentally	observed	fea-
tures	presented	in	the	previous	subsection	but	also	were	in	a	good	quantitative	agreement	
with	the	measured	data.	This	was	made	possible	using	these	equations	as	a	basis	for	formu-
lation	and	solving	a	classical	wave	inverse	problem:	retrieval	of	internal	characteristics	of	a	
medium	of	propagation	from	parameters	of	the	external	fields.	In	practice,	an	algorithm	of	
remote	sensing	of	random	samples	have	been	developed,	which	has	enabled	nonintrusive	
detection	 and	 monitoring	 of	 the	 disorder-induced	 resonances	 and	 determination	 of	 the	
absorption	and	localization	lengths	by	measuring	the	reflected	and	transmitted	fields.	The	
algorithm	is	very	simple.	Indeed,	Equations	2.4.23	and	2.4.32	through	2.4.35	can	be	treated	
as	four	algebraic	equations	for	four	unknowns,	and	by	solving	them	one	can	find	the	loca-
tion,	d,	and	the	size,	lres,	of	an	effective	cavity	for	each	resonant	frequency,	and	the	localiza-
tion	and	absorption	lengths	of	the	sample.	Then,	the	intensity,	Ares,	pumped	in	a	cavity	by	
the	incident	wave	can	be	calculated	by	Equation	2.4.30.

In	such	a	manner,	these	parameters	had	been	retrieved	in	Ref.	12	for	many	disordered	
configurations,	using	the	directly	measured	values	of	Tres,	Rres,	δf = cδkres,	and	lloc.	An	exam-
ple	is	presented	in	Table	2.4.1.	Shown	in	columns	2,	3,	and	4	are	1	−	Rres,	Tres,	and	δf,	respec-
tively,	 measured	 for	 the	 resonances	 indicated	 in	 column	 1.	 The	 loss	 tangent,	
tan( )α ε= Γc f/ Re 0 ,	is	given	in	column	6.	The	value	of	the	loss	tangent	averaged	over	the	
five	resonances	equals	8.35	×	10−4.	The	genuine	weighted	loss	tangent	for	the	disordered	
quartz/Teflon	 system	 was	 5.2	×	10−4,	 so	 that	 the	 measured	 and	 retrieved	 values	 of	 the	
absorption	agreed	to	within	the	accuracy	of	the	experiment.	Similar	experiments	in	the	
centimeter-wavelength	 range35	 also	 yielded	 retrieved	 data	 consistent	 with	 the	 true	
values.

The	remote	sensing	procedure	can	be	also	applied	for	monitoring	nonlinear	disordered	
samples.	In	this	instance,	Tres,	kres,	and	Q	are	determined	from	the	transmission	spectrum	
in	the	linear	regime	as	it	was	described	above,	and	the	additional	external	parameter	of	the	
medium—Kerr	coefficient—is	retrieved	from	the	measured	shift	of	the	transmission	spec-
tral	 line	when	 the	 intensity	changes.	This	enables	one	 to	obtain	 the	whole	dependence	
Iout(Iin,	k)	for	any	given	resonance	performing	external	measurements	of	T(k)	at	only	two	
different	intensities	of	the	incident	wave.

TABLE 2.4.1

Measured	and	Calculated	Parameters	Associated	with	Five	Resonances

Frequency (GHz) 1	–	Rres Tres δf (GHz) G e◊/ 102 tan	α · 104

f1	=	83.5 0.978 0.75 0.40 0.83 4.77

f2	=	92.0 0.998 0.33 0.39 2.6 13.45

f3	=	105.7 0.993 0.31 0.34 2.25 10.14

f4	=	101.8 0.87 0.18 0.25 1.33 6.22

f5	=	99.8 0.77 0.30 0.45 1.5 7.16

Source:	 Reprinted	with	permission	from	J.	Scales	et	al.,	Phys.	Rev.	B	76,	085118,	2007.	Copyright	2007	by	the	
American	Physical	Society.

Note:	 The	localization	length	is	1	cm	(obtained	from	the	nonresonant	transmission	coefficient).
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2.4.6 Anderson Localization in Exotic Materials

2.4.6.1 Suppression of Anderson Localization in Disordered Metamaterials

The	theoretical	study	of	any	newly	discovered	physical	phenomenon	or	laboratory-created	
material	always	starts	from	a	simplified,	ideal	model,	which	makes	it	possible	to	under-
stand	the	underlying	principles	and	to	explain	the	basic	features	observed	in	the	pioneer-
ing	experiments.	More	 in-depth	 investigations	call	 for	more	realistic	models.	Sooner	or	
latter,	in	particular	when	it	comes	to	applications,	taking	account	of	disorder	becomes	nec-
essary.	 Such	 is	 indeed	 the	 case	 in	 the	 current	 status	 of	 research	 on	 metamaterials	 and	
graphene.

Unusual	physical	properties	of	metamaterials	open	up	unique	possibilities	for	numer-
ous	 applications	 in	 modern	 optics	 and	 microelectronics.	 As	 all	 real	 metamaterials	 are	
always	disordered	(mostly	as	a	result	of	inevitable	fabrication	errors),	the	investigation	of	
the	effects	of	random	scattering	on	their	transport	properties	is	not	only	a	fundamental	
academic	problem	but	is	also	of	significant	practical	importance.

The	analytical	and	numerical	analyses	based	on	the	transfer	matrix	method	presented	
in	Section	2.4.3	show	that	in	stratified	media	with	alternating	layers	of	right-	and	left-
handed	 materials	 (mixed	 stacks),	 the	 localization	 properties	 differ	 dramatically	 from	
those	exhibited	by	conventional	disordered	materials.	In	particular,	at	long	wavelengths,	
the	localization	length	of	mixed	stacks	with	random	refractive	indices	and	nonfluctuat-
ing	thicknesses	is	proportional	to	the	sixth	power	of	the	wavelength,	the	result	that	has	
been	 neither	 predicted	 nor	 observed	 in	 conventional	 1D	 random	 media.14,15	 It	 means	
that	left-handed	metamaterials	can	substantially	suppress	Anderson	localization	in	1D	
disordered	systems.	The	suppression	reveals	itself	also	in	the	vanishing	of	the	disorder-
induced	 resonances	 when	 left-handed	 layers	 are	 added	 to	 a	 random	 stack	 of	 normal	
dielectrics.	This	is	attributable	to	the	lack	of	phase	accumulation	over	a	mixed	sample,	
due	 to	 the	 cancellation	 of	 the	 phase	 across	 alternating	 left-	 and	 right-handed	 layers.	
When	both	refractive	index	and	thickness	of	the	layers	constituting	a	mixed	stack	fluctu-
ate	the	transmission	length	in	the	long-wave	range	of	the	localized	regime	exhibits	the	
well-known	quadratic	power	wavelength	dependence	with	different	coefficients	of	pro-
portionality	for	mixed	and	homogeneous	(only	metalayers)	random	stacks.	However,	the	
transmission	length	of	a	mixed	stack	differs	from	the	reciprocal	of	the	Lyapunov	expo-
nent	of	the	corresponding	infinite	stack,	presenting	a	unique	example	of	a	1D	disordered	
system,	in	which	the	localization	and	transmission	lengths	are	different.	In	contrast	to	
normal	 disordered	 materials,	 the	 characteristic	 ballistic	 and	 localization	 lengths	 of	
mixed	stacks	are	also	different,	at	least	in	the	weak	scattering	limit.	The	crossover	region	
from	localization	to	the	ballistic	regime	is	relatively	narrow	for	both	mixed	and	homo-
geneous	stacks.

Polarization	effects	have	been	considered	in	Ref.	36.	It	is	shown	that	the	transport	length	
strongly	depends	on	the	angle	of	incidence	for	both	vertical	(p)	and	horizontal	(s)	polariza-
tions	of	 the	 incident	wave.	 In	particular,	when	 the	angle	of	 incidence	exceeds	a	critical	
angle,	an	additional	exponential	decay	arises	due	to	the	internal	reflection	from	the	indi-
vidual	layers.	In	mixed	stacks	with	only	refractive-index	disorder,	p-polarized	waves	are	
strongly	 localized,	 whereas	 for	 the	 s-polarization	 the	 localization	 is	 substantially	
	suppressed	 at	 all	 angles	 of	 incidence.	 The	 Brewster	 anomaly	 angle	 depends	 on	 both	
the polarization	and	the	nature	of	disorder,	that	is,	disorder	in	either	the	permittivity	or	
the	permeability.	For	incidence	at	the	Brewster	angle,	localization	is	suppressed,	and,	in	
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	contrast	 to	 the	 case	 of	 normal	 incidence,	 the	 localization	 length	 is	 proportional	 to	 the	
square	of	the	variance	of	the	fluctuations	rather	than	to	the	variance	itself.

The	effects	of	absorption	on	1D	transport	and	localization	have	been	studied	both	ana-
lytically	and	numerically.15	It	turns	out	that	the	crossover	region	is	particularly	sensitive	to	
losses,	so	that	even	small	absorption	noticeably	suppresses	frequency-dependent	oscilla-
tions	 in	 the	 transmission	 length.	 The	 disorder-induced	 resonances,	 which	 present	 an	
important	signature	of	the	localization	regime,	are	also	strongly	affected	(suppressed)	by	
absorption.

The	frequency	dependence	(dispersion)	of	the	permittivity,	ε,	and/or	permeability,	μ,	has	
a	profound	effect	on	Anderson	localization	leading	to	rather	unusual,	sometimes	counter-
intuitive	phenomena.	The	most	exotic	behavior	is	observed	in	mixed	stacks	at	the	frequen-
cies,	at	which	ε	or	μ	turns	to	zero.	In	this	instance,	the	waves	are	delocalized	for	normal	
incidence,	whereas	the	localization	is	enhanced	when	disorder	is	present	in	both	permit-
tivity	and	permeability	of	the	layers.

2.4.6.2 Transport and Localization in Disordered Graphene Superlattices

Shortly	after	the	discovery	of	highly	unusual	physical	properties	of	graphene,	it	was	real-
ized	that	the	electron	transport	in	this	material	had	many	common	features	with	the	prop-
agation	 of	 light	 in	 dielectrics.	 In	 mathematical	 terms,	 under	 some	 (rather	 general)	
conditions,	Dirac	equations	describing	the	charge	transport	in	a	graphene	superlattice	cre-
ated	 by	 applying	 an	 inhomogeneous	 external	 electric	 potential	 could	 be	 reduced	 to	
Maxwell	 equations	 for	 the	 propagation	 of	 light	 in	 a	 dielectric	 medium.	 The	 role	 of	 the	
refractive	index	of	this	effective	medium	is	played	by	the	quantity	neff	=	E − U,	where	E	and	
U	are,	respectively,	the	dimensionless	energy	of	the	charge	carrier	and	the	scalar	potential	
of	the	external	electric	field.	It	is	easy	to	see	that	if	the	potential	is	a	piecewise	constant	
function	of	one	coordinate,	the	corresponding	graphene	superlattice	reproduces	a	layered	
dielectric	structure.17	In	particular,	a	layer,	in	which	the	potential	exceeds	the	energy	of	the	
particle,	 U > E,	 is	 similar	 to	 a	 slab	 with	 negative	 refractive	 index	 (metamaterial).	 It	 is	
because	of	this	similarity	that	a	junction	of	two	regions	having	opposite	signs	of	E − U	(so-
called	p–n	junction)	focuses	Dirac	electrons	in	graphene	in	the	same	way	as	an	interface	
between	left-	and	right-handed	dielectrics	focuses	electromagnetic	waves.43	However,	the	
analogy	 is	not	complete:	although	the	equations	are	akin,	 the	boundary	conditions	are,	
generally,	different.	Comparing	these	conditions	one	can	infer	that	in	the	particular	case	of	
normal	incidence,	the	transmission	of	Dirac	electrons	through	a	junction	is	similar	to	the	
transmission	of	 light	 through	an	 interface	between	 two	media	with	different	 refractive	
indices	 but	 equal	 impedances.	 Such	 an	 interface	 is	 absolutely	 transparent	 to	 light	 and	
therefore	to	the	Dirac	electrons	in	graphene	as	well.	This	explains	the	Klein	paradox	(per-
fect	transmission	through	a	high	potential	barrier)	in	graphene	systems,	and	leads	to	the	
surprising	conclusion	 that	Dirac	electrons	are	delocalized	 in	a	disordered	1D	graphene	
structure,	providing	a	minimal	nonzero	overall	conductivity,	which	cannot	be	destroyed	
by	fluctuations,	no	matter	how	strong	they	are.44	Nevertheless,	many	features	of	Anderson	
localization	can	be	found	in	random	graphene	systems.17	There	exist	a	discrete	random	set	
of	angles	(or	a	discrete	random	set	of	energies	for	each	given	angle)	for	which	the	corre-
sponding	wave	functions	are	exponentially	localized.	Depending	on	the	type	of	unper-
turbed	 system,	 the	 disorder	 could	 either	 suppress	 or	 enhance	 the	 transmission.	 The	
transmission	 of	 a	 graphene	 system	 built	 of	 alternating	 p–n	 and	 n–p	 junctions	 has	 an	
anomalously	narrow	angular	spectrum	and,	in	some	range	of	directions,	it	is	practically	
independent	of	the	amplitude	of	the	fluctuations	of	the	potential.
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Disorder	manifests	itself	in	various	other	situations,	including	graphene	devices	consid-
ered	in	Ref.	48,	and	the	localization	of	acoustics	waves	in	disordered	and	partially	disor-
dered	one-dimensional	structures.49–53

2.4.7 Conclusion

The	term	“disorder”	usually	bears	a	negative	connotation.	It	is	deemed	obvious	(both	in	
everyday	life	and	in	physics	and	engineering	as	well)	that	irregularities	are	always	injuri-
ous	and	detrimental.	Contrary	to	this	widely	held	view,	here	we	argue	that	if	treated	prop-
erly,	disorder	can	be	taken	advantage	of	in	numerous	technical	applications.	The	unique	
spectral	properties	of	wave	transport	in	the	localized	regime	presented	in	this	chapter	lead	
one	to	believe	that	exploiting	randomness	can	be	an	effective	strategy	for	creating	light-
tailoring	 devices,	 in	 particular	 switchable	 mirrors	 and	 tunable	 resonant	 micro-	 and	
nano-cavities.

Nowadays	photonic	crystals	are	the	most	extensively	used	for	these	purposes.	The	abil-
ity	of	perfectly	periodic	structures	to	manipulate	light	have	long	been	demonstrated	with	
regard	to	high-Q	cavity	resonances,	spontaneous	emission	control,	cavity	quantum	elec-
trodynamical	effects,	and	so	on.45	However,	although	in	laboratory	studies	photonic	crys-
tals	perform	wholly	satisfactorily,	practical	applications	are	frequently	problematic	because	
of	the	heavy	demands	on	the	accuracy	of	manufacturing:	even	small	deviations	from	peri-
odicity	could	modify	dramatically	the	optical	characteristics	and	hinder	the	performance	
of	crystal-based	devices.	That	is	why	significant	effort	and	financial	resources	are	expended	
to	 eliminate	 disorder	 and	 to	 develop	 pure,	 ideally	 regular	 structures.	 Yet,	 a	 different	
approach	 is	 a	 possibility:	 rather	 than	 combat	 the	 imperfections	 in	 periodicity,	 one	 can	
attempt	harnessing	highly	disordered	samples	as	high-Q	resonators	in	optical	and	micro-
wave	switches,	filters,	and	amplifiers.	Despite	the	random	character	of	Anderson	modes,	
their	behavior	and	evolution	are	rather	deterministic,	and,	therefore,	these	modes	can	be	
used	for	efficient	control	of	light	similar	to	regular	cavity	modes.

To	suit	the	optical	device	designer’s	requirements,	the	transmission	should	be	fast-tun-
able.	Resonant	cavities	in	photonic	crystals	are	created	by	implanting	specially	designed	
defects.	Then,	the	transmission	can	be	controlled	by	varying	the	spacing	between	the	given	
frequency	of	the	incident	radiation	and	the	resonant	frequency	of	the	cavity,	which	has	to	
be	easily	tunable.	However,	any	shift	of	the	spectral	line	usually	requires	structural	changes	
of	the	whole	sample,45,46	which	makes	such	methods	practically	unusable.

As	the	localization	length	(and	therefore	the	typical	transmission	coefficient)	of	a	1D	ran-
dom	configuration	is	determined	by	the	power	spectrum	of	disorder,	Equation	2.4.8,	it	is	
obvious	that	the	frequency	spectrum	of	the	transmission	can	be	tailored	by	varying	the	
spatial	structure	of	the	correlation	function.47	Although	the	physical	idea	is	trivial,	its	imple-
mentation	for	designing	fast-tunable	optical	devices	is	problematic	because,	just	as	it	is	in	
the	case	of	photonic	crystals,	it	needs	a	rearrangement	of	the	sample	as	a	whole.	This	how-
ever	does	not	mean	that	unique	transport	properties	of	disordered	systems	cannot	be	uti-
lized.	More	sophisticated	analysis	of	the	nature	of	the	disorder-induced	resonances	leads	to	
the	conclusion	that	they	are	extremely	sensitive	to	changes	of	the	parameters	of	the	medium	
only	inside	the	effective	cavities	where	eigenmodes	are	localized.	Figure	2.4.13	presents	the	
numerically	calculated	dependence	of	the	resonant	transmission	coefficient	on	the		variations	
of	the	dielectric	constant,	T(δε),	in	an	area	occupying	1/50	of	the	total	length	of	a	random	
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stack	of	layers.	It	is	seen	that	1%	change	in	the	permittivity	only	in	this	area	already	results	
in	a	decrease	in	T	by	the	factor	103.	This	example	gives	good	grounds	to	believe	that	one	can	
switch	a	sample	from	reflection	to	transmission	or	tune	the	emission	of	a	source	located	
inside	the	sample	by	external	actions;	for	example,	illuminating	it	by	electromagnetic	radia-
tion	that	changes	the	dielectric	constant	of	the	material	due	to	nonlinear	effects.
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