IOP PUBLISHING REPORTS ON PROGRESS IN PHYSICS

Rep. Prog. Phys. 73 (2010) 026501 (49pp) doi:10.1088/0034-4885/73/2/026501

Terahertz Josephson plasma waves in
layered superconductors: spectrum,
generation, nonlinear and quantum
phenomena

Sergey Savel’ev!:2, V A Yampol’skii'’, A L Rakhmanov'>* and
Franco Nori'”

! Advanced Science Institute, the Institute of Physical and Chemical Research (RIKEN), Wako-shi,
Saitama 351-0198, Japan

2 Department of Physics, Loughborough University, Loughborough LE11 3TU, UK

3 A Ya Usikov Institute for Radiophysics and Electronics, National Academy of Sciences of Ukraine,

12 Acad. Proskura Str., 61085 Kharkov, Ukraine

4 Institute for Theoretical and Applied Electrodynamics Russian Academy of Sciences, 125412 Moscow,
Russia

5 Department of Physics, Center for Theoretical Physics, Applied Physics Program, Center for the Study of
Complex Systems, The University of Michigan, Ann Arbor, MI 48109-1040, USA

Received 11 March 2009, in final form 5 July 2009
Published 19 January 2010
Online at stacks.iop.org/RoPP/73/026501

Abstract

The recent growing interest in terahertz (THz) and sub-THz science and technology is due to its
many important applications in physics, astronomy, chemistry, biology and medicine, including
THz imaging, spectroscopy, tomography, medical diagnosis, health monitoring, environmental
control, as well as chemical and biological identification. We review the problem of linear and
nonlinear THz and sub-THz Josephson plasma waves in layered superconductors and their
excitations produced by moving Josephson vortices. We start by discussing the coupled
sine-Gordon equations for the gauge-invariant phase difference of the order parameter in the
junctions, taking into account the effect of breaking the charge neutrality, and deriving the
spectrum of Josephson plasma waves. We also review surface and waveguide Josephson plasma
waves. The spectrum of these waves is presented, and their excitation is discussed. We review the
propagation of weakly nonlinear Josephson plasma waves below the plasma frequency, wy, which
is very unusual for plasma-like excitations. In close analogy to nonlinear optics, these waves
exhibit numerous remarkable features, including a self-focusing effect and the pumping of
weaker waves by a stronger one. In addition, an unusual stop-light phenomenon, when

dw/dk = 0, caused by both nonlinearity and dissipation, can be observed in the Josephson
plasma waves. At frequencies above wy, the current-phase nonlinearity can be used for
transforming continuous sub-THz radiation into short, strongly amplified, pulses. We also present
quantum effects in layered superconductors, specifically, the problem of quantum tunneling of
fluxons through stacks of Josephson junctions. Moreover, the nonlocal sine-Gordon equation for
Josephson vortices is reviewed. We discuss the Cherenkov and transition radiations of the
Josephson plasma waves produced by moving Josephson vortices, either in a single Josephson
junction or in layered superconductors. Furthermore, the expression for the Cherenkov cone of
the excited Josephson plasma waves is derived. We also discuss the problem of coherent radiation
(superradiance) of the THz waves by exciting uniform Josephson oscillations. The effects
reviewed here could be potentially useful for sub-THz and THz emitters, filters and detectors.

(Some figures in this article are in colour only in the electronic version)
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List of notation and abbreviations

Je maximum Josephson current density

Aap and A, in-plane and out-of-plane London
penetration depths

A Josephson penetration depth

g Josephson plasma frequency

D period of the layered structure

s <D thickness of a superconducting layer

€ interlayer dielectric constant

oy quasiparticle conductivity across
the layers

o) quasiparticle conductivity along
the layers

N relaxation frequency

R gauge-invariant phase difference
between the /th and (/ + 1)th
superconducting layers

E and H electric and magnetic fields

A vector potential

w wave frequency

Q= w/wy dimensionless frequency

0 incident angle

Csw = My Swihart velocity

Vinin minimum vortex velocity for emitting
out-of-plane Cherenkov radiation

D* thickness of a weak junction

Jr maximum Josephson current density
through a weak junction

g =mch/e magnetic flux quantum

c speed of light

e elementary charge

Ho = ®9/2n DA, characteristic scale of the magnetic

fields in layered superconductors

THz terahertz
JPW Josephson plasma wave
JPR Josephson plasma resonance

v Josephson vortex

HTS high-temperature superconductor
LTS low-temperature superconductor
NWGM nonlinear waveguide mode

Sy stack of Josephson junctions
SIPW surface Josephson plasma wave
CVC current—voltage characteristics
MQT macroscopic quantum tunneling

z-axis is directed across the layers
y-axis is directed along the magnetic field

1. Introduction

The physical properties of layered superconductors have
attracted a great deal of interest from many research groups.
The strongly anisotropic high-7. (HTS) Bi;Sr,CaCu;0Os,s
single crystals are characteristic members of this family. In
these materials, very thin (0.2 nm) superconducting layers are
separated by a thicker (1.5nm) insulator which allows the
propagation of electromagnetic waves with frequencies above
the Josephson plasma frequency wjy (about 0.1-0.4 THz).
Artificial stacks of Josephson junctions (SJJs), e.g. Nb/Al-
AlO,/Nb, represent another group of such materials. These
artificial stacks can be prepared using a modified selective
niobium anodization process and usually consist of thicker
superconducting layers (the thickness ~20 nm, is less or about
the magnetic penetration depth) separated by thinner insulating
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tunneling barriers (~2nm). In such artificial systems, the
coupling can be controlled by varying the thickness of the
superconducting layers, thus resulting in a controllable change
of the frequency (usually up to 0.7 THz) of the propagating
electromagnetic waves.

Many experiments on the c-axis transport in layered HT'S
justify the use of a model in which the superconducting layers
are coupled by the intrinsic Josephson effect through the layers
[1-5]. The Josephson current flowing along the c-axis couples
with the electromagnetic field. Due to this coupling, similarly
to a single Josephson junction, electromagnetic waves (so-
called Josephson plasma waves (JPWs) [5-15]) can propagate
either in artificial multi-stacks or in layered superconductors.

A great challenge is to excite electromagnetic waves in
Bi,;Sr,CaCu, 03,5 samples in a controllable manner because
of its sub-terahertz (sub-THz) and terahertz (THz) frequency
ranges [15,16], which are still hardly reachable for both
electronic and optical devices. The poorly controlled THz
range of electromagnetic spectra sits between 300 GHz and
30THz which corresponds to 1000-10 um (wavelength),
1.25-125 meV (energy) or 14-1400 K (temperature). Thus,
this THz gap covers temperatures of biological processes.
Also, a substantial fraction of the luminosity of the Big Bang
lies in the THz range [17]. During the last decade there
have been many attempts to push THz science and technology
forward because of many important potential applications
in physics, astronomy, chemistry, biology and medicine,
including THz imaging, spectroscopy, tomography, medical
diagnosis, health monitoring, environmental control, chemical
and biological identification (see, e.g., [17, 18]).

There are several optical and electronic (microwave) THz
devices competing for the THz market (see, e.g., [19-22]).
Optical devices employ several approaches to reduce their
frequency. On the other side of the spectrum, the frequency
of microwave devices (usually electronic devices based on
semiconductors) has to be increased in order to reach the
THz gap.

Recently, a wide variety of electronic THz sources
are being investigated [19]. These include the following:
resonant tunneling diodes, THz plasma-wave photomixers,
THz-quantum cascade lasers [23,24] and Bloch oscillators.
Numerous types of THz detectors [19-22] for time-domain
systems have been studied so far including bolometers,
single-electron transistors, photoconductive antennas, and
electro-optic sampling techniques for time-domain detection.
THz waveguiding using conventional structures, such as
plastic ribbons, metal tubes and dielectric fibers, has been
demonstrated—however, these still have limited applications
because of high losses. Moreover, despite a variety of proposed
and even constructed THz sources, detectors and waveguides,
there is still a lack of sufficiently controllable THz devices.
Indeed, most of the devices mentioned above have problems
for applications in electronics. This is because these are either
rather large, or not easily assembled together, or nontunable.

Superconducting devices employing the Josephson effect
are now considered as potential candidates (see, e.g., [25])
for making single-chip multifunctional THz devices. Indeed,
the growing number of studies of Josephson devices is

partly motivated by the current interest in the sub-THz and
THz frequency range of electromagnetic waves. These
electromagnetic waves interact nonlinearly with the Josephson
medium itself and with magnetic flux quanta (Josephson
vortices, JVs), which, in turn, can be manipulated by varying an
in-plane magnetic field and/or an out-of-plane electric current
[26]. Such a level of controllability can be used to propose a
set of well-integrated classical and even quantum THz devices,
including pulse and continuous wave generators, single photon
THz generators, tunable filters, detectors, wave mixers, lenses,
converters and amplifiers. Note also that the THz oscillations
of the order parameter and voltage under an applied drive can
be observed in mesoscopic superconductors (e.g., stripes or
uniform narrow channels) due to appearance of phase slip
lines [27].

We intend to focus in this review on basic mechanisms that
are potentially useful for controlling THz radiation in either
artificial superconducting/nonsuperconducting multi-layers or
high-temperature layered superconductors.

Another reason for the scientific interest of the JPWs is
due to their resonant interaction with an external microwave
electric field oriented along the c-axis, called the Josephson
plasma resonance (JPR). This phenomenon plays an essential
role in the microwave absorption and reflectivity of layered
superconductors [7, 11,28-36] near the resonance frequency
wy. Besides this, the JPR has been introduced as a powerful
tool providing unique information on the Josephson coupling
of superconducting layers in HT'S and on the structure of vortex
phases in the presence of an applied magnetic field (see, e.g.,
[11-13,37-43]).

1.1. Cherenkov radiation from moving JVs

Since both JPWs and JVs have a common nature and can be
described by the same set of equations, called coupled sine-
Gordon equations [34, 44-51], the JV motion strongly couples
to the plasma waves. As a result, JPWs can be excited by the
motion of JVs. Itis common for electromagnetic processes that
their emitted power increases with the speed of the moving
object. Thus, the THz wave intensity produced by moving
JVs should rise when the vortex speed, V/, is increased. The
radiation should increase considerably if V exceeds the value
of the phase velocity of the waves, which is referred to as
Cherenkov effect [52]. In particular, Cherenkov radiation
arises [16,48,53-64] in Josephson junctions if the vortex
velocity V exceeds the phase velocity cy,(g) of the waves with
a definite wave vector q.

In the framework of the local theory [65], the maximum
velocity of the vortex in a single Josephson junction cannot
exceed the so-called Swihart velocity, cgy, Which coincides
with the minimal phase speed of the linear waves. This results
in the absence of Cherenkov radiation in a single Josephson
junction. However, even for a single junction, the local theory
is valid only if the Josephson penetration length,

CCDO

A= | —2
! 1672 J.

ey
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is much larger than the London penetration depth 1. Here ¢
is the speed of light, ®y = mhc/e is the flux quantum and
J.. is the critical current density of the junction. To higher
order approximation with respect to A/Aj, a nonlocal sine-
Gordon equation should be used for the description of the
vortex dynamics [66] and the wave spectrum [53]. In this case,
the maximum vortex velocity exceeds the phase velocity of the
waves with high g and Cherenkov radiation can be observed.
The interaction between the junctions in SJJ gives rise to a
similar effect [54].

1.2. Out-of-plane Cherenkov radiation

The Cherenkov radiation in a single junction differs, in some
essential features, from the classical Cherenkov effect. If
the particle moves with a velocity V higher than the speed
cw of the emitted waves, the Cherenkov radiation propagates
inside the Cherenkov cone with an angle 6 determined by the
relation cos @ = c¢y/ V. However, the Cherenkov radiation in
a single junction has a wave vector directed along the layers
in parallel to the vortex motion. Moreover, this radiation
could be treated as a fine structure of the JV moving with the
same velocity V as the vortex itself. Particularly interesting
is to answer the question if the Cherenkov radiation can run
away from the layers where it is generated. In other words,
can the moving vortex generate out-of-plane radiation with
its wave vector directed at a finite angle from its velocity?
This question was answered in [67-69]. The vortex motion
in layered superconductors is described by the nonlocal sine-
Gordon equation. The maximum vortex velocity V; is of the
same order as the minimal velocity Vi, necessary for the
generation of out-of-plane waves. Therefore, out-of-plane
Cherenkov radiation can certainly be generated by a vortex
moving in a junction weaker than others, since its maximum
velocity is increased in this case. A subset of weaker intrinsic
Josephson junctions in Bi,Sr,CaCu;0Os,s-based samples can
be made using either (i) the controllable intercalation technique
[70-72], (ii) chemical vapor deposition (see, e.g., [73]) or (iii)
via the admixture of Bi;Sr,Cu,QOg,s and Bi; Sro,Cay,CuzOgo4s
[74]. Also, such a system can be created using artificial
stacks of layers of low temperature superconductors. It is
necessary to emphasize that out-of-plane Cherenkov radiation
can be more preferable for applications than propagating along
the ab-plane. The ratio of the tangential electric field and
magnetic field appears to be of the same order in the most
intense part of the spectrum of emitted out-of-plane waves.
This a very peculiar property, unusual for conducting media,
indicating that there is no impedance mismatch for the out-of-
plane radiation.

1.3. Nonlinear JPWs

The set of coupled sine-Gordon equations is essentially
nonlinear due to the Josephson relation between the current
density J across the layers and the gauge-invariant interlayer
phase difference ¢, i.e. J = J; sin ¢. In the strongly nonlinear
regime (¢ ~ ), the sine-Gordon equation possesses soliton
and breather solutions [75,76]. However, the nonlinearity
becomes crucial even for much smaller wave amplitudes, i.e.

l¢| < 1, due to a gap in the spectrum of JPWs. In [77-80] we
discussed such phenomena. Some of these (e.g., self-focusing
effects of JPWs, the pumping of weaker waves by a stronger
one, nonlinear plasma resonances, nonlinear surface waves and
waveguide propagation) have analogs in traditional nonlinear
optics. In addition, the unusual stop-light phenomenon, caused
by both nonlinearity and dissipation, was predicted in [77].

1.4. Overview of this paper

This review aims to give an updated physical picture of JPWs,
discuss their role in the electrodynamic properties of layered
superconductors and describe the Cherenkov mechanism of
wave excitation. About half of the review emphasizes work
done by our group. In section 2 we derive the coupled
sine-Gordon equations, obtain the dispersion relation for the
linear JPWs, discuss the role of the dynamical breaking of
charge neutrality in the JPW spectrum, study the effect of an
external magnetic field on the linear JPWs and discuss surface
JPWs. We describe the nonlinear JPWs in section 3. Here
we show the possible propagation of nonlinear waves below
the plasma frequency, describe the stop-light phenomenon
that occurs due to both nonlinearity and wave dissipation,
study nonlinear JPRs and discuss nonlinear waveguide modes
(NWGMs) in plates of layered superconductors. Section 4
is devoted to the Cherenkov radiation of JPWs in a single
Josephson junction as well as in layered superconductors. In
this section we also show that the JV can emit out-of-plane
electromagnetic waves even when V < V., if the critical
current J in the weak junction is nonhomogeneous. The
problem of coherent radiation (superradiance) of the THz
waves in layered superconductors is discussed in section 5.
Quantum effects in layered superconductors, specifically, the
problem of quantum tunneling of fluxons through SJJs, are
reviewed in section 6.

2. Linear JPWs

2.1. Coupled sine-Gordon equations: dispersion relation for
JPWs

To the best of our knowledge, Sakai er al [44] were the
first who derived the set of coupled sine-Gordon equations
for the phenomenological description of the electrodynamics
of layered superconductors. Later on, many authors (see,
e.g., [34,45-48,50,51], rederived the coupled sine-Gordon
equations using other approaches. Reference [49] presented a
microscopic theory of the superconducting phase and charge
dynamics in intrinsic Josephson-junction systems based on a
BCS functional integral formalism. Under some conditions,
their theory also rederives the coupled sine-Gordon equations.

Consider now an infinite layered superconductor in
the geometry shown in figure 1.  Superconducting and
insulating layers have thicknesses s and d, respectively.
Following [47, 50], we assume that the superconducting layers
are extremely thin, s < d, so that, inside them, the spatial
variations of the electric field in the direction perpendicular
to the layers may be neglected. The coordinate system
is chosen in such a way that the crystallographic ab-plane
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Figure 1. Geometry of the problem and coordinate system.

coincides with the xy-plane and the c-axis is along the z-axis.
Superconducting layers are numbered by the index /. The
electric, E, and magnetic, H, fields have components,

E ={E,,0, E,}, H = {0, H,0}. Q)

The total tunneling current between the (/ + 1)th and /th
superconducting layers is the sum of the Cooper pair current
and the quasiparticle current caused by the electric field E/!.
Its density obeys the usual Josephson relation [65]

Jl+1,l — Jc Sin(¢[+l,1) +O,J_Ei+l,l’ (3)

where ¢'*!/ is the gauge-invariant interlayer phase difference

of the superconducting order parameter:

I+1
I+1,1 2n

@ =X+ — Xt — —

Al+1,ld , 4
Dy J; e “@

o is the quasiparticle conductivity in the direction orthogonal
to the layers, yx; is the phase of the order parameter in the /th
superconducting layer, A’*!! is the z-component of the vector
potential. We assume the modulus of the order parameter to
be the same for different superconducting layers.

The values H'*! and E*!! of the electric and magnetic
fields within the junction between the (/ + 1)th and /th layers
are related to each other by the Maxwell equation,

8Hl+l‘l
ax

where ¢ is the dielectric constant of the insulating layers.

We use the Maxwell equation and the quantum mechanical
expression for the x-component of the current in the /th
superconducting layer and find, for the discrete case considered
here, the relation between the magnetic fields in neighboring
junctions in the form,

HYY — gy 0y 2m 4
- —— = —Ag|+—0oEy,
ax LOX c

(6)
where A is the London penetration depth of the bulk
superconductor, E,; and A,; are the x-components of the
electric field and vector potential in the /th superconducting
layer, o is the quasiparticle conductivity along the layers. The

expressions for the electric and magnetic fields via the vector
potential can be written as

10A,
c 0t

c 8El+l’l
= — [k sin(p") + o EFV + ;#, ®)

s T 272

Ay
- 7
P (7)

xl

1 JAL _ Aoux) — A

El+1,l — , 8
< c ot D ®)
AASLL ALy — Ay
HI+1,I — _ Z _ (l+1) ]. (9)
ox D

Here A is the scalar potential in the /th layer, D = s +d ~ d
is the period of layered structure.

Using equations (4) and (8), and assuming that
flm Al dz = A D, one can easily obtain the relationship
between the electric field across the layers and the phase
difference ¢!/

@ "V Y=

EM = , (10)
N 2neD 0Ot D
where o 5
0 9X1
=—-—A 11
(] rme o1 ol (11)

is the gauge-invariant scalar potential. This potential can be
obtained from the Poisson equation. The contribution of the
gradient of ¢ to the electric field is caused by breaking the
charge neutrality in the layered superconductor. Because of
the smallness of the Debye length in any superconductor, with
respect to the London penetration depth, this effect can be
neglected in many cases. For example, the breaking of charge
neutrality is negligible for frequencies far from w;y. However,
breaking the charge neutrality can play an important role in the
dispersion properties of the JPWs when w is very close to wy
(see, e.g., [34]), and we will consider this specific situation in
the next section.

Now, following Artemenko and Remizov [47,50], we
omit the gauge-invariant scalar potential in equation (10).
Thus, excluding the vector potential, as well as the electric and
magnetic fields from the set of equations (5)-(10), we derive

the coupled sine-Gordon equations for the phase differences
I+1,1.
[

32 5211 gl
(1 - ﬂaﬁ) |: d + w; ¢ +w? sin ((pl+l’l):|

D2 ot? ot
2 42 I+1,1
¢t o™
- — =0. 12
e 0x? (12)

Here A, = A(D/s)'/? is the London penetration depth into
the z-direction of the layered HTS, the second-order discrete
differential operator 812 is defined as 3,2 fi= fin+ fio1 =21,

8meDJ,
wy = oneliJe (13)
he
is the Josephson plasma frequency, w, = 4mo, /¢ is the

relaxation frequency proportional to the c-axis quasiparticle
conductivity. As wasshownin [81], the intralayer quasiparticle
conductivity oy appearing in equation (6) should be accounted
for when w is far enough from the plasma frequency.
The contribution of the in-plane conductivity can be easily
incorporated in our analysis. However, for the frequency range
close to wy, the term with o is strongly suppressed and can be
omitted if

252 2

ewjhy, o) w

—c—|1-=5| <L (14)
C o CL)J

In a wider frequency range, the term with o] can be omitted
ifvj—4mo)/(y?ewy) < 1,wherey = A./Aypis the anisotropy
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coefficient. The value of yj is of the order of 0.1 for Bi-2212
crystals.

The electric and magnetic fields in a layered superconduc-
tor can be obtained from the distribution of the gauge-invariant
phase difference using equations

1 3§01+1,l q)o

El+l,l =H s Ho = —— 15
: SN *7 2xDx, (4
9 Fl+ _ _@ iach’“" ﬁa(pm,z v ein (go’”’l)
Ox Ae a)_lz at? (z)_l2 ot ’
(16)
22,9
E, — Lb_(HHIJ _ Hl,lfl)’ (17)

cD a1
where we introduce the London penetration depth of the dc
magnetic field in the c-direction,

c

\/560]'

The coupled sine-Gordon equations can be used to
describe both the JVs in layered superconductors and the JPWs.
In the case of small-amplitude waves, equation (12) can be

Ae =

(18)

linearized, i.e. sin (¢'*"') can be replaced by ¢'*'. Then,
equation (12) has wave solutions
@ ocexp[i(gx — wt +k(g, w)ID)]. (19)

Substituting equation (19) into the linearized equation (12), we
obtain the dispersion law for the JPWs:

.2 (kD D? czq2
sin” | — | = — 5 I —1]. (20)
2 4r;, Le(w? — oy +ivw,)

Equation (20) shows that the JPWs can propagate in the layered
superconductor if

w > wy. 21
Thus, a gap exists in the frequency spectrum of the
electromagnetic waves in layered superconductors. This

means that the small-amplitude incident wave is completely
reflected from the surface of the superconductor if the
wave frequency is lower than wj. Note also that the
dispersion equation (20), obtained under the assumption of
charge neutrality, predicts the minimum possible value of the
longitudinal wave vector,

e(w? — sz) 172
{dmin = 7 .

(22)

The wave propagation deep into the superconductor
is accompanied by a decay controlled by the term w, in
equation (20), i.e. by the value of the quasiparticle conductivity
o, . At low temperatures, this conductivity is small for HTS.
Thus, for many problems of interest, the decay of plasma waves
can be neglected.

2.2. Breaking of charge neutrality

One can see from equation (20) that the value of 1/k(q, w)
becomes comparable to the spacing D in the layered structure

of a superconductor if the frequency w is close to the Josephson
plasma frequency wj. In this case, the effect of breaking the
charge neutrality of the superconducting layers and the so-
called capacitive interlayer coupling can play an important role
in forming the spectrum of the JPWs [31, 34,46, 48, 82-84].
The capacitive coupling manifests itself also in the transport
properties of layered superconductors [85, 86]. In particular,
the breakpoint features in the current—voltage characteristics
(CVC), related to the creation of the longitudinal plasma
waves, have been found recently [87, 88]. The unified theory of
inductive and capacitive coupling in layered superconductors
was constructed in [89], and the collective plasma modes were
derived there on the basis of this theory. As we review below,
a new branch in the wave spectrum appears due to the effect
of breaking the charge neutrality.

2.2.1. Longitudinal plane waves. First, following [46], we
derive the equation for the phase difference ¢*!"/ assuming that
the wave is uniform along the layers, i.e. we consider a plane
wave (19) with g = 0. It follows from the charge conservation
law that

o

or’
(23)
where p; is the charge density in the /th superconducting layer.
From the Maxwell equation

J.. sin ((p”l'l) + GJ_E?” = J.sin ((p”’l) + ULE?Z’I —5

div(¢E) = 4mp, 24
we obtain the following relation:
gl g = 0, (25)
' < e

From equations (23) and (25) we derive the conservation law
for the case when waves propagate only along the c-axis:

e 3El+1’1
7. sin 1+1,1 +o El+1,l+_ z
esin (¢™) + oL B 4 o —
e QEL-!
= Jsin (¢1’1—1)+@E§1—'+E Pyt (26)

In other words, the total c-axis current, including the
displacement current, should be the same in each junction.
In particular, in the absence of the external bias current,
equation (26) gives

e QEMI
R
4w Ot

l+1,l) — O

Jesin (¢ +o  EMY 4 (27
If we assume the usual local Josephson relation between

the phase difference and voltage,

dg'tt! _ Z_eVz+1,1 _ ZnCDEHl,l

28
ot h D (28)

we obtain from equations (27) and (26) a set of independent
equations for ¢/*1"! in each junction, i.e. no interference effect
takes place among the junctions. However, as was argued
in [90, 91], equation (26) becomes incorrect for systems where
the charge neutrality breaking effect is important. Taking the
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time derivative of equation (4) and using equation (8), we
obtain, instead of equation (28), the following relation:

D 9 1+1,1 o, o
o (4 _ g A0(1+1) + 0 9Xu+1)
2wc ot 2wc ot

oy 0
— AOI+_0i .
2mwe ot

(29)

We assume a rather natural relation between the charge density
and the gauge-invariant scalar potential [91, 92]:

o @)

(30)

1
S Ag+ =2
o 471RD< O 2me ot

where Rp is the Debye length for a charge in a superconductor,
which is usually much shorter than the London penetration
depth. Substituting equation (30) into equation (29) and
using equation (25), we obtain the relation between the gauge-
invariant phase difference and the voltage:

LRl _ eRF[ vie-n 4 (24 sD y D
2e ot sD R}

eRp
_ V(I+2),(l+])]

3D

Note that equation (31) is reduced to equation (28) in the
limiting case R% &« sD/e. Otherwise, we cannot neglect
the correction for the Josephson relation. The equation for
the gauge-invariant phase difference can be derived from
equations (27) and (31):

Pt 2 2 i (L NSy w; dg™t!
S = O |:a8, sin (¢"*"") — sin (¢ )—w—J2 o ]
(32)
with 5
Ry
=, 33
@=-7 (33)
For small ¢'*!'!, this equation has the longitudinal-wave
solution of the form equation (19) with ¢ = 0 and the
dispersion law
kD 1
s 2 2 2 .
sin“| — | = o — 0] +ivw;). 34
< > ) 4ota)12( 7 r) (34
This wave exists in the frequency interval
a)J2 <o’ < sz(l +4a). (35)

In contrast to the dispersion equation (20), the wave considered
here can propagate at ¢ = 0.

2.2.2.  Dispersion relation for JPWs propagating in an
arbitrary direction. When the wave vector has an arbitrary
inclination to the layers, the dispersion relation for the JPWs
can be derived in a manner similar to equation (34). When
neglecting the relaxation term, the result can be written as [34]

©’(¢.0) _ | 2q?
W} 14422, /D sin’(kD/2)

+4a sin’>(kD/2).

(36)

Obviously, equation (36) coincides with equation (20) when
o =0and w, = 0.

Following [34], we consider the excitation of JPWs by
an external electromagnetic wave incident onto a layered
superconductor at some angle 6 with respect to the ab-plane.
In such a situation, the frequency w and the longitudinal
component g of the wave vector are related by

cq = wsinb. 37
Substituting equation (37) into equation (36) and solving the
obtained equation with respect to sin?(k D /2), one obtains two
branches of the dispersion law:

1 D?
sin’(ktD/2) = —[A —a—
8a Ao
D2\ D2 sin® 6
+ A+ o= — a5 (1+A)
)”ab }”ab
1 D2 sin? 6
~ — | AE A2—4(XT_ 5 (38)
8a Ay, €
w?
A=—— 1 (39)
@y

The branch ‘+° is characterized by a normal dispersion
(vg = dw/0k > 0). It exists at any incident angle 6 in the
frequency range

Amin < A < AY

max’

o D
Amin = 2 g Aab max

(40)

sin 6, At = da.

(41)

It is of interest that this branch disappears when ¢ — 0, i.e.
the effect of breaking charge neutrality is responsible for this
branch.

In the limit of charge neutrality, « = 0, the branch
‘—’ coincides with the mode predicted by the dispersion law
in equation (20). This branch [34] is characterized by an
anomalous dispersion (vg < 0). It exists for

sin O a D

_— -, 42
g —sin’6 & Aab “2)
in the following frequency range:
_ sin% 0
Amin <A <Ay =—"5—- (43)
& —sin“ 6

This analysis [34] shows that layered superconductors
represent an example of conducting media where incident
light with a given frequency excites several eigenmodes with
different wave vectors k. This poses the fundamental problem
that the Maxwell boundary conditions, i.e. the continuity of the
electric and magnetic field components parallel to the surface,
are insufficient to calculate the relative amplitudes of these
modes, and one should use the so-called additional boundary
conditions. The additional boundary conditions for layered
superconductors can be obtained considering the interlayer
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charge oscillations due to the tunneling of Cooper pairs and
quasiparticles, as was done in [34].

When the wave numbers differ significantly, at k* > k~,
the incident wave excites mainly the branch ‘—’, and the
usual Fresnel approach is valid. However, this approach
becomes invalid near frequencies where the group velocity
of the wave packets inside the crystal vanishes. Near this
particular frequency, w ~ wy(1 + 2«), the reflectivity depends
on the atomic structure of the crystal. Reference [34] also noted
that the spatial dispersion of the JPWs provides a method to
stop light pulses with w ~ wy.

According to estimates from [34], « ~ 0.05-0.1 for
Bi-2212 or TI-2212 crystals. However, the value of «o
can be reliably extracted from experiments. According to
experimental results [93], this constant is much smaller than the
one predicted in [34]. Thus, the capacitive coupling parameter
« is negligible and does not significantly affect the distribution
of the gauge-invariant phase difference and the electromagnetic
field inside a superconductor. Therefore, below we do not take
into account the effect of breaking charge neutrality.

2.3. Surface Josephson plasma waves

Equation (20) shows that the value of the transverse wave
number k(q,w) of the JPWs becomes imaginary when
w < wy. This corresponds to the damping of the wave
amplitude inside the superconductor. This is an inherent
feature of surface waves [94-98]. In general, surface
waves play a very important role in many fundamental
resonance phenomena, such as the Wood anomalies in the
reflectivity [95-97,99] and transmissivity [98, 100-106] of
periodically corrugated metal and semiconductor samples.
Therefore, it is important to describe how to excite surface
waves in layered superconductors and to study the resonances
associated with these surface waves.

In this subsection, closely following [68,107-110],
we review the surface Josephson plasma waves (SJPWs)
propagating along the interface separating the vacuum and a
layered superconductor (see figure 2). In particular, below we
obtain the dispersion relation for SJIPWs, and show that STPW's
can be excited via the so-called ‘attenuated total reflection
method’ (Otto-configuration [95-97, 111, 112]) in a frequency
range below wy, i.e. by an evanescent wave in the vacuum gap
between the superconductor and a dielectric prism. Due to the
resonant excitation of the SJPW, the reflectivity of the incident
wave depends sharply on its frequency and incident angle.
This resonance effect can be useful for filtering and detecting
THz and sub-THz radiation using layered superconductors.
Reference [109] finds the optimal conditions for the best
matching of the incident wave and the SJPWs, as well as for
the total suppression of the specular reflection.

2.3.1. Dispersion relation for SIPWs. Now we consider a
plane-shaped interface (the xy-plane) separating the vacuum
(z > 0 in figure 2) and a layered superconductor (z <
0). We study a linear surface transverse-magnetic (TM)
monochromatic electromagnetic wave propagating along the
x-axis with the electric, E = {E,,O0, E,}, and magnetic,

Vacuum

Insulating layer

superconductor

Figure 2. Geometry for studying surface waves (from [109]).
(Color online).

H = {0, H, 0}, fields proportional to exp[i(gx — wt)] and
decaying into both the vacuum and layered superconductor
away from the interface z = 0. When g > w/c, the Maxwell
equations yield an exponential decay of the wave amplitude
into the vacuum:

HY, EY, EX ocexp(igx —iot —kyz), z>0 (44)

with the decay constant

2
kvz,/qz—w—2>0.
c

Moreover, the Maxwell equations provide the ratio of

amplitudes for the tangential electric and magnetic fields at

the interface z = +0 (i.e. right above the sample surface):
Ey e ic [, @?

= — v — .
Hv 1) c?

(45)

The electromagnetic field inside the layered superconduc-
tor, z < 0, is defined by the distribution of the gauge-invariant
phase difference ¢;(x, t) of the order parameter between the
I/th and (/ + 1)th layers.

The linearized version of the coupled sine-Gordon
equations (12), together with equations (15)—(17), has a
solution of the form

o, Hls, ES

v EXpocexp(igx —iwt — kd D) 46)

inside a layered superconductor and gives the relation between
the decay constant k; (Re(ks) > 0), wave number g and
dimensionless frequency

w
Q=—,

Wy
43

ksD D?
mnh2< - ) = — <1+ . >. (47)
2 422, 1-Q2—irQ

The dispersion relation, g(w), for the SIPW can be
obtained by matching the in-plane fields H and E, at the
vacuum—superconductor interface. Thus, in order to find the
spectrum of the surface JPW, we should derive the ratio E3 / H®
at z = 0 and use the impedance matching

Evac ES
R
Hvae — FHs®
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The difference between the magnetic field H%(z = 0) at
the sample surface and its value H between the firstand second
superconducting layers is defined by the x-component of the
supercurrent density Jy (I = 1). In the London approximation,
the value of J, is proportional to the x-component of the vector
potential, A, (I = 1), and, therefore, to the electric field E;,r
As a result, we obtain the relation

Hi(z=0)—H} _ A(l=1) _ —i
D on

c
s
E; .

48
o (48)

Moreover, for [ = 1, equation (46) implies that

H*(z=0)— H} = H(z =0)[1 —exp(—k;D)].  (49)

Using equations (48) and (49), we obtain the ratio between the

electric and magnetic fields at z = —0 (i.e. right below the

sample surface):

ES(z=0) QA
=i

Hs(z =0) cD

[1 — exp(—k;D)]

/ 1
:2ibQZ( 1+——1>, (50)

VA

with
)\’2 2
e ) F I S—
¢D e(1 — Q2 —irQ)
D
- k=4, (51)
2 ab w)

Matching the impedances in equations (50) and (45), we
obtain the dispersion relation for the SJTPWs:

\/K2—92=2b922<,/1+%—1>. (52)

For Bi;Sr,CaCu;0g,s superconductors, one can use the
following values of the parameters: b ~ 0.7, w; /27 = 1 THz,
D =20A and A, = 2000 A.

For simplicity, below we consider surface waves in the
continuum limit (/D — —z), when the damping length, k !
in the superconductor is large compared with the interlayer
spacing D:

ksD < 1. (53)

Under such a condition, the value of Z in equation (52) is
small. So, in the continuum limit, the dispersion relation takes
the form

2

K
e(l— Q2 — irQ)) - 9

k= QF +4p°Q'T? <1 +
2.3.2. Excitation of SJPWs: resonant electromagnetic
absorption. Here we describe how to excite a SJPW by a
wave incident from a dielectric prism onto a superconductor
separated from the prism by a thin vacuum gap (see figure 3).
In the absence of the superconductor, the incident wave
completely reflects from the bottom of the prism, if the incident
angle 6 exceeds the limit angle 6, for total internal reflection.
However, the evanescent wave penetrates under the prism

Insulating layer

Layered
superconductor

Figure 3. Geometry considered in [109] (Otto configuration): a
dielectric prism is separated from a layered superconductor by a
vacuum gap of thickness /4. An electromagnetic wave with incident
angle 6 > 6, can excite SJPWs that satisty the following resonant
condition: wsin@/c = q. Here k' and k' are the wave vectors of the
incident and reflected waves associated with the magnetic field
amplitudes H' and H'. The resonant excitation of STPWs by the
incident wave produces a strong suppression of the reflected wave.
This method for producing surface waves is known as the
‘attenuated-total-reflection” method. (Color online.)

a distance about a wavelength. The wave vector of the
evanescent mode is along the bottom surface of the prism
and its value is higher than w/c. This feature is the same
as for surface waves. So, it is natural to expect the spatial-and-
temporal matching (coincidence of both the frequencies and
wave vectors) of evanescent modes and SJPWs for a certain
incident angle. When the resonant excitation of SJPWs by
the incident wave occurs, this results in a strong suppression
of the reflected wave. This is the well-known ‘attenuated-
total-reflection method’ for generating surface waves. Below
we present a detailed description of this method for SJTPWs
propagating along the superconducting layers. The geometry
is shown in figure 3.

We now consider an electromagnetic wave with the
electric, B¢ = {EY, 0, E¢}, and magnetic, HY = {0, H%, 0},
fields incident from the dielectric prism. The prism has
permittivity € and is separated from the layered superconductor
by a vacuum interlayer of thickness 4. The wave frequency w
is assumed to be below the Josephson plasma frequency wy.

The magnetic field H¢ in the dielectric prism can be
represented as a sum of incident and reflected waves with
amplitudes H' and H", respectively:

H® = H'expligx — ikq(z — h)] + H" exp(igx + ikq(z — h)),

(55)
Here and below in this subsection we omit the time-dependent
multiplier, exp(—iwt). The plane z = 0 corresponds to
the vacuum—superconductor boundary. The tangential g and

normal k4 components of the wave vector, for waves in the
prism, are defined by

z > h.

q = k+/€siné, kg = k%€ — g% =k /ecosh, (56)
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with k = w/c. The condition for total internal reflection of the
wave in the dielectric prism is assumed to be fulfilled, i.e.

. 1
sin?f > —.
€

(57)

The magnetic field

HY™ = H [h+ exp(igx + k,z) + h™ exp(igx — kuz)] ,  (58)

of the evanescent mode in the vacuum gap is generated
by the wave from the dielectric prism. Here hA* (A7) are
the dimensionless amplitudes of the evanescent waves that
exponentially increase/decrease with the spatial increment rate

ky =+/q?> —k* = kv/esin’6 — 1.

Using Maxwell’s equations, one can express the x-components,
EY and EY™, of the electric field in the dielectric prism and in
the vacuum gap via the magnetic field amplitudes:

(59)

kq
ke
— exp(igx — ika(z — h))].

Ed

X

H' [n" exp(igx +ikq(z — h))

h' = H'/H',

EV = —il%Hi [h* exp(igx + kyz) — h™ exp(igx — ky2)].
(60)

In the layered superconductor, the electromagnetic field is
described by equations (46) and (47).

Using the conditions of continuity of the tangential
components of the electric and magnetic fields at the dielectric—
vacuum and vacuum-layered superconductor interfaces, one
obtains a set of four linear algebraic equations for four
unknown wave amplitudes, h*, h*, h~ and H®. Solving this
set gives the reflection coefficient

T

_ Re(ky/k —a)+ (ky/k+a)C(h,0)

R=h"= )
(ky/k — a) + (ky/k +a) Rg C(h, 0)

(61)

for the wave reflected from the bottom of the prism. Here

kq — ikye

Rr = = —i 62
S v ike exp(—iy) (62)

is the Fresnel reflection coefficient,
C(h,0) = exp(—2k,h) (63)

is the parameter that provides the coupling between waves in
the dielectric prism and the layered superconductor. Also,

a=a(Q,0)=2bQZ (‘/1+%—1)

is the effective surface impedance of the superconductor (see
equation (50)). Below we assume the coupling parameter C
to be small. However, even when C « 1, the coupling of the
waves in the dielectric prism and superconductor plays a very
important role in the excitation of SJPWs and anomalies in the
reflection properties (Wood’s anomalies). First, the dispersion
relation of the SJPWs is modified, involving the radiation
leakage through the dielectric prism. The new spectrum of

(64)

10

the SJPWs is defined by the denominator in equation (61).
Actually, the region where the coupling C < 1 (when the
radiation leakage of the excited SJPW through the prism
does not dominate) corresponds to the strongest excitation
of the surface waves by the incident waves. Furthermore,
the coupling results in breaking the total internal reflection
of the electromagnetic waves from the dielectric—vacuum
interface. Due to this coupling, the reflection coefficient R
in equation (61) differs from the Fresnel one Rp, its modulus
becoming less than unity. Moreover, as we show below,
the reflection of waves with any frequency w < wj can be
completely suppressed, for the specific incident angle 6 and
depth & of the vacuum gap. This provides a way to control,
detect and filter the THz radiation.

To study the phenomenon of attenuated total reflection,
we consider the case which is most suitable for observations,
when the following inequalities are satisfied:

b*T2esin’ 0 € sin® 6

. <(1-9)«

(65)

Here, the left inequality corresponds to the continuum limit for
the field distribution in the z-direction, whereas the right one
allows neglecting unity in the square brackets in equation (51).
Also, we assume the dissipation parameter r in equation (51)
to be small compared with (1 — Q?):

r< (1. (66)
For this frequency region, the complex parameter a(£2, 0),
equation (64), can be presented as

P €sinf
a(2,0)=a +ia" = 2bT 1+
(1 — Q2)
(67)

When the inequalities in equations (65) and (66) are
satisfied, the expression for the reflectivity coefficient R can
be significantly simplified. First, the phase ¥ of the Fresnel

ir
21 — Q)

reflectivity coefficient Rg, equation (62), is small. In the
vicinity of the STIPW spectrum, at k,/k >~ a/,
4bT e
~ < 1. (68)

Jele — (1 — Q2)

Second, the main changes of the reflectivity coefficient R in
equation (61) occur in the region of incident angles 6 close to
the limit angle 6, for total internal reflection:
. 5 1

P=0-6) K1, sin Otzg. (69)
Third, the parameter @’ in equation (67) is almost independent
of the angle ¥ in the essential region where ¢ changes,
whereas it depends very strongly on the frequency detuning
(1 — ©2). Using the properties mentioned above, the reflection
coefficient R can be rewritten in the form

_ X(R,9) —iB(Q2)(Cop(2) — C(h, 9))
CX(Q,9) = iB(Q)(Cop () + C(h, D))

(70)
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with
2bT"
X(Q,9) > V2 - DAV - ——— 71
( ) (e =1 =) (71)
16b°T %€
B(Q) >~ , 72
@ eve —1(1 — Q) 72)
Copt(Q) ~ _Ive— Ve Ve—1/e (73)

16bTer/1 — Q2
Equations (70) and (71) show that the modulus of the
reflectivity R(6) has a sharp resonance minimum at

b= By~ 2T (74)
T T ee— 11 -9
The minimum value of R is
|C0 (Q) - C(h, ﬁres)l
| Rlmin = —2 (75)

Copt(Q2) + C(h, Vres)

It is clearly seen that this value depends strongly on the
frequency detuning (1 — €2), dissipation parameter r and the
coupling between the waves in the dielectric prism and the
layered superconductor, i.e. on the thickness % of the vacuum
gap. This offers several important applications of the predicted
anomaly of the reflectivity in the THz range. For instance, if
the coupling parameter C (h, D) is equal to the optimal value
Copt, 1.€. the thickness & takes on the optimal value,

e e =9 (16bley/T— 2 6
4bT f re(e — 1) ’

the reflection coefficient R at ¥ = s vanishes. This means
that a complete suppression of the reflectivity can be achieved
by an appropriate choice of the parameters, due to the resonant
excitation of the STPWs.

We emphasize that equations (74) and (76) describe the
conditions for the best matching of the incident wave and
SJPWs. Under such conditions, the amplitude H;, of the
excited surface wave is much higher than the amplitude H' of
the incident wave:

| HS, | <1 - 92)1/2 ((1 — Qe
i r

Hi b2T2e

hopt =

1/4
) >1. 7

Thus, we can achieve a high concentration of energy in the
THz SJPW. This proposed experimental setup could provide
an unusual THz resonator or cavity.

Under these optimal conditions, the total energy coming
to the layered superconductor from the dielectric prism is
transformed into Joule heat due to the quasiparticle resistance.
Thus, if the conditions for the total suppression of the
reflectivity are satisfied, the energy flux (i.e. the z-component
of the Pointing vector of the incident wave) is completely
absorbed. The dependence of the absorptivity coefficient A
on the wave frequency and the incident angle is described by
a resonance curve

A(Q,9) =1—|R(Q, )
N 4B2(Q)C(h, 9)Cop ()
XA, 9) + B2(Q2)(Cop () + C(h, 9))*

(78
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Figure 4. The dependence of the reflectivity coefficient | R| on the
incident angle 6, calculated in [109] for the parameters b = 0.7,

' =0.005r=10%1-Q>=12x107,¢ =16 and € = 4. The
thickness of the vacuum gap is one wavelength, ik = 27. The solid
red curve presents the results of numerical calculations using
equations (61)—(63). The dashed green curve (that almost overlaps
the red curve) describes the analytically obtained asymptotic
dependence, equations (70)—(73). The vertical line at ¢ = 30°
corresponds to the limiting angle of the total internal reflection. The
blue thin solid curve presents the Fresnel reflectivity coefficient.
(Color online.)

The half-width §7 of the resonance line is much less than ¥.:
80 16bTe(Copt () + C(h, Dres))
Dres Vee — (1 — Q2)

If total suppression of the reflectivity occurs, equation (79) can
be simplified:

< 1. (79)

80 4b’T?r
e ———— 4
ﬁres EA € — 1

Inequalities (65) are not necessary for the observation
of the total suppression of the reflectivity and the resonant
increase in the electromagnetic absorption. Departing from
the strong inequalities (65), toward the region of parameters
where B ~ 1, we perform numerical calculations. Figure 4
demonstrates the resonant suppression of the reflectivity for
the parameter B(2) ~ 1.9. Nevertheless, the asymptotic
formulae, equations (70)—(73), describe rather well the
resonant behavior of the reflectivity R.

Figure 5 shows the sharp decrease in the reflectivity in
the (0, (1 — 2)) plane, due to the resonant excitation of the
SJPWs. Obviously, the suppression of the reflectivity can be
observed by changing the frequency at a given incident angle,
as is demonstrated in figure 6.

We also numerically calculate the total magnetic field
distribution, figure 7. The interference pattern is seen in
the nonresonant case, when the amplitudes of the incident
and reflected waves practically coincide. Under the resonant
conditions, the reflected wave is suppressed and there is no
interference of waves in the far-field zone (prism region).
Otherwise, the near-field ‘torch’ structure of the SJPW is
clearly seen in the vacuum gap.

Note that the suppression of the reflectivity |R|? is
accompanied by the resonant increase in the electromagnetic

(80)
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Figure 5. The reflectivity coefficient in the plane (6, (1 — Q2))
shown in gray levels for the same values of the parameters as in
figure 4. The dispersion relation for the waves in the
dielectric—vacuum-layered superconductor system is presented by
the solid curve (from [109]).
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Figure 6. The frequency dependence of the reflectivity coefficient
|R|? obtained in [109] for & = 31.867° (from [109]). Other
parameters are the same as in figure 4.

absorption in the layered superconductor. This process can
result in a transition of the superconductor into the resistive
or even into the normal state. Thus, a new kind of resonance
phenomena can be observed due to the excitation of the STPW.
Moreover, this strongly selective interaction of SJPWs, with
the incident wave having a certain frequency and direction
of propagation, can be used for designing THz detectors and
filters.

We would like to note that the nonlinear regime of the
electromagnetic wave propagation can be easily achieved
during the resonant excitation of SJPW. Indeed, under
the resonance conditions, the electromagnetic field in the
superconductor is significantly increased with respect to the
amplitude of the incident wave. Therefore, the value of the
gauge-invariant phase of the order parameter also increases. A
simple evaluation made by means of equations (16) and (77)

12

gives, for ¢ in the resonance region,

i

H
~ o [(1 — @)er?pT2] ' ~ (81)

Pmax

H'
— .10,
Ho
ath =0.7,T =0.005,r = 1075, 1-Q2 = 1.2x107°,e = 16
and € = 4. Under such conditions, the nonlinear regime can
be observed when H' ~ 1073 Oe.

2.4. Josephson plasma resonance

The study of JPWs was mainly stimulated by the discovery of
JPRs in layered HTS, low-T. (LTS) and artificial structures
[7,11,28-30,113]. It was found that the reflectivity and
absorption of electromagnetic waves in these systems exhibit
resonance-type behavior at some frequency (or at two—three
frequencies) in the THz range. The resonance was observed
only for the case when the electric field of the electromagnetic
wave had a component parallel to the c-axis of the sample.
Typical manifestations of such behavior are shown in figure 8
for HTS Bi;Sr,CaCu,0g [11] and in figure 9 for organic
k-(ET),Cu(NCS), single crystal [36]. As seen from the
measurements shown in figures 8 and 9, the resonant frequency
strongly depends on the temperature and the magnetic field. In
particular, the effect disappears completely when 7' > T.

The observed (e.g. in [11,35,36]) resonance behavior
can be explained within the framework of the theory of the
JPWs presented in the previous sections. As an illustration,
we consider here the simplest example. We consider an
electromagnetic wave with the magnetic field

I-Z = Hie,expli(g sinfx + g cosfz — wt)], (82)

incident at an angle 6 from the vacuum onto the surface xy
of a semi-infinite sample of a layered superconductor. Here
e, is the unit vector along the y-axis, and the usual vacuum
dispersion relation, w = cq, is assumed.

For « > wj, the wave (82) induces a transmitted
electromagnetic wave that propagates in the sample,

H, = Hie, exp{—iwt +iq sin Ox +ik(g sin 6, w)z},

with the dispersion law (20), and a reflected wave
Hr = Hieyexp[i(g sinfx — g cosfz — wt)].

In the vacuum, the amplitudes of the x-component of the
electric field, E,, and magnetic field, H, at the sample surface
(z = 0) are related to each other by
E. = (H, — H;)cos¥6. (83)
In the superconductor, the relation between these amplitudes
can be written as
2

ab

S —
E = Htkcsl/z

s k(q sin 6, w). (84)

The continuity of the magnetic field and the tangential
component E, of the electric field at the sample surface,
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Figure 7. The magnetic field distribution for the nonresonant case, 6 # 6., (a), and for the resonant condition, 6 = 6., = 31.867°
(b) (from [109]). Other parameters are the same as in figure 4. (Color online.)

R (( arbitrary units )

B(T)

Figure 8. JPRs in Bi,Sr,CaCu,Og (from [11]). The surface
resistance, R, was measured at f = 45 GHz as a function of the
magnetic field B parallel to the c-axis at different temperatures; R
was measured for the wave with the electric field parallel to the
c-axis.

combined with equation (20) taken in the continuum limit,
gives the expression for the reflection coefficient:

2

H,|? 1—w(,Q
ol HE _[1-v0.) )
| Hi|? 1+W(o, )
with )
A in 0 Q
v, Q) =2 2 . (86)
Ae £cosO Q2 +irQ — 1
Because of the large anisotropy, A./A., > 1, the

reflection coefficient is close to one for frequencies far
from the resonance. Also, the reflectivity can be depressed
significantly near the plasma resonance, when |2 —1|/Q < 1.
Moreover, it can be suppressed completely slightly below the
plasma frequency, when neglecting the dissipation term r in
equation (86).
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As with other resonance methods, the JPR is a
sensitive and convenient tool for the study of the material
properties [11-13,37-43]. Evidently, the JPR gives
direct information about the Josephson coupling of the
superconducting layers. The resonance frequency wy depends
on the transverse component of the critical current density,
equation (13). This value is a function of the temperature
and magnetic induction in the sample [65]. The details of the
magnetic induction distribution in the superconductor, in turn,
depend on the state of the flux line structure. Thus, JPRs can be
used for the characterization of vortex matter state in layered
superconductors.

2.5. JPWs in presence of external dc magnetic field. THz
photonic crystal

When an external dc magnetic field H,,, is applied parallel to
the ab-plane of a layered superconductor, the JVs penetrate the
sample and form a triangular lattice. In contrast to Abrikosov
or pancake vortices, the interaction between JVs and crystal
defects is weak, and the JV lattice is near perfect at low enough
temperatures. Note also that the JV lattice can be easily pinned
by pancake vortices generated by a low out-of-plane magnetic
field (see, e.g., [114, 115]), which allows a way of tuning JV
arrays. Here we focus on the scattering and filtering of the
JPWs by a lattice of vortices, which is fixed or slowly moves
inside a layered superconductor [116]. The JVs are objects
of electromagnetic nature and should interact strongly with
electromagnetic waves. Thus, we can expect strong magneto-
optic effects in layered superconductors. In particular, the so-
called photonic crystal state [117-120] can appear as a result
of the periodicity of the JV lattice. A general comparison
between the usual optical photonic crystals and JV photonic
crystals is presented in table 1. Note that photonic crystals
formed due to the interaction of electromagnetic waves with
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Figure 9. JPRs in x-(ET),Cu(NCS), (from [36]). (a) Dissipation
versus magnetic field for different frequencies, at 7 = 2 K. When
the frequency is increased, the resonance is observed at lower
magnetic fields. (b) Dissipation versus magnetic field at

f = 76 GHz, for different values of currents flowing both parallel
and perpendicular to the superconducting layers. The temperature
varies from 2 K to 10 K. A resonant structure is clearly seen for this
polarization of the microwave radiation.

vortices were also studied for a single Josephson junction [121]
and for type-II superconductors [122].

Following [116, 123], we consider a layered superconduc-
tor placed in a dc magnetic field H,, parallel to the y-axis.
Thus, the JVs parallel to the y-axis penetrate the superconduc-
tor. They form a triangular lattice with the distance d, between
vortices within a layer (i.e. along the x-direction) and d; in the
z-direction (see figure 10). Due to the high anisotropy of the
superconducting medium, the distance d, is much larger than
d,,and d,/d, = y > 1. Here y is the anisotropy coefficient
of the sample. The usual value of y for Bi-2212 single crystals
is about 300-600. As a result, the JV lattice consists of dense
vortex rows along the z-axis.

Consider JPWs propagating along the superconducting
layers with the magnetic field along the direction of JVs,

H(x,z,t) = e, H(x) exp(ikz — iwt). 87)
We assume that the amplitude H of the wave is small compared
with the external in-plane field H,, (responsible for the
generation of the JV lattice). Therefore, the solution of
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equation (12) can be obtained perturbatively as

n+l,n

P = g Y (2, 0), (88)
where <pg+1’” corresponds to the steady JV lattice and

n+1,n|

[V (x,2,0)] < lg, . For moderate magnetic fields, the
steady-state solution can be approximated as a sum,

w(r)ﬁl,n = Z‘PO(X — Xmn)»
m

of solitons [66]
o =1 +2tan"!(x/ 1),

where 21, yD. Here x,,, is the position of the mth JV
in the nth layer. The sum of the unperturbed solution gaS”’"
and the perturbation ¥, (x, z, f) can be viewed either as an
electromagnetic wave propagating on the background of the
fixed JV lattice or as a sum of small oscillations of this lattice.

Substituting

Ya(x, z,t) = ¥ (x) exp(ikz — iwt) (89)

into equation (12), averaging over z for |k| < m/D and
neglecting the dissipation, we derive an equation for the wave
amplitude v (x) in the linear approximation:

v () — kg (k) [0 () — Q] w(n) =0,

where the following dimensionless variables are introduced:
n=x/yD,Q=w/wy,

(90)

yDzHab
hay = ——,
20,

D 2
Ké(k):(A ) (1+K°2,). O

ab

When deriving equations (90) and (91), we use the relation
Ae/Aap = . The function &)Jz(n) is defined as

HO = <Z cos ((pg+l'">> ,

where (...), denotes averaging over the layers. J)Jz(n)
has a period d, along the x-direction. The modulation
of the Josephson plasma frequency @;j(n) results from the
suppression of the Josephson current near the JV cores.
Equation (90) is an ordinary linear differential equation
that has the form of the Schrodinger equation with a
periodic ‘potential’ @j(n). It can be solved numerically or
approximately by the WKB method. For qualitative analysis
and estimations, one can approximate the dependence @7 (1)

by an appropriate stepwise function:
m
, 93)
v hab )

3V hay
ey (n-
where F(n) = 1if [n| < land F = 0 if |n|] > 1. When
deriving equation (93), we use the relation 2®/(d,d;) = H,
and assume, as usual, that the core of each JV has a size
y D along the x-direction and D (i.e. one layer) along the z-

direction. Outside the cores, cos ((pg”’") = 1, while inside the

92)

@) =1—
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Table 1. Comparison between standard photonic crystals and tunable THz photonic crystals using JVs [123].

Standard photonic crystals

JV photonic crystals

Materials Various (e.g., semiconductors, polymers, insulators)
Frequency range Typically optical; not in THz
Scatterers Typically holes in materials

Scatterers made by

Near-perfect periodicity Difficult to realize

An often very complicated and cumbersome fabrication

Layered superconductors (SCs)
Sub-THz and THz

JVsin SCs

Applying Hup

Automatically provided

Easily tunable? No Tunable via applied magnetic field or current
Moveable scatterers? No Yes, producing a Doppler effect
Gap size Can be large Typically small
Operating temperature Typically room temperature T <90K
Intrinsic nonlinearity Usually not Yes, due to nonlinear current—phase relation
Higher harmonic generation  Usually not Yes, due to nonlinearity
Wave localization Requires introducing defects Can be produced by nonlinearities
Magneto-optical effect? No Yes
D cell nj < n < nj+1/s/ha (see figure 10), either within the
Y 7 JV core, n; < n < nj + 1, or outside the core, n; +1 <
n < nj+ 1/4/hgp, is a sum of exponential terms multiplied
by constants C;. Using the continuity of ¢ and v and the
- - periodicity of the Bloch functions u(n, ¢), we obtain a set of
DI 3 d homogeneous linear equations for C;. The nontrivial solution
z of these equations exists only if the determinant of the set of
these equations is zero. From this, Savel’ev ef al [123] obtain
the dispersion equation for €2(¢g) in the form
H//y® X p q e (q)
‘ Ki +K
! i cos(k1b) cos(kz) — ——=2 sin(k, b) sin(ks) = cos[qg (b + 1)1,
K1K2
‘ 95)
where b = 1/4/hq, — 1 and
" 3 1/2
‘ K=o (@ —1)7, K2=K0<Qz+ivhab_l) ‘
dx (96)

Figure 10. Schematics of JV lattice with notation used in the text
(from [116]). (Color online).

n+l,n

cores (shadowed regions in figure 10) cos(g,” ") = —1/2. A
detailed derivation of equation (93) was done in [123] and will
not be repeated here.

The second-order differential equation (90) requires the
continuity of the functions ¥ (n) and v'(n) in the sample for
the continuity of electromagnetic fields.

2.5.1. Band-gap structure.  Forbidden zones in the
Q(g) dependence, or so-called ‘photonic crystal’ [117], can
occur when the electromagnetic wave propagates through
a periodically modulated structure, e.g. through the JV
lattice. The dimensionless spatial period An of the structure
considered here is 1/+4/hg,. Following the usual band-theory
approach, we obtain the solution of equation (90) in the form
of the Bloch wave,

Y () = u(n, q) exp(ign), (94)

where u(n, g) is a periodic function of n with the period
1/</hap, and the dimensionless wave vector ¢ is within the
first Brillouin zone, —/hap < g < 7A/ha,. The solution
of the linear equation (90) within the jth elementary cell,
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This spectrum is shown in figure 11 for two different
values of the transverse wave vector k. Two particular features
of the spectrum €2(g) should be emphasized. First, in the
presence of the in-plane magnetic field, the propagation of
the JPWs is possible at frequencies lower than wy, due to the
suppression of the Josephson current in the cores of the JVs.
Second, the gap in the spectrum, or forbidden frequency band,
arises for sufficiently high values of the transverse wave vector
k and the field h,,. The width AR of the forbidden band is
gradually suppressed when H,,, or k is decreased.

2.5.2. Tunable transparency. ~The THz photonic crystal
discussed above indicates that the JV lattice can significantly
affect the transparency of the medium. Here we calculate the
transmission and reflection coefficients for two cases:

e JPW is emitted inside a sample, e.g. by the moving JVs
(see figure 12(a));

e JPW is excited by the external electromagnetic wave (see
figure 12(b)).

JPW inside a sample. 1In the first case, the solution of
equation (90) for the jth cell of the magnetic structure can
be expressed in the vector form

Yl = {C] exp(ikyx); CL, exp(—ikyx)},
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Figure 11. Band-gap structure of the spectrum of JPWs propagating
in a layered superconductor with the JV lattice calculated for

hap = 0.2 (from [116]). The values of the parameter kD are 0.3
(solid line) and kD = 0.057 (dashed line). The frequency gap
between the first and second zones is marked as AQ2. Here we use
D =154, A, = 20004, y = 600.

(a)

-1t .

Figure 12. Reflection and transmission of electromagnetic waves
from internal (a) and external (b) sources (From [123]). (Color
online.)

where « takes integer values either 1 or 2, &, is defined by
equation (96) and C i’a are constants.

The requirement of continuity of ¢ and v’ at any point
of discontinuity of the function ®?(n7) gives a set of linear
equations relating 1}0{71 and 1/70{
equations can be presented in a symbolic form 12& = il}é 71,
where L is a2 x 2 matrix. Then, we use a linear nondegenerate
transformation G that diagonalizes L. By applying such a
procedure N times, we find the linear transformation

The solution of these

o7
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that propagates the solution from the zeroth to Nth
elementary cell.

Here we consider the case of frequencies higher than
the plasma frequency. We denote the amplitude of the
incident wave CY, as 1, the amplitude of the reflected wave
C ?2 = r and the amplitude of the transmitted wave C}\ as 7.
Using equation (97), we obtain two linear equations for two
independent variables, r and t; since C, = 0. By solving
these equations, we find

N N
r=pyatz M (98)
M1 _:32,31M2
where
K2+ 2
Ky 2 .
M, = |:cosxz(b— 1) +i sinky (b — 1)i|
2K1K2
x exp(Fi(b — ki), 99
My, — M+ (M, — M)?2+4L,L
PR 2 1 \/(22 D 1Ly (100)
Ly,
2 2
KT — Ky . .
L, =i sin k(b — 1) exp(£i(b — Dky).

K1k2

The frequency dependence of the reflection coefficient
R = |r|? is shown in figure 13 for different magnetic fields
H,p and the transverse wave vectors k. The transparency
(transmission T') of the crystal increases when the frequency
Q is increased and when either the sample length /
yDN/\/hy, or Hy, is decreased, due to the decrease in
the number of scattering layers. The frequency dependence
of the reflection R or transmission 7 coefficients is much
more interesting for large k, when the interaction of the
electromagnetic wave and the JVs becomes stronger. In this
case, the oscillations in the frequency dependence of R(£2)
and T(Q2) = |r|* are obtained due to the interference of the
transmitting and reflecting waves [52]. Moreover, close to
the forbidden frequency zones, the dependence of R and T
versus €2 has several characteristic deep and narrow peaks. At
k = 0, the corresponding functions are monotonic. Varying
the applied magnetic field H,, tunes the reflection at a given
frequency from O to 1. In a long sample, this tuning remains
significant even at small k, due to the cumulative effect of a
large number of weak scatterers.

2.5.3. Reflection from sample boundaries. Now we consider
the case of irradiation of a sample by a wave from the vacuum
along the ab-planes. The value of kD is small for THz-range
radiation since in vacuum k2 + g% = w?/c?, while D is in the
nanometer range. For w/2n = 1 THz and D = 2nm, we find
the estimate kD < 4.19 x 1073. Imposing the continuity of
both H and E, at the sample surface and using equation (97),
we find the expression for the amplitude r of the reflected wave:

14+ Z(R)S(Q) exp(—2ix; b)

" T Z(Q) + D(Q) exp(—2icib) |
_ BZ+ M) — (1 + B Z)M]
CZ+BIMY — (1 + B M]
where Z (kg — 12g)/(k; + 12g) and g D/
(Verapy/1 — c?k%/w?). Here we assume that two flux-free

(101)
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Figure 13. Internal reflection (from [116]): electromagnetic wave
emitted (e.g. by a moving JV) inside a sample reflects back with
intensity R = |r|? and transmits with intensity T = |z|> = 1 — R.
The reflection coefficient R versus the electromagnetic wave
frequency 2 for a sample with length [ = 100y D; (a) for h,, = 0.2,
kD = 0.37 and (b) for kD = 0.057, h,, = 0.2 (diamonds),
ha» = 0.05 (open circles), h,, = 0 (solid circles). Other parameters
are the same as in figure 11.

zones with thickness b exist near the sample edges. Note that
equation (98) corresponds to Z = 0 in equation (101).

The calculated frequency dependence of the reflection
coefficient is shown in figure 14 for k = 0 at different magnetic
fields and different sample lengths. The transparency increases
when the frequency is increased and when the number of
scattering layers is decreased, due to a decrease in the magnetic
field H,, or due to a decrease in the sample length. The
oscillations in the transition and reflection coefficients occur
due to the interference of the scattered and transmitted waves
on JVs and sample boundaries. These frequency windows can
be easily tuned by the in-plane magnetic field H,;.

Varying H,,, one can easily change by an order of
magnitude both the transmission, 7', and reflection, R = 1 —T,
coefficients of the electromagnetic wave. Thus, a layered
superconducting sample can operate as a THz-frequency filter
tuned by the applied magnetic field H,,. The manufacturing
of artificial layered systems, with periodically modulated
properties along the layers, would magnify the predicted
effects. However, in this case the properties of the system
would not be so easily tunable. In general, the transmitted
wave should be partially polarized since only waves with a
magnetic field along the ab-plane can propagate through the
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Figure 14. Reflection of electromagnetic waves from the sample, or
THz ‘filter’ (from [123]): the reflection coefficient R versus 2 for an
electromagnetic wave incident from the vacuum at k = 0, (a) for

! =100y D, h,, = 0.1 (open circles), h,, = 0.01 (crosses), iy, =0
(solid line); and (b) for / = 1000y D, h,, = 0.1 (up triangles),

hgp = 0.001 (down triangles), k., = O (solid line). Other
parameters are the same as in figure 11. The deep minima for the
solid line in (b) are due to reflection at the sample boundaries.

layered system. These features are potentially useful for THz
filters.

2.6. JPWs localized on JVs

In the absence of an external magnetic field, weak (linear)
JPWs can propagate only if their frequency is above the plasma
frequency w;. When an external magnetic field is applied along
the planes, JVs can penetrate the junctions. The presence of
a vortex locally suppresses the critical current density J; and,
thus, the Josephson plasma frequency, since wy Jcl/ *. This
affects the propagation of JPWs in layered superconductors.
For instance, this can provide a tunable photonic crystal, as
discussed above. Moreover, the local suppression of the
Josephson plasma frequency can support the propagation of
JPWs along the vortices below the plasma frequency. In other
words, the JVs can serve as specific waveguides for the low-
frequency JPWs. Such waves, for a single Josephson junction
in the presence of an array of JVs, were predicted more than
40 years ago in [124, 125]. Here we will not consider arrays,
but focus on JPWs localized on a single JV.

Following [126], consider a long and wide Josephson
junction located in the x y-plane, i.e. the z-axis is perpendicular
to the junction plane. The sine-Gordon equation for the
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Figure 15. Spectrum of the JPWs (from [126]). Solid straight line
shows the gapless spectrum of the wave localized on a JV. The
shaded region corresponds to the delocalized waves within the
continuum spectrum. (Color online.)

gauge-invariant phase difference ¢ reads as

=0. (102)
Here, the coordinates x and y are normalized by the Josephson
length Ay and time 7 is normalized by a);l. We seek a solution
of equation (102) in the form

Q=@+,

where
@yv = 4arctan[exp(x)]

is a stationary phase distribution produced by a fixed JV
and Y| <« 1. The perturbation i corresponds to JPWs
propagating along the JV and has the form

Y = exp(iot — iky) x (x).

Keeping only the linear terms in i, the wave amplitude x
obeys the equation analogous to the 1D Schrodinger equation
with reflectionless potential —1/ cosh? x,

d%x W — k> —1 1
—+2 + =0. 103
dx? { 2 cosh? x } X (103)
The solution
Xloc(X) = (104)
cosh x

corresponds to a localized wave, running along the vortex.
In dimensional variables we obtain the linear dispersion law
w = cgy k, where cgy, = Ajwy is the Swihart velocity. This
branch of the spectrum, shown by the solid straight line in
figure 15, is gapless, which is unusual for conventional JPWs.

Obviously, similar localized modes below the plasma
frequency can exist in layered superconductors due to the same
origin, namely the suppression of the Josephson current near
the vortices.

Localized modes can be employed to guide and control the
propagation of THz waves. Since no waves with w < wy can
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propagate without a JV, the JPWs will always follow the vortex
lines. Because the arrangements of JVs can be controlled by
an external magnetic field or electric currents, it is possible
to change the direction of propagation of plasma waves by
tuning external parameters. An example of such a device was
suggested in [126]. In that paper, numerical simulations were
performed on the 2D sine-Gordon equation for a hexagonal
splitter attached by three transmission lines (figure 16). A
magnetic field applied to an edge of the hexagon forces vortices
to penetrate a hexagon linking the two neighboring edges,
see figure 16. The propagation of linear JPWs through each
vortex arrangement was simulated. To model the transmission
line, a long Josephson junction with a plasma frequency w;
lower than wy was used. This allows the propagation of
waves of frequency w (0y < @ < wy) in the transmission
line, but not in the hexagon itself if the vortices are absent.
The continuity boundary conditions link the electromagnetic
field in the hexagon and transmission lines. One can see in
figure 16 that the distribution of the electric field component
in the hexagon tends to localize on each vortex.

So far, many works focused on designing sources and
detectors of THz radiation [19] including optical lasers,
quantum cascade lasers, solid state and superconducting
devices. However, fewer studies have been devoted to the
guiding of THz waves. Metal tubes [127, 128] and wires [129],
plastic ribbons [130] and dielectric fibers [131] were proposed
to guide THz waves. The proposals described here may lead to
new type of waveguides for THz waves that can be controlled
by magnetic field or electric currents.

3. Nonlinear JPWs

It is well known from optics that nonlinearity results in
a number of phenomena, including harmonic mixing, self-
induced transparency and self-focusing, which are both of
fundamental interest and also important for many practical
applications [132, 133]. These nonlinear effects can be derived
from the electric or magnetic field dependence of the refraction
coefficient. In contrast to optics, the nonlinearity in Josephson
media is due to the nonlinear dependence, J = J. sin ¢, of the
tunneling supercurrent on the gauge-invariant phase difference,
which determines the electromagnetic fields in the system.
In the strongly nonlinear regime (¢ ~ ), the sine-Gordon
equation possesses soliton and breather solutions [75,76].
However, the nonlinearity becomes crucial even at small wave
amplitudes, at |¢| <« 1, due to a gap in the spectrum of
JPWs. In this section, following [77,78,80], we discuss
such phenomena. Some of these (e.g. JPWs self-focusing
effects, the pumping of weaker waves by stronger one, the
nonlinear plasma resonance [77] and nonlinear surface and
waveguide propagation [78]) have analogues in traditional
nonlinear optics. In addition, we discuss an unusual stop-light
phenomenon caused by both nonlinearity and dissipation [77].

The profound analogy of the nonlinear effects in layered
superconductors with several nonlinear optical phenomena
could open new avenues in the study of THz plasma waves
in superconductors, providing a program for future research in
this fast growing field. The close analogy between nonlinear
JPWs and nonlinear optics is shown in table 2.
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Figure 16. (a)—(c) Vortex configurations in a hexagonal Josephson junction with each side equal to 20 Josephson penetration lengths A;
(from [126]). The color scale denotes the magnetic field density given by the gradient of the superconducting phase difference |V¢| and
normalized to Ay J.. (d)—(f) Propagation of JPWs with frequency w = 0.32 w;. The plasma frequency wj in the Josephson transmission
lines is 5 times smaller than in the hexagon junction, @; = 0.2 wy. The width of the attached Josephson transmission lines is 20;. Damping
is absent. (d), (e) and (f) correspond to the vortex configurations (a), (b) and (c). The color scale depicts the relative amplitude of the
plasma waves as a ratio of the transverse electric field E to its maximal value E,,,x for each simulation. () and (e) show mode transfers
from plane-like waves to alternating wave mode in the upper branches. Numerical solutions showing the spatiotemporal evolution of the
waves are available online at http://dml.riken.jp/waveguides. (Color online.)

Table 2. Comparison between nonlinear electromagnetic waves in optics and nonlinear JPWs.

Nonlinear JPWs Traditional nonlinear optics

Nonlinearity Due to nonlinear current-phase relation, J = J. sin(¢) Due to, e.g., nonlinear dependence of the
refraction coefficient on the electric field,
n(E) = ng +n, E?

Higher harmonic frequencies Only 3w, Sw, ... 2w, 3w, 4w, ...

generated from the basic w
Wave propagation below gap Propagation of plane wave with w < wy —
Slowing down EMW THz wave can slow down significantly if v < w; Light can be slowed down
Transparency due to nonlinearity =~ Weak waves with @ < wj, which cannot originally Self-induced transparency

propagate, do propagate assisted by nonlinear JPWs

Nonlinear pumping Weak waves grow while the nonlinear JPW is attenuated Pumping of nonlinear waves in plasma
Focusing Below wy, focused THz beam propagates Self-focusing due to nonlinearity of n(E)
Wave packet spreading Open problem Can propagate without spreading
Loading—unloading cycles due to  Frequency hysteresis of nonlinear geometric resonance ~ Nonlinear optical bistable devices

nonlinearity converts continuous radiation to amplified pulses

(analogy with nonlinear mechanical resonance)

3.1. Nonlinear plane wave below plasma frequency; light We consider JPWs with frequencies close to wy, i.e. |1 — Q%] <«

slowing down 1, and the amplitudes A; ~ |1 — ©Q2|'/2. For these waves, the

nonlinear term ¢ in equation (105) is of the same order as the
. 2 2 . .

lp| < 1) waves at frequencies around w;. In the long- linear one, 9°¢/dt + ¢, and even a weak nonlinearity plays a

wavelength limit (compared with the interlayer spacing), the K€Y role in the wave propagation.
phase difference ¢ obeys For plane waves propagating along the x-axis, the
asymptotic expansion of equation (105), with respect to (1 —

82 82 P 3 82 2 . . . .
(1 ) ( 79 L% . 4 ) _ 8_‘5 —0. (105) Q27), produces a set of ordinary differential equations for
X

Here we focus on weakly nonlinear (sing ~ ¢ — ¢%/6,

BT IACTE o ¥ 6 AL(x), A3(x), ...and 71(x), m3(x), ...
We use the dimensionless coordinates and time, x — x/A, A3
z = 2/ haps t = wyt. Al =1 — Q%+ ()*1A; + ?1 =0, (107)
We employ the asymptotic expansion method to obtain
periodic solutions of the nonlinear equation (105) in the form rQA; + 24, + Ayl =0, (108)

0= Asi(x, 2)sin [(2n + DR — 12 (x, )] (106)
n=0

A3 cos(nz — 3m1) .

A//_ 1_992 /2A
31 +(13)7]A3 + 2

0, (109)
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Figure 17. Numerically obtained, in [77], self-induced transparency
and pumping: the spatial dependence of the normalized time average
of ?(x, z = 0) for a single nonlinear JPW with

A;(0) = 8(1 — 22)/2, r = 0.5 (blue line) and for a mixture (red
line) of nonlinear JPW with the same parameters and a weaker wave
with amplitude 0.2 cos(kz) at the surface. Here, k = 0.4 (k = 4m)
for the red line in the main panel (right top inset). Left top (bottom)
inset shows a 2D contour plot for the blue (red) line in the main
panel. (Color online.)

AL

24
Here the prime denotes the derivative with respect to x. Due
to the nonlinearity, also described in table 2, the propagating
JPW includes higher harmonics with decreasing amplitudes

sin(ns — 3n1) = 0. (110)

Agpir o |1 — Q212

At r = 0, the set of equations (107)—(110) has a solution
with constant amplitudes and wave vectors. The amplitude A,
and the wave vector ¢ = ] of the first harmonics are related
by a well-known equation,

Al
=,/— —1+Q2
1=\ 73

From equations (106) and (111) we conclude that the nonlinear
JPW can propagate even below Josephson plasma frequency
if its amplitude is strong enough:

(111)

Al > A2 =8(1 — Q). (112)
This result (confirmed by numerical simulations [77], as shown
in figure 17) is very unusual for any conducting media where
plasma waves propagate only with frequencies above the
plasma resonance. Wave packets formed by the nonlinear
plane JPW exhibit very weak spreading if their frequency
widths are much less than (1 — €2).

The dissipation (r # 0) damps the wave, and the
amplitude A; decays with x. To describe this decay,
consider the case when the parameter r satisfies the following
inequalities:

(1-) <r<(1-9%. (113)

20

Due to the right inequality in equation (113), nonlinear JPWs
decay on a scale much longer than the wavelength, whereas
the left inequality allows us to neglect the higher harmonics.

When propagating along the x-axis, the wave damps due
to dissipation. At some x = x, the amplitude A;(x) achieves
the critical value A.. At this point, the wave vector ¢ and the
group velocity

Q2

— o (A] — A)'?
dq

Vg =
formally vanish according to equation (111). In other words,
the stop-light phenomenon occurs.

More detailed analysis of equations (107)—(110) yields an
estimate for the minimum of v,:

.
J1—2

Far enough from x Xxo (deeper in the sample), the
nonlinearity becomes irrelevant and the JPW decays on a scale
1/(1 — Q%)'/2, practically without oscillations.

Note that the nonlinear waves considered here, with
frequencies below wj, are unstable with respect to small
fluctuations, and the modulating instability results in the
formation of the breathers [75,76]. However, the left
inequality in equation (113) allows the modulating instability
to be neglected. The stop-light phenomenon occurs before the
formation of breathers.

pmin

A (114)

3.2. Self-induced transparency

A further analysis, done in [77], shows that the nonlinear plane
wave with Q < 1 is stable with respect to small fluctuations
of the form

S¢ o exp(ikz +ipx —iQ2t). (115)

The dispersion equation for p has only real solutions. For
example, at r = 0,

p=+£J/A+i)2(1 — ?) +3¢%] — g2 (116)

This indicates that the nonlinear wave assists the propagation
of linear waves of the same frequency and wave vector p,
which could not propagate by themselves because of Q < 1.
This effect is analogous to the self-induced transparency in
nonlinear optics.

3.3. Nonlinear pumping of a weak wave by a strong one

We have shown above that a running nonlinear wave allows
weak linear waves to propagate below the plasma frequency.
More interestingly, that decaying nonlinear waves with
amplitude a; below the critical value a. pump weak waves
with a large transverse wave number k. This occurs if either
the amplitude of the running nonlinear wave drops below ac
due to weak dissipation or the amplitude of the incident wave
is below the propagating threshold.

For simplicity we consider the latter case. When A; <
Ac = (8(1 — Q2))!/? the strong wave,

p(x, 1) = Ay (x) sin(gx — 1),
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decays on a scale (1 — Q2)~!/2. A weak wave,

or = Ar(x) exp(ikz) sin(2r),

interacting with the strong one is described by the equation

2
% - (117)

A;g+(1+k2)[ 1+92}Ak=0,

which can be easily derived from equation (105). It is readily
seen that when A%(x) > 8(1 — Qz)/3, the last equation

describes a nondecaying wave. In the WKB approximation,
for k > 1, we find from equation (117)

\/3A%(0) —8(1—92)

\/3A%(x) —8(1—92)

Ar(x) = A (0)

343x)
8

1+Q2

X COS v1+k2/ dx’\/ (118)
0

The amplitude of the weak wave increases when the strong
wave approaches a ‘turning point’ x = x; where A%(xl) =
8(1 — w?)/3. This indicates the pumping of the weak wave
(with short wavelength along the z-axis) by the strong plane
wave, as shown in figure 17.

3.4. Nonlinear plasma resonance

Consider an electromagnetic wave with frequency € > 1 and
wave vector k = (gy, k), incident from the vacuum, x < —/,
at the edge of a slab of a layered superconductor, — < x < [,
figure 18. For the wave in vacuum at x < —I[, we can write
down equations for the electric and magnetic fields:

H = H; exp(iqyx) + H; exp(—igyx), (119)
kA
= By (120)
A2
E, = _qu«z/g [Hi exp(igyx) — H; CXP(—iCva)] > (121)

where H; and H; are the amplitudes of the incident and reflected
waves. To simplify notation, in this subsection we omit
the multiplier exp(—i€2¢ + ikz). In dimensionless units, the
dispersion law for the wave in vacuum has the form

( )2+q

In the half-space x > [, there exists only a transmitted
wave with

&

v

kAap
Ae

kAg )
H = H;exp(igyx), E. = —H, )\I?Z/E exp(igyx),
‘ (122)
E.=H, avy/e exp(igyx). (123)
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1 Z
VACUUM |SUPERCONDUCTOR| /(oo
incident
\@/e
ﬁ@ - X
1 l\

reflected transmitted

wave wave

Figure 18. Geometry of the problem (from [80]). A THz wave
incident onto a surface of a slab of layered superconductor that
occupies the region —/ < x < [. (Color online.)

3.4.1. Linear approximation. For the layered superconductor
(=l < x < 1), equation (105) can be solved by a standard
perturbation approach. First, we examine this problem in
the linear approximation and seek a solution for JPWs in the
sample in the form of a sum of waves propagating forward and
backward:

H; = Aexp(igsx) + B exp(—igsx), (124)
¢ = aexp(igsx) + bexp(—igsx), (125)
with the dispersion law
g = (2 -1)(k*+1). (126)
From equations (15)-(17) we find
0H,
> =Ho(Q — Do, (127)
0x
the relations between the amplitudes A, B and a, b,
R S o n— 128
R VNS VIR Ho(22 — 1) (128)

and the expression for the electric field E,

qs$2

NG

Now we should match the solutions in the vacuum and in
the sample requiring the continuity of the magnetic field and
the tangential component of the electric field, £, at the sample
boundaries. This yields

E

z

[A exp(igsx) — B exp(—iqsx)] . (129)

H;exp(—igyl) + H; exp(igyl) = A exp(—igsl) + B exp(igsl),
H; exp(—igyl) — H; exp(igyl)

= 0(2) [Aexp(—igl) — Bexp(ig)],
H; exp(igy!) = Aexp(igsl) + B exp(—igsl),
Hiexp(igyl) = Q(Q) [Aexp(igsl) — B exp(—igJ)],

where

(130)

qsQ*

RN
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Solving these algebraic equations, we express all the
amplitudes via the amplitude H; of the incident wave:

2(1 + Q) Hi exp(—i(gy +g5)D)

A= - - ,  (131)
(1 + Q)? exp(=2igl) — (1 — Q)* exp(2igsl)
_ 2(1 — Q) Hiexp(—i(gv — ¢5)])
(1+ Q) exp(=2igsl) — (1 — Q)? exp(2igsl)
H, = —i(l1 — Q) sin(2gs)) A exp(—i(gy — go)),  (133)
_ 20 it —
Hy = P QACXP( i(gy — gs)D). (134)

One can see that the reflected wave disappears and the
amplitudes of the JPW in the sample increase under the
resonance condition

gl =nn/2, (135)

where n is an integer. For this case, we derive from

equations (131)—(134)

A=ty ig,] (136)
=1 2Q 1eXP(_1‘]v ),
B = (—i)"HﬁHi exp(—igyl), (137)

20

H, = 0 and |H;| = |H;|. The values of Q,, for the resonance
conditions are

2Q1 (1 +k?)
T Jemn

Here we take into account that g, Q/el2 If Q, >
1 the resonance amplitudes of the wave in the sample,
equations (136) and (137), are much higher than far from
the resonance. Thus, the electromagnetic energy stored in
a sample of length 2L = 2[), increases, under resonance
conditions, by a factor of about

(138)

n

~
~

4L*
wlerln?

2
QnN

in dimensional units. For a sample with L = lcm, A, =
10~2cm and & = 16, this value is about 200, for n = 1.

3.4.2. Beyond linear approximation. Now we take into
account the nonlinearity in equation (105) which gives rise
to corrections to the wave amplitudes and the dispersion law
(126). The main idea of the following calculations is analogous
to that in the case of nonlinear oscillators [134]. It is of interest
to study the system behavior near the first (n = 1) resonance
at Q close to 1, when Q; = Q > 1 and the power of the JPW
in the sample is maximum.

The nonlinearity results in a shift in the dispersion law,
which we describe by replacing g — ¢s + dq, where dq
is a function of the wave amplitude. So, we rewrite the
denominator A in equations (131) and (132) as

A = (1 + Q)*exp(—2igyl) — (1 — Q)* exp(2igsl)
—=2i(1 + Q2) sin(2gsl) + 40 cos(2gsl).

22

In the vicinity of the first resonance, 2q;/ = m + 28ql and
0 > 1, we obtain in first approximation

A =—40(1 —iQ3ql).

Substituting the last expression in equations (131) and (132)
we obtain

iHi CXP(—iCIVZ)
2(1 —iQéql)
Correspondingly, by means of equations (136), (137) and (139)
we derive

A=_-B= (139)

_ H QJeexp(=igil)
T Hy 2(1—iQdql)

Taking the real part of equation (125), we can write down

(140)

0 = aglcos(Qt — gox —kz —n)
+ cos(Q + gsx — kz — 1)), (141)
for the phase difference in the first order approximation. Here

_ OH; Ve
2Ho /T+ Q28¢21%

ao n = —qyl +tan"'(Qdql).

(142)

We seek a solution of equation (105) in the form ¢ = ¢ @+,
Substituting this into equation (105) we find, in the first order
approximation in ¢! and 8¢,

(143)

Following [134], we choose the value of dq to eliminate the
first harmonics (resonance terms containing cos(2¢ & ggx —
kz — n)) on the right-hand side of equation (143). Substituting
equation (141) into equation (143) we obtain

82

972

@3

— —2g,8q9.

[(1+E) (1 — Q%) + ¢V = (1 - c

3(1+4%)
= —d,.

dq = 144
9 16g; 0 (144)

As in the case of ordinary nonlinear oscillators [134], the shift
of the dispersion law is proportional to aZ.

Let us now consider the case when the frequency of the
wave is not exactly equal to the resonance frequency and differs
from s by a small and slowly varying value Qg4 (?), i.e.
Q = Qes + Quer(?). In this case, the variation of the wave

vector,
gy 1+k2\"?
dq, = ok =g 7 Qqets (145)
res
should be added to (144):
21 +k>)1 (3
8q = — (Eag + Qde[> ) (146)

Here we take into account that Q. ~ 1 and ¢, = 7/2l.
Substituting this relation into equation (142) we derive a self-
consistency condition for the wave amplitude

2 2
1—60 + Qde[> } —h* =0, (147)

3
(@}, Que) = at [1 +a? ( :
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Figure 19. The dependence of the amplitude g, of the nonlinear
JPW inside the sample on the frequency detuning €24 near a
resonance, calculated in [80] for different incident wave amplitudes:
brown (lower) curve corresponds to H;/Hy = 5 x 107>, red

curve (critical) to H;/H, = 10~ and blue curve (upper) to

H;/Hy =5 x 107*. The values of other parameters used here

are [ /A, = 100, e=16, k = 0.25. (Color online.)

where
b (1 +k>IH,
7THO

4(1 + k)13

s o = 2 ﬁ .

Equation (147) defines the dependence of the wave
amplitude ag, near the resonance, on the frequency detuning
Q4e¢ and the amplitude H; of the incident wave. The function
ao(24er) 1s shown in figure 19 for different H;. One can see
that this dependence is single-valued if H; is smaller than some
critical value H.,. At H; > H,., there arises an interval of
frequencies where the function a((£24e¢) has three branches.
As usual, the intermediate branch is unstable while the lower
and upper branches are stable. These stable branches can be
reached when Q4. (¢) either increases or decreases. As aresult,
a hysteresis in the ao(24) dependence can be observed if
H; > H. Obviously, to observe the hysteretic jumps in ao(?),
the magnitude of the frequency change should exceed a critical
value, Qg > [Q3, .
The critical values H. and Qg can be derived from
equation (147) and the condition 3% f/ 8a§ = 0. The latter
condition results in

30{2(3

16

(148)

o Queag + 1+ Q3 = 0.

2
3
)aé+

: (149)

This is a quadratic equation with respect to aZ. It has real roots
if its discriminant D(S2g4¢) is positive. Thus, the threshold
frequency deviation g, is defined by the evident condition
D(25,) = 0. From this we obtain
V3
Qo = ——

. (150)
o
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From equations (149) and (150) we calculate the critical

amplitude a,, that corresponds to Qg
25/2
Aoy = W . (15 1)

Finally, by means of equation (147), we obtain the inequality
to determine the minimal incident wave amplitude

8V21Q5, |1/

h>hy = 3

necessary to observe the hysteresis effect. In dimensional
units, this produces the condition

25/27.[ 81/4

H; > Her = 34 (1+ k)52

Ho. (152)

Using the same values as for the estimate after
equation (138), we obtain g, —107°. Thus, the critical
frequency detuning is approximately —5 MHz for Josephson
plasma frequency ~0.5 THz. The estimate for the critical
amplitude gives the ratio He/Ho ~ 107*. If D = 1.5nm,
then Hy ~ 21 Oe and H,, ~ 2 x 1073 Oe.

The hysteresis of the wave amplitude can result in an
interesting phenomenon of transformation of the continuous
THz radiation to a set of short bursts with amplitudes
significantly higher than the amplitude of the incident wave
(see animation at http://dml.riken.go.jp/). Indeed, while the
frequency of the incident wave increases approaching 2.
(route ABCD in figure 19), the energy of the electromagnetic
wave is accumulated in the sample. When the frequency is
decreased (route DCEFA in figure 19), the amplitude of the
wave abruptly decreases (jump E—F) and a significant part of
the stored energy is released in the form of a short THz pulse.

o

3.5. Localized THz beam

Another example of nonlinear effects in layered superconduc-
tors is the possible formation (below the plasma frequency wy)
of plasma waves localized across the layers. The existence of
such localized beams can be understood by means of a simple
analysis of the coupled sine-Gordon equations (equation (105))
and the dispersion law (equation (126)) for the linear plasma
waves. The tails of the localized beams can be considered as
linear waves. They can propagate along the x-direction with
w < wy due to the concave profile of ¢(z). Indeed, equa-
tion (126) shows that the x-component of the wave vector, ¢,
can be real for waves with < wj only in the case of imaginary
k withk2+1 < 0. In other words, the tails of the beam (parts of
the THz beam located far enough from the beam center z = 0)
should have a form

¢ x exp(igx —i1Qt £ kz)

with real k. Note that such a concave profile of ¢(z) also
describes surface JPWs localized near the sample boundary.
The center part (the ‘peak’) of the beam cannot have the
concave profile of ¢(z). However, this part of the beam can
propagate when Q2 < 1 due to the nonlinearity. Indeed, in
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the nonlinear regime, the cubic term ¢* in equation (105)
can change the sign of the sum in the second bracket, if the
wave amplitude exceeds the threshold value equation (112).
Thus, we can imagine the localized (in the z-direction) beam
consisting of two ‘linear tails’ decaying as exp(—«|z|), with
k > 1 when |z| — o0, that are connected with each other via
the nonlinear ‘peak’, where the amplitude of the wave exceeds
the threshold value.

We seek a solution of equation (105) using the asymptotic
expansion (equation (106)), where we keep only the first
harmonics with a small amplitude,

A~ (1-2H"? <« 1.

The equation for A; has a form

(

with boundary conditions

d2
1 — —

2 A} 2
(1—Q9A, — 2L +K24, =0,  (153)
dzz)[ 8i|

Ai(£00) =0 (154)

corresponding to a localized solution. Introducing the new
variables,

a=A/1 -2,  k=q/0-QH?  E=«kz
(155)
we rewrite equation (153) in the form
d2 3
1 —k?— a—a— +Kkla=0. (156)
dg? 8

Using equations (15)—(17) we obtain the relation between
the phase amplitude a(£) and the components of the
electromagnetic field of the beam:

H = H(&)cos(Q2t — gx), (157)

1 —Q2 3
HE) = —Ho(K—)h(E), h(&) =a() — 2 25)7 (158)
E, = E,(§)sin(2t — gx), (159)

Aa ,
E.(€) = Ho ﬁic (1- ) K@), (160)
E, = —E_(§) cos(Qt — gx), (161)
1
E.(€§) = Ho(l — 92)‘/2ﬁa(5). (162)
Equation (153) has a first integral:
2 6 _ 40,2, 4 2(,2
(d_a> _ C+a 12a (K +3)+264a (/c +1) (163)
dg K2 (8 — 3a2)

Using this equation we can construct the phase diagram in the
(a, a’)-plane (here a prime denotes a derivative with respect
to £). For simplicity, we now restrict our analysis to the case
when k >> 1, since this simplification does not change the
results qualitatively. In this limit, equation (163) yields

G

N2 _
@ =33

3 (164)

24
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Figure 20. The phase trajectories a’(a) (equation (164)) that
correspond to the localized beam (from [80]). (Color online.)

The phase trajectories a’(a) (equation (164)) that
correspond to the localized beam are shown in figure 20.
According to the boundary conditions equation (154), the point
(0, 0) in figure 20 corresponds to |z| = oco. Thus, the black
solid lines at |a(£)| < (8/3)'/? correspond to the tails of
the beam. As follows from equation (158), the value of a
is negative at the tails if we demand the positiveness of the
magnetic field amplitudes. The peak of the beam is described
by the green dashed line in figure 20 where the point with
a’ = 0anda” < 0 (the point of beam maximum) exists. At the
beam peak a(§) > 81/2 as also follows from equation (158).
Obviously, the transition from the tails to peak of the beam is
possible only through the jumps between the phase trajectories
as indicated by the dashed arrows in figure 20. Such jumps are
allowed since the conditions of continuity for the magnetic
h(§) and electric E, (£) fields can be satisfied.

It is convenient to illustrate the beam behavior in the plot
h(a), equation (158), shown in figure 21. The point (0, 0) in
this plot corresponds to £ = +00. When £ is increased from
—o00, the values of a and & decrease (see the route from point
1 to point 2 shown by the arrow in figure 21). This movement
corresponds to the left tail of the beam. Ata = aj; < 0, the
transition from tail to peak of the beam occurs. This transition
is shown in figure 21 by the horizontal arrow from point 2 to
point 3 with a ap > 24/2. With further increase in &,
the value of a increases while & decreases, and motion from
point 3 to point 4 occurs along the h(a)-trajectory. Point 4
corresponds to the beam maximum, a(§ = 0) = a, and
h(¢ =0) = hy. Até > 0 we follow the same route, 4-3-2—1,
in the reverse direction since the beam is symmetric with
respect to & = 0. The magnetic field is evidently continuous at
the points £ = +££&j of the jumps. The condition of continuity
of the electric field E, determines the positions +£; of the
jumps aj; as well as the values ajy;.

Integrating equation (164) we derive the form of the
beam for the case « > 1. For the peak of the beam, the
constant G is determined from the condition a’(0) = 0, that is
G = 4(8 —3a?2)?/3. So, the peak of the beam is described by
the implicit expression,

/

Am

du(3u® —8)

®) \/3 (af —u*) — 16 (a2 — u?)

= 2«|§], 1§] < &

(165)
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Figure 21. The nonmonotonic dependence of & versus a,

equation (158) (from [80]). The route 1-2-3-4-3-2—1 corresponds
to the localized beam profile when the coordinate & varies from —oo
to co. The red arrows between the open circles schematically show
the change of /# and a for a strongly nonlinear waveguide mode
(discussed in section 3.6) inside the superconducting plate,

—d/2 < z < d/2. (Color online.)

This equation taken at the point § = &,

du(3u? —8)

— u4) —16 (aﬁ1 - uz)

—2cE,  (166)

/‘;12 \/ 3 (afn

relates the position of the jump to ay,. For the tails of the beam,
G = 256/3sincea’ = a = 0 at |§| = oo. Thus, we have from
equation (164)

@®) du (8 — 3u?)

uv16 —3u?

The asymptotics of the a(§) dependence at £ — 00, a
exp(—«&), coincides with the z-coordinate behavior of linear
surface waves.

2 (18] = &1)» &1 > &. (167)

ag

The continuity conditions for 2(£) and E,(£) give two
equations for aj; and ay,:
aj.

(i) =

2 2 2
ajyy —aptay = ——

= 2 (o —ab+al).

Thus, the form of the beam, positions of the jumps and the
values ayj, aj; depend on the parameters 2, ¥ and ap,. The
form of the beam is illustrated in figure 22. The dependences
a(€) and h(&) are shown by the (blue) solid and (red) dashed
lines, respectively.

25
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Figure 22. The profile of the localized beam (from [80]): (blue)
solid line shows a (&) and (red) dashed line shows |4 (&)|. The
parameters used here are Q = 0.9, k = 10 and a,,, = 3.5. (Color
online.)

3.6. Nonlinear waveguide modes

In this subsection we discuss self-sustained JPWs propagating
along a thin slab (-d/2 < z < d/2) of a layered
superconductor (both symmetric and antisymmetric with
respect to the middle, z = 0, of the sample). The geometry of
the problem considered here is shown in the inset of figure 23.
Weakly nonlinear waves exist in slabs of arbitrary thickness
d, and coincide with linear surface waves for d — o0.
For thin slabs (d < A.), NWGMs can be excited in the
sample. Surprisingly, even though the magnetic field H for
NWGMs can be very small, the electric field E remains strong.
Moreover, the magnetic field of the NWGM at the sample
surface can be much weaker than the one in the middle of the
slab. For this case, the wave amplitude significantly affects the
dispersion properties of the NWGMSs. The dispersion relation
w(q) for this wave mode is nonmonotonic. As a result, the
stop-light phenomenon, dw (g, H)/dq = 0, controlled by the
magnetic field amplitude H could be observed.

The Maxwell equations for NWGMs in vacuum (z > d/2)
determine the distributions of the magnetic (directed along the
y-axis) and electric fields:
H(x,z>d/2,t), E,(x,z>d/2,t)

o expl—ky(z —d/2)] cos(gx — wt); (168)

also,

E.(x,z > d/2,1) x expl—ky(z—d/2)] sin(gx—wt), (169)

2

with the spatial decrement k, = (¢> — w?/c*)'/?. The
impedance ratio,
E, C2q2
— = — -1 (170)
Hl._qp w

should match the one obtained for the superconducting slab at
the interface z = d/2.

A spatial distribution of the gauge-invariant phase
difference

¢ = Ay(z) cos(gx — wt) (171)

inside a layered superconductor is defined by equations (155),
(157)—(162) and (164) with « > 1. For symmetric and
antisymmetric solutions we use the boundary conditions
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2

Figure 23. Phase diagram a’(a) (from [78]). Moving along
trajectories between solid circles corresponds to the change of
coordinate z inside the sample (—d /2 < z < d/2). The (blue)
dashed and (orange) dotted trajectories mark the symmetric and
antisymmetric quasi-linear self-sustained modes; the (black)
dash-dotted curve separates symmetric and antisymmetric solutions
and corresponds to the nonlinear surface wave; the (green and red)
solid trajectories describe the symmetric strongly nonlinear
waveguide modes. The inset shows the geometry of the problem.
(Color online.)

a’(0) 0 and a(0) = O, respectively, in the middle of
the sample. The matching of the impedance (continuity of
E,(z) and H (z)) at the sample surface z = d/2 results in the
dispersion relation for the NWGMs:

2 2 1/2
TC _ ) =2 s HHY.  (172)
w? VEA
The factor W
fi=~— (173)
 le—caora,

provides the amplitude dependence of the spectrum of the self-
sustained waves. This factor has to be obtained by solving
equation (164). In equation (172) we denote H = H(z
d/2).

The phase diagram of equation (164), i.e. the set of
a'(a) curves for different constants G, is shown in figure 23.
Different phase trajectories correspond to different types of
self-sustained waves in the superconducting slabs. Solid
circles mark the sample boundaries, while open circles indicate
the middle of the slab, arrows show the direction of motion
along the trajectories when & increases. In order to match
the vacuum—superconductor boundary conditions, the starting
and ending points of trajectories should be within the interval
from —8!/2 to 8!/2. Trajectories confined between +(8/3)!/?
are weak-amplitude modes, called below quasi-linear ones.
For these modes, the effective magnetic field ~ increases
with a (figure 21) according to equation (157). The quasi-
linear waves can be both symmetric and antisymmetric and

26

transform to linear surface waves, when approaching the
point (0,0) in figure 23. The trajectories with |a| >
(8/3)!/? represent symmetric strong-amplitude NWGMs with
‘reverse’ dependence /i (a) (see figure 21), i.e. h decreases with
increasing a. This is responsible for the unusual properties of
high-amplitude NWGMs: the electric field amplitude E, can
increase inside the sample, while the magnetic field amplitude
H decreases. There are no strongly nonlinear self-consistent
antisymmetric NWGMs.

3.6.1. Quasi-linear waves. The (blue) dashed trajectories in
figure 23 describe the symmetric waves having the spectrum
in equation (172), with

(174)

2
s

f, = tanh§ o 39
s =tanh§ -
: 64

sinh § cosh® §

(7 tanh®8 — 5 +

and (orange) dotted lines correspond to antisymmetric waves
with

hf 5 38
Js=cothd -1+ —|5=3coth"§+ —5— | |.
64 sinh” § cosh §
(175)
Here we assume
hs =h(€ =6) K 1, 8 =kd/2\ap. (176)

For thick slabs, d — oo, the trajectories for both symmetric
and antisymmetric waves tend to the black dash-dotted
trajectory corresponding to the nonlinear surface wave. For
h — 0, the spectrum (174) coincides with the spectrum of
linear surface waves. For the parameters corresponding to
the Bi;Sr,CaCu;0g,5s compounds, the spectrum of symmetric
quasi-linear waves is located close to the ‘vacuum light line’,
w = cq, and deviates from this line only at very small values
of (1 —Q%») ~ Agb/skf. Thus, these waves are unlikely to
be excited in Bi,Sr,CaCu,0g,s compounds. However, for
artificial superconducting multi-layers, or other compounds
like YBa,Cu3O7_;, the conditions for symmetric quasi-linear
wave excitations could be satisfied.

Concerning the antisymmetric quasi-linear waves, their
spectrum shifts far from the ‘vacuum light line’ for thin slabs,
d < A (see figure 24). The electromagnetic field of these
waves has a very simple, almost linear distribution inside
the sample (inset in figure 24) and decays in the vacuum
over a short enough (sub-millimeter) distance. Due to the
latter, layered BiSr,CaCu;,0Og,s superconductors can act as a
waveguide for the antisymmetric THz modes. Also, nonlinear
antisymmetric waves can produce Wood’s-like anomalies in
both amplitude and angular dependence of the reflectivity,
transmissivity and absorptivity coefficients. Similar properties
are also inherent for the symmetric strongly nonlinear waves
considered below.

3.6.2. Symmetric strong-amplitude NWGMs. The function
fs in equation (172), describing the deviation of the spectrum
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Figure 24. Dispersion relation, 2 (cq /wy), for the antisymmetric
waveguide mode (from [78]). Parameters are A./A,, = 200, ¢ = 16,
d/X}a = 0.1 and 0.3 for solid (red) and dashed (blue) curves,
respectively. The black dotted line corresponds to the ‘vacuum light
line’. Inset: schematics of the spatial distribution of the
dimensionless magnetic field amplitude 4(2z/d) ~ a(2z/d) inside
the sample. (Color online.)

of the NWGMs from the ‘vacuum light line’, has a very
complicated structure with asymptotics:

wd 272
s f 1—hg 177
f < hs)"ab o )Lih < ) ( )
and S
Kk“d Kkd
fi — 1. 178
fs ol or o > (178)

This allows the construction of a simple interpolation of the

dispersion relation
2
() (-5)-

where the threshold amplitude

2
o

c2k?

6‘22

7]
— 1, (179)
Wy

4 2

d2
38A§b

H
H,

2

1-Q

_ 0.8Hod?

N 180
£ e (180)

t
defines the lowest value of the magnetic field amplitude at the
sample surface: at lower fields the predicted NWGMs do not
exist. The interpolation formula, equation (179), is in perfect
agreement with numerical results (see figure 25) obtained by
the integration of equation (164).

The spectrum of the strong-amplitude NWGMs is
nonmonotonic (figure 25) and €2 (g) reaches the minimal value

d*H (H 172
Qun=11-———(——1 181
e { 38A2th<Ht )} (181)
at
wy 2H
=— |==. 182
9= H, (182)

Thus, the stop-light phenomenon, dw (g, H)/dg = 0, occurs
in the THz superconducting waveguide. This stop-light effect
can be easily controlled by the magnetic field amplitude.
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Figure 25. Dispersion relation, 2 (cq/wy), for the strongly
nonlinear waveguide mode (from [78]): the solid (red) squares
present the result of the numerical simulation using equation (164);
the dashed black line is obtained by interpolating between two
asymptotics. The simulations and interpolation perfectly coincide.
Here we use the following set of parameters: d/A,, = 0.3,

Ae/Aap =200, & = 16, H/Hy = 1.5 x 1075, Inset: the spatial
distribution of the dimensionless magnetic field amplitude 4 (2z/d)
and the amplitude of the gauge-invariant phase difference a(2z/d)
inside the sample, for the same set of parameters as in the main
panel and for 2 and cq/w; marked by the solid circle in the main
panel. The open (blue) squares (located at the top left and top right
corners) mark the starting and ending points of the spectrum.
(Color online.)

It is interesting to note that the spectrum of the NWGMs is
located between (gs, 25) and (g, 2¢). At these peculiar points
of the spectrum, the value of the dimensionless magnetic field
amplitude & achieves its critical value

e = h (a = /33) = /32/27

(see figure 21). At the sample edges z = d/2, a’ tends to
infinity according to equation (164), but /4’ is not singular.

For the strong-amplitude NWGMSs, the magnetic field
amplitude at the sample surface is less than inside the slab,
while the phase a(£) and, thus, the electric field E, do not
significantly change in the sample (see inset of figure 25). Due
to this feature, i.e. H(0)/H(d/2) > 1, the spectrum of the
NWGMs is remarkably far from the w = cq line despite the
smallness of the parameter A,,/+/€A. in equation (172).

The numerical analysis of equations (153) and (172) (or
(179)) shows that strong-amplitude NWGMs exist for sample
thicknesses d smaller than some critical value d., because of the
instability of NWGMs for thick samples (see the next section).
This threshold thickness d. depends on the sample parameters
(in particular, the ratio A./As > 1 and €) as well as the
NWGM frequency and wave vector. However, d. is about
several ), in any realistic case. For given parameters of the
incident EMW and material characteristics (e.g. A./Aq, and
¢), the amplitude of the magnetic field and the gauge-invariant
phase oscillations increase in the middle of the sample when

(183)
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Figure 26. The geometry, proposed in [78], for an experiment
probing the resonance excitations of NWGMs in a layered
superconductor sandwiched between two dielectric prisms.

the sample thickness d increases. When d > d., the large-
amplitude NWGMs suddenly become unstable. However,
the large-amplitude NWGMs are stable with respect to small
perturbations when d is smaller than d..

The NWGMSs can be excited in a superconducting slab
using two dielectric prisms. As a result of the NWGM
excitation, a resonance increase in the electromagnetic
absorptivity can be observed if the ac amplitude, frequency,
and wave vector satisfy the dispersion relation, equation (179).
Let us now consider the plane monochromatic electromagnetic
wave incident from the dielectric prisms through the vacuum
interlayers onto a plate of layered superconductor, from both
of its sides (see figure 26).

This experimental configuration corresponds to the prism
method of excitation of surface waves with attenuated total
wave reflection (see section 2.3). Usually, the incident angle
0 is varied in one-sided or unilateral experiments, and the
resonance suppression of the wave reflection is observed if
the wave vector satisfies the dispersion relation for the surface
wave in a conductor.

Two essential additional features of this proposed
experiment are important for our -case. First, the
superconducting plate is excited from both its sides, resulting in
the magnetic field of the incident waves being symmetric with
respect to the middle of the superconducting plate. Second, the
considered waveguide mode is nonlinear. This offers a novel
possibility to observe the anomalies in the reflection coefficient
and absorptivity as a function of the amplitude of the incident
wave with given frequency and incident angle. This allows the
predicted NWGMs to be distinguished from linear ones (for
which there is no amplitude anomaly). Namely, if the sum of
the magnetic fields of the incident and reflected waves at the
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sample surfaces takes the resonance value,

1/2
sin®(@)e | 3eA2,(1— Q%) sin’(0)e !
Hies = H, ) B +
sin“(@)e — 1 d 4
(184)
and
1
sin®(0) > —, (185)
€

a sharp decrease in the reflection coefficient and increase in
the electromagnetic absorption should be observed. Here € is
the dielectric constant of a prism.

The dependence of the dispersion relation on the wave
amplitude is the main feature that can be used to experimentally
distinguish the predicted NWGMs from ordinary plasma
waves. The excitation of NWGMs produces an increase
in the EMW transparency of the sample near the plasma
frequency, if the amplitude of the incident wave H exceeds
the threshold value H;, equation (180). Using characteristic
values for BSCCO (1, = 200nm, A./A,, = 200, ¢ = 16 and
D = 15 nm) and assuming that the sample thickness d is equal
to Agp, We obtain H, &~ 2 x 1073 Oe, which corresponds to a
power of the incident (from the vacuum) EMWs of the order
of I mWcm~2,

4. Radiation of JPWS by moving JVs

If an external magnetic field is applied parallel to the ab-
plane of a layered superconductor, the JVs in between the
superconducting layers enter the sample. Since JVs do not
have a normal core, the vortex pinning force and the friction
force, that slow down vortex motion, are very weak. Thus,
vortices can move very fast when a driving current along the
c-axis is applied. The vortex velocity can reach the phase
velocity of plasma waves. In particular, very fast-moving
JVs were observed in annular tunnel Josephson junctions
[135,136]. Therefore, the generation of JPWs by moving
vortices due to the Cherenkov mechanism could occur under
certain conditions. The main problem is whether the maximal
possible vortex velocity can exceed the phase velocity of
plasma waves. In this context, we consider three different
Josephson systems: (i) a single vortex in a single Josephson
junction, (ii) a single vortex in a layered superconductor and
(iii) a vortex lattice in a layered superconductor.

4.1. Cherenkov radiation in long Josephson junction:
nonlocal electrodynamics of JVs

Following Mints and Snapiro [53], we consider a JV in a long
Josephson junction of thickness d with critical current density
J. and dielectric constant €. The dynamics of the vortex is
described by the sine-Gordon equation for the gauge-invariant
phase difference ¢(x, t) (the x- and y-axes are oriented in the
plane of the junction, the vortex is parallel to the y-axis):

1 3%

— 186
w? 01’ (186)

2
(7
AM—" +sing = 0,
T ox2 ¢
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where

CCDQ
16720 J;°

[8medJ.
wy =
he

are the Josephson penetration length and the Josephson plasma

frequency. We neglect the dissipation and driving terms in

equation (186), assuming them to be small. The well-known
x =Vt

solution of equation (186),
— 1, (188)
)\.]\/ 1-— VZ/CEW):|

describes the uniform motion of a JV with a certain velocity
V. It follows from equation (188) that a JV moves in a long
junction similarly to a relativistic particle with the highest
possible velocity csw = Ajwy (Swihart velocity) [65].

Now we consider JPWs in a long Josephson junc-
tion [137]:

Ay = (187)

@o(x,t) = 4tan”! |:exp (

lpa] < 1.

The relation between w and g is given by the formula [65]

¢(x, 1) = @, exp(—iwt +igx), (189)

w = wy/1+ g% (190)
Correspondingly, the phase velocity of the wave is
w / 1
UpthZCSW 1+q2_)€ (191)

This velocity is obviously higher than the Swihart velocity cgy
for any ¢ and, at a first glance, the Cherenkov radiation of
JPWs by the vortex moving in a long Josephson junction is
impossible.

However, as noted in [53], the above consideration is
valid only within the framework of the local theory. In [66],
Gurevich proved that the evolution of the phase difference ¢
is governed by the nonlocal sine-Gordon equation

1 82§0_)\’% OOK0< )82¢
(192)

w?} 012 ou?

where K (x) is the zero order modified Bessel function. Only
when the spatial variation of ¢(x, ¢) is smooth in space, i.e.
if A &« Ay, is equation (192) reduced to the local form,
equation (186). However, the spectrum of the electromagnetic
wave differs significantly from equation (190) at high enough
values of the wave vector ¢ > 1/A. Namely, the dispersion
relation, accounting for nonlocality, is

|x —u|
A

it du +singp =0,
A J s

2)\’2
w=ay |1+ T2 (193)
V1+g22
Correspondingly, the phase velocity,
@ L] (194)
Uph = — = Csw s
Mg T+q22 g%

tends to zero when g — oo and, therefore, becomes less than
the vortex velocity. This means, that the Cherenkov radiation
of the plasma waves with high values of the wave number
could exist in a long Josephson junction at any value of the JV
velocity [53].
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4.2. Cherenkov out-of-plane radiation by a moving JV in
layered superconductors

The Cherenkov radiation propagating along the vortex velocity
caused by the nonlocal effects should exist not only in a
single Josephson junction but in layered superconductors as
well. The principal question arises whether the Cherenkov
radiation can propagate in other directions similarly to the
Cherenkov radiation of a relativistic particle. In other words,
can the Cherenkov cone of the radiated waves be observed in
layered superconductors? As shown in [67—69], the answer to
this question is certainly ‘yes’ if one of the junctions differs
significantly from others in a stack of Josephson junctions.

The geometry of the problem is shown in figure 27(b).
Two layered superconducting half-spaces are joined by a
‘weak’ junction parallel to the layers. The x-axis is directed
along the layers, the z-axis is perpendicular to them and the
magnetic field H (x, z, t) is oriented parallel to the y-axis. The
weak junction is situated at z = 0 and has a thickness D* and
the critical current density J;. The corresponding values for
the junctions in the layered superconductors are D and J, as
in previous sections.

The gauge-invariant phase difference, (p“” (x,z,1), in
both superconducting half-spaces is described by the coupled
sine-Gordon equations, equation (12). We assume that the
main phase difference is across the weak contact, where a
JV is located, whereas ¢+ is small across other junctions.
Thus, for the waves emitted by the vortex, we can linearize
equation (12) .

We seek a traveling solution of equation (12),

O = g (x — V), (195)
which corresponds to a JV moving with the constant velocity
V. Using the Fourier transform

o0
o (g) = / Az exp(—ig)e"* (2), (196)
—0o0
we obtain, from linearizing equation (12), the solution
o™ (q) = ¢"(q) - explisign(q) k(g) DII[], (197)

where sign(g) = 1ifg > 0,and —1if g < 0, the wave number
k(q) is defined by the relation
N D? a)% +c2q?/e

2
Sin ~ .
< ) 422, g2V? — ?

Obviously, the transverse wave numbers defined by
equation (198) correspond to JPWs propagating not only in the
x-direction but across the layers as well, if 0 < sin?(kD /2) <
1. Specifically, in this situation the JV vortex emits the plasma
waves in a wide range of angles, i.e. the Cherenkov cone can
be observed. The analysis of equation (198) shows that this is
the case if the vortex velocity exceeds the minimal value Viy,:

k(g)D
2

(198)

cD

V > Viin = ——,
> Vmin 2\/5)»@

(199)
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Figure 27. Cherenkov radiation generated by a fast JV (located at
x = Vi) moving in a weaker junction with the critical current

J! < J. and the junction thickness D* (from [67]). (a) Magnetic
field distribution H (x — V't, z) in units of ®y/2mw A A, for
J/J.=02,D*/D =1.2,V/Vyx = 0.9. The ‘running’
coordinate, x — V1, is measured in units of A.D /(7 A/ V2B — 1),
while the out-of-plane coordinate z is normalized by

D/(m/v*B* — 1), where B = J.D*/J*D and v = V/Vyn. The
moving vortex emits radiation propagating forward. This radiation
forms a cone determined by the vortex velocity V. (b) Geometry of
the problem: in a weaker junction (located between the two blue
superconducting planes), a c-axis current Jj. drives a JV with
velocity V, which is higher than the minimum phase velocity Vi,
of the propagating electromagnetic waves. Red strips in (b)
schematically show out-of-plane Cherenkov radiation. (Color
online.)

and the wave number ¢ is high enough:
wy

vz V2

min

g1 > Gmin = (200)

When |g| < gmin, the waves, equation (197), propagate along
the x-axis and decay with distance from the weak junction.

The magnetic field of the emitted waves can be expressed
in terms of the phase difference ¢/*'!. As follows from
equation (16),

Hl+1,l (q) —

4mil, <1 q*v?
o

><p’“”(q)- (201)

Thus, the dependence of the magnetic field on the layer number
obeys the same law as the phase difference ¢/*!"/:
H"(q) = H"(q) - explisign(q) k(9)DII]].  (202)

Now we should find the relation connecting the amplitude
of the emitted waves and the phase difference ¢ in the weak
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junction where the vortex is located. We use the following
relation [65]:

2492

" __871
¢ (&)= Py

{(Je(¢,1=0) = J (¢, I =-D},  (203)

where ¢ x — V¢, the prime denotes differentiation with
respect to ¢ and J,(¢,!/ 0,1) are the values of the
x-components of the current density taken at the top and
bottom edges of the weak contact. Equation (203) is valid
if D* < 24, that is if the magnetic flux through the weak
junction is small compared with ®j. In other words, the
gradient of the gauge-invariant phase difference ¢ along the
central junction occurs due to the gradient of the phase of the
order parameter in the layers forming the weak junction rather
than the trapped magnetic flux.

Using equation (203) and the Maxwell equation,
equation (6), we obtain the desired formula in the form

1,0 —
H>9) = 4722, (1 — exp(—ik(q) D))

b(q).  (204)

We would like to pay particular attention to a very
important feature of JPWs emitted by the moving vortex.
According to equation (198), the wave numbers k(qg) are about
7/ D for g close to the minimal value g, equation (200). It
follows from equation (6), that the ratio £, / H for these waves,

E, _ —icD —icD

H ~ 20(1—exp(—ik(q)D)) 22,0

(205)

’

appears to be about unity in Bi or TI systems under such
conditions. This fact seems to be quite unexpected because
the effective conductivity o of these materials along the
superconducting layers is high. In usual conductors, the ratio
E./H ~ wd/c is always very small. Here § ~ c¢/(woes)'/? is
the skin depth. However, for JPWs in layered superconductors,
in contrast to usual conductors, the characteristic length of
the magnetic field variations along the z-direction is much
smaller than the skin depth §. It is not defined by the effective
conductivity but is governed by the plasma wave spectrum.
Specifically, due to the very short spatial scale of the magnetic
field change (about D), the amplitudes of the magnetic field
and the x-component of the electric field in the plasma wave
are of the same order.

4.2.1. Nonlocal sine-Gordon equation for JV. In order to
obtain the equation describing the phase difference generated
by the JV in the weak junction, we follow [66]. First, using
equations (201), (202) and (204), we express the current
normal to the layers in terms of the phase difference ¢ in the
weak junction. Performing a reverse Fourier transform, we
obtain

iC@oD

167222,

8 /°° q*dq exp(ig¢ +isign(q) k(¢)D|!|)
oo 2W 1 — exp(—ik(q)D)

I = -

¢(q). (206

[e¢]
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Below we consider the case where the main contribution to the
integral in equation (206) comes from the region

9’ <K V2 (207)
It will be shown below that this inequality is valid if the vortex
velocity satisfies a certain limitation. In this region of ¢, the

value of k(qg)D is much less than unity, and we obtain from
equation (198) the asymptotic expression for k(q):

1 [ +cq% e 12
k(g) = et B A . 208
@) Aab < q*V? — ot > (208)

Substituting equation (208) into equation (206), we find
the current J, through the weak junction, [ = 0. Using the
reverse Fourier transform for ¢ and taking into account the
inequality (207), one gets

c®y £ — ¢ 9%¢
Jo — / d¢' Ko ., (209
26 = 1673 Aaphe ¢ < he P (209
where Ky(x) is the modified Bessel function. Equating

the current in equation (209), to the sum of Josephson
and displacement currents in the weak junction, we obtain
the nonlocal sine-Gordon equation for the JV in a layered
superconductor:

*2

2 0 ’r_ 82
¢ +sing = ;/ d¢'Ky & = —¢, (210)
*2 aé-z The Jooo Ao 34-12
where
P 8meD*J¥
R U wf = | 252 e 21
16720 ¥ he

The physical reason for the nonlocal structure of this
equation is the fact that the magnetic flux of the vortex is
distributed along the layers over distances A, much higher
than the region of the nonlinearity, )\% /mhe & yD (the JV
core). Therefore, the component, equation (209), of the current
normal to the layers and inflowing into the weak junction at the
point ¢ ‘feels’ the phase difference ¢ not only at the same point
but is defined by the phase distribution over a region of about A,
around the point ¢. A similar situation was considered in [66]
for single Josephson junctions with high critical currents, when
Ay is much less than the London penetration depth.

Now we use equation (210) in order to estimate the
maximum velocity of the JV in the weak junction and to
analyze the soliton solution. If A, < AJ, the kernel Ky in
the integral in equation (210) is a sharper function of ¢’ than
3%¢ /8¢ In this case, one can take away 3°¢/d¢’> from the
integral at the point {’ = ¢. This reduces equation (210) to
the usual local sine-Gordon equation. However, the c-axis
London penetration depth X, for layered superconductors is
usually much higher than Aj [3], i.e

he > AT (212)

So, below we consider only this case.
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Following the standard procedure, we multiply both parts
of equation (210) by d¢ /3¢ and integrate over { from —oo to
zero,

2
(¢ (0)* +2
(¢ 96 09

2 *2
ol dgf d“{‘)( h )awa:' el

The functlon ¢(¢) varies on a scale [ that is much less
than A.. Therefore, the main contribution to the integral in
equation (213) comes from |¢]|, |¢’| <« A.. This enables
us to replace Ko(x) by its expansion at small arguments,

)L*Z

3)

Ko(x) = —Inx. Integrating by parts over ¢’ on the right-hand
side of equation (213), we find
A2 ¢ 1 3¢
0 Lp / de’'— d =,
2 *2(¢()) n)‘«c oo épag—/ é‘é-/_é-aé-
(214)

where P stands for the principal value of the integral. We
assume a simple estimation, ¢’(0) = 1/1. Taking into account
that ¢(¢) is a sharp function, we can put ¢'(¢") = 278(¢’)
in the internal integral in equation (214). Estimating the
remaining integral over ¢ as 1/[, we obtain the approximate
algebraic equation for the characteristic size of the moving
soliton:

2

12— Iyl + =0, (215)

*2
4wy

Obviously, the soliton size at V. = 0 is /p. This result
coincides with the exact one obtained by Gurevich for isotropic
superconductors in the nonlocal mode [66].

The real roots of the quadratic equation (215) exist if the
vortex velocity does not exceed the critical value

*}L*Z )L*
Vi =wily= = SW/\— L ks (216)
c
where ¢, is the Swihart velocity for the weak junction. We

emphasize that the last result is valid not only for the weak
junction but for any other Josephson junction in the layered
medium. The limiting velocity V. of the JV in layered
superconductors is much less than the Swihart velocity, V, =
Cswhi/Ae K csw, due to the nonlocal effects. Note that the
limitation V < cg, was found in the paper by Krasnov [64];
however, he considered the local limit, A, < Aj.

The characteristic size of the soliton decreases with an
increase in V, as in the local case. However, the value of [
remains nonzero even at V = V. As was assumed before, [
is always much less than A, if the inequality (212) is fulfilled.

Now we can clarify the physical meaning of the limitation
(207). Since the integral in equation (206) defines the soliton
structure, the main contribution to it comes from ¢ ~ [~
Thus, we find the validity conditions of our results in the form

J.D
JED*

V*Z

Vi ofl* = V; (217)
If the critical current in the weak junction is much less than in
other ones, the last inequality is valid at any vortex velocity up

toV =V}
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4.2.2.  Cherenkov out-of-plane radiation. ~The magnetic
field of the JPW running away from the weak junction can
be found by means of the reverse Fourier transformation of
equation (202). From equations (202) and (204) we get

D?}. /“’ qdq(q)
4nk3b oo 1| —exp(—ik(q)D)
x explig(x — vt) +1isign(q) k(q)D|!|], (218)

where ¢(q) is the Fourier transform of the solution of
equation (210). The interval |g| < ¢gmin Of integration in
equation (218) corresponds to the complex values of k(g).
The contribution to the integral coming from this region decays
from the weak junction. The out-of-plane Cherenkov radiation
is provided by the contribution coming from the region |g| >
gmin- We write this term in the form

D?), / * qdgq
4722, Sy 1 — exp(—ik(q) D)

x {¢(q) explig(x — vt) +1ik(q)DIl|]

—¢(—q) exp[—ig(x — vt) —ik(q) D[]} (219)

Here we stress again that the emitted wave can exist only
in the case when the vortex speed V is higher than the minimal
value Vi, (see equation (200)). This fact could be readily
seen from equations (219) and (200). Indeed, the interval of
integration in equation (219) diminishes at V. — V,. Thus,
using equations (199), (216) and (217), we can write down the
conditions for the out-of-plane Cherenkov radiation as

H*V (x, 1) = iH,

1+1,1 .
HEM (x, 1) = iHo

V2

JrD
— <
VC*2

J.D*

J.D
JC* D* .

(220)

These conditions can be readily satisfied if there exists a weak
junction with the critical current J} < J.

Unfortunately, we cannot find the explicit solution of
equation (210) for the soliton profile ¢ (¢). As an example,
let us now use the profile of a stationary vortex [66],

$(¢) =7 +2tan'[¢/1(V)], (221)
with [ dependent on V according to equation (215),
Iy V2
Z(V)=§<l+ I—W). (222)
The Fourier transform of (221) is
2mi
¢(q) = Y exp[—lg|/(V)]. (223)

Substituting this expression into equation (219) we find

D*x. [ d
HGM (x, 1) = iHo— / 1
Aoy Jgmn 1 — expl—ik(q) D]

x exp[—ql(V)]sin[g(x — V) + k(q)D|l|]. (224)

Due to the rather unusual dispersion relation (20), i.e.
the decrease in k(g, @ = qV) when ¢ is increased, as well
as due to the spatial extension of a vortex, the generated
electromagnetic waves are located outside the Cherenkov
cone (figure 27(a)), which is drastically different from the
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Cherenkov radiation of a fast (point-like) relativistic particle.
The new type of radiation predicted here could be called
outside-the-cone Cherenkov radiation.

The frequency spectrum of the Cherenkov radiation has
a sharp edge at = gminV =& wy. At lower frequencies the
radiation is absent, while it exponentially decreases at higher
frequencies due to the exponential factor exp[—|g|/(V)] in
equation (224). Thus, the moving vortex emits the out-of-
plane radiation mainly at the frequency w ~ wj;. Note that
the Cherenkov radiation propagates mainly in the direction
transverse to the layers, since k(gmin) = 7/D > Gmin.

The Cherenkov radiation is exponentially small if V «
VZ, and grows with V approaching V. If the vortex velocity
becomes comparable to the critical value V', the exponential
factor in the integral equation (224) is about exp[— (J./ J¥)/?].

As mentioned above, the ratio E, / H is about unity for the
emitted waves. This means that in contrast to the longitudinal
propagation of Cherenkov radiation, where the ratio E,/H ~
V/c is very small, there is no impedance mismatch for the
out-of-plane radiation. However, the out-of-plane Cherenkov
radiation can never pass through the sample boundary that is
parallel to the velocity of the moving particle. This is because
of the large longitudinal wave vector ¢ = w/V > w/c of
radiation. Ashasbeen shown in [67-69], the longitudinal wave
vector can be decreased by means of the spatial modulations
of the critical interlayer current, resulting in emission of the
Cherenkov radiation from the top and bottom sample surfaces.

4.3. Transition radiation of JPWs

In the previous section we have shown that the vortex moving in
aweak junction produces the out-of-plane Cherenkov radiation
if the vortex velocity is sufficiently high. However, the out-
of-plane radiation can be emitted even at small vortex velocity
if the junction, where the vortex moves, is nonuniform [69].
In this case, it is not necessary to assume that this junction
differs significantly from others. We only assume that the
dielectric constant ¢ (or the critical current J.) of the junction
is periodically modulated. This is an analog of the transition
radiation. We predicted this in [69].
It is convenient to present the modulated dielectric
constant in the form
> , (225)

e(x) =8<
_Jf@&, &l <a/2,

For simplicity, we assume that f(£) is an even function with
a maximum f(0) =1. We consider the case 4 < 1, in order
to derive an explicit formula for radiation.

In contrast to the previous studies, the problem under
consideration does not have a traveling-wave solution since
the sample is not homogeneous along the vortex motion.
Performing the Fourier transformation of equation (12) over
t and x and neglecting the dissipation term, we obtain

(1),

1+p Z F(x —na)

n=—00

where

q°x;

2
il _ Aap

2 /02
1 — w*/w;

Dz 8[2(pl+1,l — 0

(227)
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Following the procedure used in section 4.2, we obtain the
modified expression for the Fourier transform of the magnetic
field:

H"Y(w, q) = H"(w, q) - explisign(w) k(w, ¢) D||]
k(@)D _ D? a)Jz+c2q2/8

< 2 )N4kgb w? — w?

The relation between the magnetic field H'(w, ¢) and
the phase difference ¢ (w, ¢) in the weak junction is given
by equation (204), where k(q) should be replaced by k(w, q)
from equation (229). The equation for the phase difference

9 X2

¢(x, y, t) now has a form
dx/K() ( )
(230)

e(x) 8%¢ ke /00

sw}? 012 e Jooo

with ] taken for the unperturbed case. This equation can be
solved by an iterative procedure with respect to u© < 1. We
seek a solution of equation (230) as a sum of the traveling
wave ¢ (x — V't) for the unperturbed soliton moving with the
constant velocity V and a small perturbation ¥ (x, #). The
function ¢ (x — V't) is the solution of equation (210). To first
order approximation in ¥, we have

(228)
with

sin®

(229)

3%¢

|x" — x|

+sing =
¢ .

1 3%y 1 — ¢
— + F(x — na)— +
w2 92 of? n;oo (x —na) 912 Yeose
)L*Z 00 ’r_ 82
- 4/ 'K, (=) 231)
n)\'(,‘ —00 )\'C 8)6/2

We can neglect the last term on the left-hand side of
equation (231) since we are interested in the high-frequency
radiation with @ > wj. Solving equation (231) by means
of a Fourier transform and neglecting terms of the order of
1/g*»? <« 1 (corresponding to high frequency and strongly
nonlocal modes) we obtain ¥ (w, q):

2
Y(w,q) =

U
lq1Vew; —o?
o0
<
—00
where ¢ (w, x) is the Fourier transform of ¢(x — V) from
equation (221) over time:
(ia)x — Ia)|l(V)>
xp|{ ———— ).
%4

Now using equations (226), (228), (229), (232), (233) and
(204), where k(gq) is replaced by k(w, q), we obtain, after
cumbersome but straightforward algebra, the expression for
the magnetic field of the transition radiation:

I+ _ iuHo DA

[e¢]

dx Z F(x —na)¢p(w, x) exp(—igx),

n=-—00

(232)

2mi

¢(w,x) =——c¢ (233)
)

H, =
tr )\Zb(l
- 3 > OYm
m:Z_:oo wy 1- CXP(—lk(w, Qm)D)

L XP (—Ia)ll(V)/;/) $in [gnx + k(@, gm) D] — wt].

|gm|VEw] — w

(234)

33

Here
~ a/2 2w mx
fn=2 dxf(x) cos , (235)
0
o 2mm (236)
= \% a

We also take into account that only real values of k(w, g;,)
correspond to the emitted waves. Thus the integration in
equation (234) is performed from wj. Additional limitations
on the summation and integration regions should be imposed
since sinz(k(a), gm)D/2) < 11in equation (229).

In the general case, the analysis of equation (234) is rather
cumbersome. So, below we discuss only the case of low vortex
velocities, V' < Vpin (see equation (199)). The condition
that the right-hand side in equation (229) cannot exceed one
produces a quadratic inequality for the value of w, as follows
from equation (236). At v V/Vmin < 1, the allowed
frequencies lie between the values w; »(m), which are defined
by the roots of the corresponding quadratic equation,

- 2amVyn U2
w1 2(m) = ————
b2 a 1 —v?
L (o 1w (237)
x | = —w
v T\ 2 m Vs v2
Evidently, we should choose only m > my;y,
awy 1 —v?
M = = ———, (238)
27 Vinin v

since the values of w are real and positive. A simple analysis
shows that both frequencies w;(m) are higher than wj if
m > Mpn. Thus, we should keep only the terms with
m > mp;, in the sum in equation (234) and perform integration
from w; to w»,

I+1,0 _ iMH0D2)‘c

H,
! Aﬁba
s @) (m) o
£ dIm
X /i / do :
m:[m§“]+] " i (m) 1 - GXp(—lk(a), qm)D)

—lw|l(V)/V
X exp (Zloll(V)/V) sin (g x + k(w, ¢,) D|l| — wt],
|gm| V@] — w?
(239)

where [my,] denotes the integer part of 7 yy,.

In contrast to the outside-the-cone Cherenkov-like
radiation (figure 27), the transition radiation (figure 28(a))
propagates both forward and backward in space. Indeed,
the in-plane component k, of the wave vector and, thus, the
corresponding phase velocity both change sign (figures 28(b)
and (c)). Also, the waves running backward can be directly
seen from the magnetic field distribution shown in figure 28(a).
For fast JVs moving with velocity close to Vi, the frequency
zones overlap for different zone number m (figure 28(b)).
However, for lower speeds, we obtain the forbidden frequency
ranges wWmax (M) < ® < wmin(m + 1) (see figure 28(c)) of
radiated electromagnetic waves.

The radiation is more intensive for mpy;, < 1 since the
value of fm in equation (239) drops with increasing m. This
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Figure 28. Transition radiation emitted by a JV (located at x = 0)
moving through a spatially modulated (along the ab-plane) layered
superconducting sample (from [69]). (a) Magnetic field distribution
H (x, z) (at a certain time, say ¢ = 0) in units of MHODZA(f/Aﬁha for
V/Vain = 0.8, a/l(V = 0) = 1. The in-plane and out-of-plane
coordinates x and z are normalized by the core size [ of a static JV
and 2D, respectively. (b),(c) The x-component g of the wave vector
of the radiation versus frequency. In contrast to the Cherenkov
radiation (figure 27), the phase velocity g /w of the transition
radiation could be positive or negative (b), resulting in waves
propagating both forward and backward with respect to the JV
motion. The radiation frequency has forbidden zones, shown by red
vertical strips in (c¢), when the vortex moves relatively slow. (Color
online.)

means that the modulation period a should not be too large. On
the other hand, the radiation intensity decays if the modulation
period is small compared with the soliton size /. Indeed,
the exponential factor in equation (239) decreases sharply at
a < [. Thus the optimal value a is of the order of [, since
[(V) does not change drastically with the fluxon velocity V.
In this case, the minimal frequency w; of the emitted radiation
is about wy.

Different frequency bands Aw,, wr(m) — wi(m)
correspond to each mth term in the sum in equation (239). The
neighboring bands can be divided by the gaps of forbidden
frequencies under appropriate choice of parameters. For
example, at a = 277 Vpin/wy and v2 = 1/2, when a is about
lp and mpi, = 1, the gap (ﬁ — \/§)a)J between the first and
second bands exists.

Note that the transition radiation could arise for junction
inhomogeneities of different origin, e.g. for junctions with a
modulated critical current density J.(x) [69].
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5. Radiation of THz waves in layered
superconductors

The possibility of generating Cherenkov and transition
radiation produced by a moving single JV promises, at first
glance, a way for layered superconductors to generate THz
electromagnetic waves. However, several attempts to produce
Cherenkov radiation in layered superconductors by a moving
lattice of JVs [55-59] have uncovered an important problem
that is very difficult to solve. For example, the far-field
radiation power obtained experimentally from BSCCO is
limited to the pW range [138], which is very small. To
generate radiation having a higher intensity, JPWs induced by
the moving lattice have to be in phase in different layers, which
can be realized only if vortices form a rectangular lattice.
However, such a rectangular lattice is usually unstable [139,
50, 140]. In other words, the vortex—vortex interaction favors
the triangular lattice that can produce only weak noncoherent
radiation with intensity proportional to the total number N of
layers in a superconductor. Thus, the problem of coherent
superradiance in layered superconductors, with an intensity
proportional to N2, is of importance. In this context, recent
interesting simulations by Tachiki and co-workers [59] show
that coherent radiation may be generated by JVs moving as
disordered arrays, instead of just ordered ones. This raises the
question under what conditions JVs in layered superconductors
emit coherent radiation. As has been recently shown in [141],
the numerical results obtained in [59] could be attributed to the
nonlocal (two scale) nature of JVs in layered superconductors.
Let us now summarize the central idea of the approach reported
in [141]. Consider a moving JV lattice emitting radiation.
This radiation will bounce back and forth on the sample edges,
as in a laser cavity. This radiation accumulates and creates a
standing wave with a wavelength much longer than the distance
between vortices. This standing wave modulates the JV density
which is now in resonance with the standing wave. This
positive feedback enhances the radiation of vortices. Namely,
the JV motion emits radiation, which is initially weak. This
radiation bouncing inside the sample (acting as a cavity) locks
the collective motion of the JVs. This collective motion
produces stronger emission. The JVs then interact more
strongly with the electromagnetic standing wave, compared
with the now much weaker vortex—vortex interaction. Thus,
the triangular vortex lattice, produced by the vortex—vortex
interaction, is finally replaced by a more disordered, but still
modulated by the radiation, vortex structure. Even though such
a way to generate THz radiation looks promising, it is not yet
verified in experiments.

Below in this subsection, we describe a way to achieve
THz radiation, recently reported in [142] and also studied in
[143]. References [142, 143] considered the synchronization,
by the radiated field, of the Josephson plasma oscillations for
the simplest case when the dc magnetic field is not applied,
i.e. when there are no vortices in a superconductor. Only
JPWs themselves produce the in-plane gradients of the gauge-
invariant phase difference ¢. In this case, the c-axis bias-
current works as a source of Josephson coherent radiation.
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Figure 29. Left: schematics of a layered superconductor placed in
between leads serving as screens (from [143]). The directions of the
dc current J and of the radiation Poynting vectors P, are shown.
Right: schematics of a hysteretic CVS of a SJJ. (Color online.)

5.1. Main idea and experimental realization

The main idea of the experiment made in [142] is as follows.
Consider the simple geometry shown in the left panel in
figure 29: a rectangular SJJ with sizes L, < W, L,, N =
L./D > 1 and current J flowing in the z-direction. The
external magnetic field is zero. When a SJJ is in the resistive
state, the phase ¢ oscillates at the Josephson frequency, wqs. =
2e AV /h, where the voltage AV between the neighboring
layers is induced by the dc current J flowing across the sample.
The phase oscillations excite the JPW with the same frequency.
For identical junctions in the stack, the voltage AV is the same
in all junctions (except, possibly, the top and bottom junctions
in the SJJ) because the same current flows between all layers.

The CVC of the Josephson system is characterized by a
strong hysteresis (see the right panel in figure 29). Moving
along the bias-decreasing branch of the CVC, the frequency
wosc can be tuned and, for a definite voltage, we attain the
resonance conditions under which the high-amplitude standing
JPW arises in the sample. The oscillations of the phase ¢ in the
SJJ are synchronized by this standing electromagnetic wave,
asin alaser [142, 143]. That is, the higher the amplitude of the
JPW, the more stable is the superradiance against disturbances,
which destroy the uniform oscillations in the SJJ.

In the experiment [142], a series of BSCCO samples in
the form of mesas (figure 30) with sizes L, = 40-100 pm,
w 300um and L, = lum or N > 500 was used.
Continuous radiation power, up to 0.5 uW at frequencies
f w/2m up to 0.85THz, was observed. The emission
persisted up to temperatures around 50 K.

Experimental results are shown in figures 31 and 32. The
figures show the CVC and the radiation power as functions
of decreasing bias voltage for the parallel and perpendicular
settings of a parallel-plate cut-off filter. The radiation near the
peaks is polarized with the electric field perpendicular to the
CuO; planes, while unpolarized radiation was observed for
high currents and high voltage biases. The former is identified
as Josephson radiation, whereas the latter is thermal radiation.
The estimated mesa temperatures 7" along the CVC are also
shown in figure 31. Figure 32 shows a significant change in
the CVC in the vicinity of the radiation peaks.

=
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Figure 30. Schematic diagram of the BSCCO mesas (from [142]).
The applied c-axis current excites the fundamental cavity mode on
the width W of the mesa, and high-frequency electromagnetic
radiation is emitted from the side faces (red waves), whose
polarization and frequency are analyzed with parallel-plate filters.
(Color online.)
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Figure 31. CVC and radiation power for a mesa structure with

L, = 80 um (from [142]). The voltage dependence of the current
(shown on the right y-axis) and of the radiation power (left y-axis)
at T = 25K for parallel and perpendicular settings of the filter, with
a cut-off frequency 0.452 THz, is shown for decreasing bias voltage.
A polarized Josephson emission occurs near 0.71 and 0.37 V, and
unpolarized thermal radiation occurs at higher biases. (Color
online.)

5.2. Theory of THz radiation in resistive mode

We consider here the simplest sample geometry shown
in figure 29. We assume that the SJJ is bounded by
superconducting contacts with the same lateral sizes as the
stack, which extend in the z-direction over a distance Ly, >
1/k, = c/wesc. Such contacts serve as screens, restricting
the radiation to the half-spaces |x| > L, /2. The impedance
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Figure 32. A more detailed plot of one of the emission peaks and
the CVC for the mesa with L, = 80 um at 7 = 20K (from [142]).
(Color online.)

of the contacts is negligibly small. We assume also that
Lyky,, Lk, < 1 and Wk, > 1, which is true for the
experiment [142], and allows us to disregard the y- and
z-coordinate dependence of the fields in the SJJ. In optimally
doped BSCCO, wy/27 0.15GHz [144], while in the
experiments [142], wos. /2w ~ 0.5-1 GHz. Thus, we consider
here the case Q2 = wqs/wy > 1. In general, the Josephson
plasma frequency depends on the current J, but if J is
significantly lower than the critical value, this dependence
is not of importance and we will use here the former
expression (13) for w;. For the geometry considered here,
the electromagnetic fields in the vacuum have the components
H = (0,H,,0), E=(E,,Q0,E;), and only outgoing waves
propagate, that is A o exp (ig|x| + ikz — iwt) at |x| > L, /2.
Here ¢ = k2 — k2, when k2 > k% and ¢ = i\/k? — k2,
when ki < k%

We now seek a uniform, in the z-direction, solution of
equation (12). Normalizing the coordinate x to A. and time ¢
to 1/wy, we can rewrite equation (12) in the form

~

¥o

at?

do .
+r— +singp =
ot ¢

82¢)

i (240)

We denote the dimensionless SJJ width as [, = L./, and
assume that /, < 1. We present the solution of the latter
equation as a sum ¢y + ¥, where ¢ describes the Josephson
oscillations in the SJJ due to the applied dc current and a
small term i describes radiation, || < 1. The boundary
conditions to equation (240) follow from the continuity of the
y-component of the magnetic field and the relation between
the magnetic field and the phase difference. For the geometry
considered, the Maxwell equations and equation (15) give

0
Hy = Ho—r, (241)
; 0x
and, therefore,
0 H I
o _ A1 at x = 4+, (242)
0x Ho 2
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Here H; = 2mJL,/c is the self-field produced by the
dc current at the SJJ edges. We assume that H;/Hy =
I,(J/J.) < 1 since both J/J. and [, are smaller than one.
For this case, we derive ¢y ~ Q.

We present the radiation term as follows:

¥ = Re [y, (x)e"¥].
Taking into account that sin x = Re[iexp(—ix)] and Q > 1,
we derive from equation (240)

Ve
0x2

(243)

2 .
+K,1ﬂw=1,

(244)

with k, = vV Q2 +1Qr. A detailed derivation of the boundary
conditions to the latter equation is presented in [143, 145].
Under the assumptions formulated above, these conditions can
be written in the form

Y = £ity, at x = =£l,/2, (245)
where
L.Q 212 5.03. /gk,
= LR g AR 308VERT o
2eh, T QL.

For the BSCCO mesas with N < 103, |¢]1is a small parameter,

|¢] <« 1. The solution of equation (244) with boundary
conditions (245) is
ww = 1»”osc + wrad

_ RS . £ cos (kyx) (247)

kel \
>
Here the term 1., is the correction to the Josephson
oscillations and .9 describes electromagnetic waves
propagating inside the layered superconductor [143]. They
are generated at the boundaries x = £/, /2 due to the radiation
field.

Now we can calculate the x-component of the Poynting
vector

2

K kel

e (/c, sin —= +i¢ cos
2

c
4

H

Prad = Ez Vs

i.e. the radiation power from one side of the sample along the
x-direction. Using equations (15), (241), (243), (245) and
(246), we obtain, according to [143, 145],

B CI>SN 2w N )

1 7) 0SC I,b :tl ?
"% rad = w
Prad (lx/z) = Prad(_lx /2) = Praga.

L
4+ =

5 (248)

64m3c? 2
In the case considered, of uniform junctions,

The dimensional factor in equation (248) can be estimated as

PIN?0]

0SC

24
6473c? 249)

1
= —Py~0.6Wcem™,
W o
for N = 1000 and wes/2n = 10'2Hz. The frequency
dependence of the dimensionless radiation |/,,|* is shown in
figure 33. This dependence has resonance peaks at Q/, ~ 2wn



Rep. Prog. Phys. 73 (2010) 026501

S Savel’ev et al

3x10 -

-y

W, l?

1x10+4 4

9
i QlL/mn

Figure 33. Frequency dependence of the dimensionless radiation
power for D = 1.56nm, A, = 100 um, r = 2 X 1073,

Wose/2m = 10" Hz, N = 1000, ¢ = 12 and L, = 0.5).; these
values are characteristic of BSCCO mesas [142, 143]. Inset shows
the results in a wider frequency range.

with amplitudes rapidly decreasing with n. Expanding the
value V,q in equation (247) near the resonance, we find the
dependence of the THz radiation on the number of junctions
in the SJJ and the thickness L, which can be conveniently
presented in the form [143]

Prad PIwiN? L,
~ 01T ), === 250
w 6473w (@) “ L, (250)
262 2 5.03
La)=—25 r.=Zm ).
(ag+ L)% +1 T L,wosc

One can see that the energy flux is proportional to N
for samples with L, <« L,e that corresponds to the
superradiance [143]. The function P(N) saturates for higher
N, when L, > L,e. When analyzing the dependence of the
radiation on L, , we should take into account that wos. o< 1/L,.
Using equation (249) and the results shown in figure 33, we
obtain for the highest peak Prog ~ 1 uW, that is of the order
of the experimentally observed value [142].

5.3. Ways to increase THz radiation

Here we analyze methods to increase the radiated power
proposed in [145,146]. Both approaches exploit the same
physical idea to increase the value of |y,q| using the SJJ
with modulated critical Josephson current. This modulation
provides the excitation of the in-phase Fiske mode when the
Josephson frequency matches the Fiske-resonance frequency,
which is defined by the stack lateral size. Reference [145]
proposes the use of artificially prepared inhomogeneous
samples while the application of the moderate dc magnetic
field is suggested in [146] for the same purpose.

5.3.1. THz radiation from inhomogeneous SJJ. Following
[145], we assume that the critical Josephson current is
modulated as J.(x) = g(x)J. and the values A, and wy are
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defined at the reference point, where g(x) = 1. In this case,
we have instead of equation (240)

82<p azq)
t2

+r2 4 o) sing = =2 251)
ax2

at

0

Similarly to the approach used in the previous subsection, here
we present the solution of this equation as a sum ¢ = @g + ¥
and derive

Yo

dx2
where ¥, is defined by equation (243) and obeys the boundary
conditions (245). In [145], different types of modulations are
analyzed. Here we consider only the case of linear modulation,
thatis g(x) = 1—2gox/l,. This means that the critical current
density J. at the left edge of the SJJ is larger by the factor
(1+ go0)/(1 — go) than J, at the right edge.

The solution of equation (252), with the boundary
conditions (245), can be found in explicit form [145]. It
is convenient to present it as a sum of symmetric and
antisymmetric parts, ¥, = ¥° + ¥?, where

+ K Y, = ig(x), (252)

s £ cos (kyx) (253)
V= k2 K2 [k, sin (i1, /2) +ic cos (k1 /2)]
v = igo(zx/zlx - 1)
Kr
gO(zl/ lx + C) s (er) (254)

K2 [k, cos (K1, /2) — i¢ sin (k,1,/2)]

Comparing this solution with equation (247) for the uniform
SJJ, we find that 1* coincides with ¢ in the sample without
modulations. The antisymmetric term 1r* has resonance peaks
with approximately twice lower frequencies, 2/, ~ mn, and
the height of the first peak can be much larger than in the
uniform case if go ~ 1 (since || < 1). In the case of
symmetric (say, parabolic) modulation, a higher peak has the
symmetric part of ¢ and the position of this peak is close to
that in the case of homogeneous SJJ [145].

The radiation power can be calculated using equa-
tion (248). The dependence of the dimensionless radiation
power |, (I /2)|? on the frequency is shown in figure 34. The
value |, (—1,/2)|? is slightly shifted in frequency compared
with |, (I, /2)|? [145]. Thus, the radiation power can be in-
creased by 3—4 orders of magnitude by modulating the critical
current in the SJJ by a factor of about two. Note that the appear-
ance of a peak at QI, ~ 2 is practically independent of the
modulation. We should emphasize that the results presented
here are valid if 2 > 1,1, < 1 and |y, (I, /2)]? < 1.

5.3.2. Effect of dc magnetic field. ~As mentioned before, at
the beginning of this section, the moving triangular lattice
of the JVs destroys the synchronization of the JPWs in
different junctions, and the superradiance in the SJJ disappears.
However, the SJJ size is usually smaller than A., and the lower
critical magnetic field for such objects is known to be much
larger than for samples with large dimensions, L, > A.. As
a result, a dc magnetic field, Hy., applied in the y-direction,
can produce a considerable modulation of the critical current
before entering the vortex lattice into the sample. Here we
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Figure 34. Frequency dependence of the dimensionless radiation
power for D = 1.56nm, A, = 100 um, r =2 x 1073,

Wose/2m = 10" Hz, N = 1000, ¢ = 12 and L, = 0.2).. Red curve
with triangles and blue solid curve correspond to the
current-modulation parameters go = 1/3 and go = 1/6,
respectively. The inset shows the results in a wider frequency range.
Black circles correspond to gg = 0. (Color online.)

study such a way to increase the THz radiation [146]. As
before, we seek the solution of equation (240) as a sum

=@+, WP <1,

but now, the boundary conditions (242) for ¢y should be

replaced by

0 H I,

0 g 2L x =42 (255)
ox Ho 2

where h = Hgy./Hy. As in previous subsections, we assume

that L, < A;,, @ > 1, and H;/Hy « 1. This allows us to

neglect the self-field effect and present ¢ in the form

o =Qt+hx +1,

where ¥ obeys the boundary conditions (245). Using the
definition (243), we find that v, satisfies equation (252) with
g(x) = exp(—ihx). Inthis case, the solution yr can be obtained
explicitly:

| (i
Yo = Arehet 4 Agerinet 4 [P CO. (256)
k% — h?
with
1T =Wl
A = 2| Z e, — 2y sin K =M
Z -
r h lx
+1i¢ (k, — h) cos %} )
17 -+ h)l,
e ¢2)sin %
r+ h)lx
+1i¢(k, + h) cos %} ,

4x107%

2
78
w

\_‘-..

20 /
/

L

Figure 35. Dimensionless radiation power |v/,,(1/2)|? versus 2, for
different values of the dc magnetic field 4 shown near the curves
(from [146]). Sample parameters are L = 0.251., A, = 100 um,

D = 1.56nm, N =3 x 10%, ¢ = 12 and r = 0.002. Inset shows the
results in a wider frequency range. Black circles correspond to

h = 0. (Color online.)

rlx . . rlx
7z = 2i(/<r2 —h?) [K, cos KT —i¢ sin K2 :|

. Krlx . Krlx
X | K SIn —— +1¢ €08 .
2 2

This solution can be presented as a sum of symmetric and
antisymmetric, with respecttox = 0, terms. A high-resonance
peak at Q/, = = is related to the antisymmetric term. The
radiation from the left and right edges of the sample is equal.
The frequency dependence of the dimensionless radiation
power |r,,(I,/2)|* is shown in figure 35, for different applied
magnetic fields. The characteristic value of the field H, for
BSCCO is about 200e. As follows from the results shown
in figure 35, the application of the dc field of the order of
several Oe gives rise to a significant increase in the radiation
power. Our results are only valid for || < 1. This means,
in particular, that hl, < m or

hl,  2DL,Hy
Dx o STl <, (257)
T CD()

For the first resonance,
Q~Q®~n/l, —2Im(¢)/x,

we derive

L\ —4ihi2cos(hl,/2)
v (iE) = (7 = h22) (er +4Re )’ (238)

The peak height increases linearly with the magnetic field if
(hl;/m)? « 1. Comparing the maximum resonance powers
for a uniform SJJ with and without a dc field, and an artificially
modulated SJJ, we find that the application of Hgc:

(i) enhances the output radiation power if

37‘[2LZH0 )

Hdc > He = 88L
X

38
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Figure 36. Dependence of the radiation power (in arbitrary units)
on the number of junctions N: SJJ with linear critical current
modulation, go = 1/12 (red circles) and uniform SJJ in the DC field
h = 0.5 (blue diamonds). Other parameters of the samples are the
same as in figures 34 and 35. (Color online.)

(ii) is more effective than the modulation of J, by a factor

Ac(g— 1)

1+g0
Lo(g+1)

- if He > H, = 2H,
1 —go

We can estimate H, ~ 'Ho when
g =13.

For the two configurations considered here, to increase
THz radiation, the dependence of the radiation power on the
number of junctions is illustrated in figure 36. The value
Praa(N) increases with N for low N, and saturates for higher
N. The resonant feature of the radiation power becomes less
pronounced with increasing N, due to increase in the radiation
damping, |;‘|2 o N2, which results in a saturation of the

radiation power.

~ 0.40e, and H,

5.4. Stability of THz radiation

In previous parts of this section, we assumed that all contacts
of the SJJ radiate in-phase JPWs, giving rise to superradiance.
In this subsection, we analyze the stability of such a coherent
THz emission with respect to z-dependent perturbations. This
problem was considered in detail in [143,146]. Here we
consider, as an example, the case when the radiation near the
first resonance is increased due to an application of the dc
magnetic field. This allows us to outline the general idea of
the investigation of the stability and to find limitations on the
value of the dc magnetic field.
We use here the coupled sine-Gordon equations in the form
of equation (12) and present the phase difference ¢/*'/ as
P = Qt + hx +  + ¢t (259)
The first three terms here describe a uniform, along the z-axis,
solution, while ¥/*!"! is an infinitesimally small perturbation,
which disturbs this uniformity. In the limit & >> 1, we neglect

39

higher harmonics (m 2 with m > 1) and seek the perturbation
Y+l in the form [143]

,(//l+l,l — Z [wp + ,(/I;CIQZ + I//,p—e—iﬂt]
p
x sin (pl) exp(—iv(p)t), (260)

where p =n/(N+1),n=1,2, ..., N, [v(p)| < 1. The
inequality Im(v(p)) < O for all p corresponds to the stability
of the THz radiation. We analyze the case of essentially
nonuniform perturbations when p > m/N and also assume
that the number of junctions is high enough, N > A,,/D.
Linearizing the sine-Gordon equations with respect to /*!/,
we derive an equation for the perturbation in the form

R
) , 261)

T = 1+ 5
o +c0s (U +hx +Y) ¥
1/~f — [wp + w;eiﬂr + w;e—iﬂz] e_i”’.

X
ot

at?
with p? = 2(Aa/D)?*(1 — cos p) and

We present v as ¢ = i, cos (2t) + ¥; sin (Q2t), where
Re(v,,) and ¥; = Im(¥,,). Taking into account that || < 1,
we obtain
cos (2t + hx + ) = cos (2t + hx)
_ ¥
2
¥i
) [cos (hx) — cos 22t + hx)].

[sin (hx) + sin (282t + hx)]

Substituting both this expression and equation (260) in
equation (261), neglecting higher harmonics (mQ withm > 1)
and extracting terms with equal frequencies, we derive

1 82 1+ w eih)c eihx
- p + F* Q— +_ )4 _ * -
1+ 52 ox2 €=y, =—3 5 VoV

1 2 ; w e—ihx efihx
————+ F(Q+ -=1r — Y, ¥,
1352 ax2 T L&Y, 2 5 VeV

1 321#,: w;efihx w;eihx
+ F , = + , 262
T+ 2 ax2 O 2 2 (262)
where
2 Ipr . Il/i
Fu) =u"+iru+ 5 sin (hx) + > cos (hx), (263)

and f* is the complex conjugate of f. The boundary
conditions for these equations were found in [143]. Using
our notation, these can be written as

19 1 oyt
LWy, LW i@,
¥, ox Yy ox
1 oy, L,
— =+x(Q2+v) at x =+£—, (264)
Y, 0x 2
Q?(1+p*) D
x(€2) = # (265)
EPAc
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These conditions are valid if k,L, < 1 and p > 1/ N.
We can fix x(v) = 0, since v and D/epX. are small for the
disturbances analyzed. We also neglect terms of the order of
||, compared with € > 1 in equation (262).

A characteristic spatial scale of the variation of v/, is

1
1RG ()]

as follows from equation (262). Thus, ¥, (x) is almost constant
and we can find solutions of equation (262) explicitly. A
numerical analysis of these solutions shows that they are
practically independent of A, if h> <« m?/I2. Neglecting
v & 1 compared with €2 >> 1, we obtain

~pI> Ly, G? = Q*(1+pY),

¥, exp (ihx) & ¥,V (x)
with

1

V= x (2) cos Gx
- 2G?

" Gsin (Gl /2) + x () cos(GL, /2)

|

and a similar expression for v/,. Substituting these results into
equation (262), we have

1 oy,
1+ p? ox

—Re[V(x)]} Y, =0.

] (266)

N Wi sin (hx) + ¥, cos (hx)
2

+ {v2 +1irv
(267)

Integrating equation (267), with boundary conditions (264),
we derive a dispersion equation for v(p) in the form

V2 4iry & — [W (@) + Wa(w)], (268)
where
. (Kr + h)lx (Kr - h)lx
1 sin — in —
W] = —Im A] + A2 ’
L K, +h Kk, —h
(269)
1+ pH)x (2
W, = Re (I+ p7)x(€2) 270)

Gl,
)]
Here we assume that N < eA./s &~ 5 x 10°. If the term W, is
negative, it stabilizes the uniform oscillations due to radiation
coupling. The term W, can result in an instability due to the
excitation of the Fiske resonance [143]. Note that dissipation
favors stability [143, 146].

The magnetic field does not practically affect the term W5,
but significantly reduces the radiation coupling. Actually, the
value of W changes its sign and becomes zero in the main
approximation at the resonance point (see figure 37(a)). So,
the stabilization via the radiation coupling can occur only due
to the next order terms with respect to . As a result, for
sufficiently high magnetic fields and low number of junctions,
the resonance radiation is stable at frequencies lower than the
resonance frequency and becomes unstable for Q > Q™. In
the range of lower fields and for SJJs with a large number of

1,3 [G + x () cot <

40

ax10™4

(b) [stable / '
at any Q .
8000 stable if |
Q<O
reés
=,
4000 .
0 ! 2 3

Figure 37. (a) Function W|(w) near resonance. Black dashed, blue
solid and red line with circles correspond to 7 = 0, N = 103,
h=0.2, N=10%h=0.5, N = 10°, respectively. The wine curve
with triangles is obtained for 4 = 1, N = 4.5 x 10°. Other
parameters are the same as in figures 34 and 35. () Stability regions
in the plane (N, h) for [, = 0.25 (blue line with circles) and [, = 0.4
(red line with triangles) (from [146]). (Color online.)

junctions, the resonance peak is stable for any frequency. The
stability regions in the plane (2, N) are shown in figure 37(b)
for two different values of /.. The radiation is stable for all
frequencies above the lines N (h) and for Q2 < Q™ below these
curves. The stable region decreases when the ratio L, /L, is
increased. Theinstability at 2 > ' arises due to the negative
differential resistivity of the CVC near the peak of the radiation
power [142, 143]. Our considerations are invalid if hl, 2 7.
We can suppose that the synchronization of the oscillations
in different junctions will be destroyed at higher 4, since a
vortex lattice enters the sample. However, for the SJJ small
thicknesses (L, < A.), this event occurs at magnetic fields
much higher than the lower critical field of the bulk layered
material.

5.5. Concluding remarks on THz radiation in layered
superconductors

Thus, the effect of the THz radiation is observed in SJJ prepared
from BSCCO with 500-1000 elementary junctions [142]. The
effect could perhaps be enhanced for artificially modulated
samples [145]. The main problem here would be to prepare
samples with a number of identically modulated junctions.
An alternative approach, consisting of the application of a
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moderate dc magnetic field, allows one to overcome this
difficulty [146]. However, the stability region of the THz
radiation regime, for samples in magnetic fields, would be
considerably reduced.

As has been recently shown in [147], the modulation can
be self-organized in layered superconductors in the absence
of an external magnetic field. Reference [147] predicts
new states where (2m + 1) phase kinks appear around the
junction centers, with m being an integer, periodic and, thus,
nonuniform in the c-direction. Such a state manifests itself
in the CVC as current steps occurring at both even and odd
cavity modes. Inside the current steps, the plasma oscillations
become strong, which generates several harmonics in the
frequency spectrum at a given voltage. The THz radiation
in this case is much stronger than predicted for the uniform
case.

It should also be noted that the necessity to work in the
resistive state gives rise to a significant dissipation power
VJ & wes. As a result, the problems of overheating and the
effectiveness of the power transmission become very important
for future THz devices [142, 143, 145].

6. Quantum JPWs

In this section, we consider an approach allowing the analysis
of the quantum effects in the propagation of JPWs. Such
phenomena can be of importance in small samples at low
temperatures. A striking example of quantum effects in
HTS is the macroscopic quantum tunneling (MQT) observed
at T < 1K in Bi;Sr,CaCu,;0g,s microbridges, which can
be considered as SJJs [148-151]. Unexpectedly, MQT in
such stacks is considerably enhanced compared with single
junctions. This observation could open a new avenue for the
applicability of SJJs in quantum electronics [152—154].

Here, for simplicity, we neglect the effect of charge-
neutrality-breaking and ignore dissipation, which is negligible
for MQT [148-150, 155, 156]. In this section, the in-plane
coordinate x is normalized to A., time 7 is normalized to 1/wy;
also, dy = d/9x and 9, f; = Aap(fie1 — f1)/D.

6.1. Lagrangian approach and two types of JPWs

The set of coupled sine-Gordon equations, equation (12) or
equation (32), could not be obtained using a Lagrangian
formalism. In other words, these equations do not have a
Lagrangian. Following the approach used in [157-159], we
introduce an additional gauge-invariant field,

D
)Lab

2ny DAy

by —
x X1 @0

which can be considered as the normalized superconducting
momentum in the /th layer. Then, we introduce the Lagrangian
of two interacting classical fields, ¢ "+ and p':

U 1.
L= ;fdx [5 @45’

_ l(a ¢l+l,l)2 _

1+1,0
5 )

1 1
E@p’)z - 5(”1)2 + cos(g

41

1

+ —

2

Varying the action S = [d¢ £ produces dynamical equations
for the phase difference:

= +1,1 2 I+1,1
T -0

1.
ﬁpl —Zp'+pl+0.0.0

(axplazw 1+1,1 + azplax¢l+l,l)} . (271)

+sin(p ) +9,0,p' =0,

L=, (272)
which reduce to the coupled sine-Gordon equations (12) when
y? — oo. Note that the Lagrangian approach for SJJs can
be formulated only for fwo interacting fields, ¢ and p. This
is because the vector potential has two components, A, and
A,, in SJJs, in contrast to single Josephson junctions where
the electromagnetic field can be described by one component
of the vector potential.

Linearizing equations (272) and substituting there p, ¢
exp(—iwt +igx + ikz), we derive a biquadratic equation,

(wz—qz—n( )—sz2

for the spectrum of JPWs in the continuous limit (i.e. for
kD « 1) and for_.y2 > 1. _This equation determines two
branches, v = w, (k) and wy(k), of the JPWs:

) 1/2
(273)

up to terms of the order of 1/y2. The a-branch describes JPWs
propagating both along and perpendicular to the layers. This
branch coincides with the dispersion law, equation (20), in the
limit kD « 1 and w, = 0. The b-branch describes waves
propagating only perpendicular to the layers. The possibility
of excitation of the latter JPWs is questionable due to their high
frequencies, w;, > yw;. Here we do not consider such waves.
However, for samples with not so high values of y, such as for
Bi,Sr,CaCu,Og,s, the branch b could be observable.

w?

2
ﬁ—k—l

07

2

e wp(k) = y (K> +1)"/?

%®=@+

6.2. Analogy with quantum electrodynamics

In order to quantize the JPWs, we use the Hamiltonian (7 = 1),

M= Z/dx(l'[fpgbl“’l+l'[lppl) - L,
1§

with the momenta IT/, and TT/) of the fields ¢ "*! and p', and
require the standard commutation relations

[p! 1 (), T ()] = i80x — )

[p" (), T, (x)] = i8(x — x)our
(all other commutators are zero). Here & is either a delta
function or a Kronecker symbol. Expanding cosg, = 1 —
@2/2+¢t/24 — .. we can write H = H° + H™, where we
include terms up to ¢? in H° and the anharmonic terms in H*".

Diagonalizing H°, we obtain the Hamiltonian for the bosonic
free fields a and b,

H° = Xk: / g—i {w (B)a*a +wb(i£)b+b] .
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The original fields ¢ and p are related to the free bosonic fields
a and b by

at+a =z b*+b
(2 ~ - )
V2w, (k) v/ 2w, (k)
z at+a . b*+b
p~ 14 s
V2w, (k) 2wy, (k)

where Z = gk/ (k> +1). Equation (273) shows that the ‘mass’
of the a-quantum equals one, in our dimensionless units, and
the ‘mass’ of the heavier b-quasiparticle is y. The interaction
between the a and b fields, including the self-interaction,
occurs due to the anharmonic terms in

1
Han%_ﬁZfdx¢3+...'

In leading order with respect to the bosonic field interactions,
an a-particle can create either (a + a) or (a + b) pairs. Using
equations (273), one can conclude that the amplitudes of these
processes have energy thresholds w, (k) = 3 or (y +2). Note
that this is similar to the 2mc? rest energy threshold fore™ +e*
pair creation in usual quantum electrodynamics. These can
result in resonances in the amplitudes of quantum processes
(e.g. decay of the ‘a’ quanta).

6.3. Enhancement of MOT

6.3.1. Effective Lagrangian. Now we use quantum field
theory to describe MQT in layered superconductors [157—-160].
We now consider a stack of N >> 1 Josephson junctions having
sizes Ly x L, in the plane of the junctions, and L, = ND
across them. In the continuous limit, and when y2 > 1,
equations (272) can be rewritten as

(-5):

912

Here the coordinate z transverse to the layers is normalized to
Aqp. In accordance with an experimental observation of MQT
(see, e.g., [151]), we assume that (i) the stack of Josephson
junctions bridges two bulk superconducting sheets, (ii) the
current close to the critical value flows across the stack and (iii)
the external magnetic field is zero. We neglect the disturbance
produced by the tunneling fluxon in the bulk superconductors.
In this case, the boundary conditions to equation (274) are

2 82
_Z% .
ax2

82

-3 (274)

+ sin (p:|

dp
0X |y 0.4

_
=7L,

dg
0z z=0,L

0, (275)

where j is the current density normalized by J., L = ND/ g
and d = L,/A.. When tunneling occurs, the phase difference
in a junction changes from O to 2, which can be interpreted
as the tunneling of a fluxon through the contact. This process
can be safely described within a semiclassical approximation.

6.3.2. Probability of quantum tunneling in semiclassical limit.
The probability of quantum tunneling in the semiclassical
limit is expressed through the classical action of the system in
imaginary time [161]. However, the simplified equation (274)
has no Lagrangian. In general, we have to use an action of
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the form given in equation (271) with two interacting bosonic
fields, ¢ and p, which could produce a rather cumbersome
mathematical problem. In order to avoid this difficulty, we
follow the approach described in [157, 158, 160]. First, we
seek a solution of equation (274) in imaginary time ¢ = it in
the form

(T, x,2) = po(x) + ¥ (z, x, 2),

where ¢o(x) is a steady-state solution corresponding to an
energy minimum of the junction’s stack; ¢o(x) satisfies the
equation
9o
0x2

We consider short junctions, d < 1 (Ly < A.), corresponding
to the experimental conditions (see, e.g., [151]). In this case,
the solution of equation (276) with boundary conditions (275)
has the form

=singyg. (276)

. 2
@o(x) = arcsin(j) + % (x — g) + 0(x4) . 2277)

2
Substituting the expansion ¢ = ¢y + ¥ into equation (274),
we derive, in zero approximation with respect to d < 1, the
equation for ¥ (z, x, y):

9 ’ vy
(l‘a—zz) [‘ ez UV
= Oy
++/1 —stmw] vyl = 0. (278)

We assume that the fluxon tunnels mainly through one of the
junctions and linearize equation (278) in all junctions except
this one. We label this junction as /. The linearized equation

for ¢ is

(- 5)l
where jiop = /1 — j2. This equation is valid in all junctions
except for the /th junction, located at the position zo =
Ly =1D/X .. The function v (7, x, z) satisfies the boundary
conditions

32
T a2

3y

C9r2

0, (279)

82
+ﬂ01ﬁ] _B_xlg =

dy/dx =0 at x=0,d

and

dy/dz =0 at z=0,L.

The characteristic size of the fluxon is ys <« A.. So, when

L, =,y = y D, the x-dependence of ¥ (t, x, 7) is essential.
The solution of equation (279) with the boundary

conditions specified above, and the continuity condition at

z=1Ly, ¥(t,x, L1 +0) =Y (r,x, L; — 0), can be written as

an expansion

1/f(f,x7z)=2/ dp e cos(kyx) fu(p, )Y (p), (280)
n=0 0
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with k, = wn/d and functions

cosh[v,(p)z] <L
cosh[v,(p)L1]’ "
fu(p,2) = (281)
cosh[v,(p)(L — 2)] oL
coshvu(p)(L —Lpl” -~ "
where
k2
Ur% =1+ __nz
Mo — P

The functions ¥, (p) in equation (280) are derived from the
equation for v in the Ith junction, ¥ (r,x) = ¥ (z,x, L)).
Similarly to section 4.1, the latter can be derived from the
relation between the phase difference and the magnetic field in
the /th layer. Using equation (203) and Maxwell’s equations,

ecial(2:)]

oy
ax

We present the y-component of the magnetic field in the form

H = Hy+ H, where

oH
0z

c 8H

~ 4nJyD

(282)
L1+0 aZ

d0H,
0x

dn J A, .
———— sin ¢p.

According to Maxwell’s equation, the field H linearly depends
on Y at z # L, and can be represented in the form

H(r,x,2)=) / dpe P sin(k,x) fu(p. 2)ha(p). (283)
n=1 0

where the amplitudes 4, (p) are independent of the coordinates
x and z. Substituting the expansion equation (283) into
equation (282), we obtain the relation between the functions

hy(p) and ¥, (p),

2 Jeys \ knxn(p)
ha(p) = | = Pvp), 284
c v (p)
with 2 cosh(v,Ly) cosh(v, (L — Ly))
cosn(vy, L) cosn(y, - 1
= 285
Xn sinh(v, L) (285)
The Maxwell equation for the contact at z = L; is
nonlinear,
_AH  AmJch Zw
o= £ [ in(go + ) — }
X C

The continuity of the z-component of the current requires

the continuity of the derivative 0 H/dx at z = L;. Thus,

substituting the expansion equation (283) into the latter

equation, we obtain the following set of equations for ¥, (p):
9%

—W+[Losin1ﬁ—j(l—cos&)
T

Z/ dpe P cos(k,x)

k2 X (p)
v (p)

Vn(p)s

" 2w
(286)
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where

EDY fo Tdpe T costo ) Ya(p).  (287)
n=0

If the current through the junction is comparable to J,
then the plasma frequency is renormalized [65] as w;(j) =
wy(0)(1 — j2) 174 The characteristic time of MQT is certainly
lower than 1/wy(j). On the other hand, the only time scale
in equations (274) and (275) is 1/wy(j), and we can consider
the MQT as a quasi-static process assuming p = 0 in v,(p)
and y,(p) in equations (286). In the case under consideration,
d <« 1, we have v, = k,/(j1o)"/? for n > 0. So, we reduce
equations (286) and (287) to

)=
—— +iosiny — j(1 — cos )

dt2
ad
/ dx'K (x; x)sz), (288)
0
where the kernel K (x; x’) is
.o _ YDV ,xN(an)
K(x;x') = Lx X; cos k,x cos k,x , (289)
and
Xl (@) = 2 cosh(al) cosh(a(N — 1)) u— wyD .
N sinh(aN) ’ Loty
(290)

Equation (288) is a generalization of the nonlocal expression
(192) for the JV to the case of a finite sample. If [, N > 1
and a ~ 1, then lev (a) = 1, and the kernel can be calculated
explicitly:

D(iim)1/2
K()C; )C/) — _V (MO)
2w A,
Cfmx—=xH\ . [(Ax+x)
xIn|4sin| ———= )sin| ——}|. (291)
2d 2d

Equation (288), in contrast to equation (274), has a Lagrangian,
which can be written in imaginary time ¢ = it as

0 _
Len(t) =8o/dx|: 5 (af) ~ (1 — cos )
[formeni?]
+j(f —siny) + = w , (292)

where &, JeL Ao/ 2ewy). B Indeed, the variation of
equation (292) with respect to ¥ gives equation (288). The
effective Lagrangian depends on / and N via the functions x4 .

6.3.3. Field tunneling: numerical approach. The tunneling
escape rate I', that is the tunneling probability per unit
time, can be calculated in the semiclassical approach for a
system with a Lagrangian given in the general form [161].
For the case of tunneling of a fluxon, I' can be presented
as [151, 157,158, 162]

r —w,,(nz

=0

(-BY). (293)
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where we take into account that the fluxon can tunnel through
any junction 0 < [ < N of the stack. The tunneling exponent
va can be expressed via the Lagrangian as

B, =-2 / dt Lo (7). (294)
0

The current / in the stack is close to the critical value 1. (d).
Thus, || < 1, and we can expand the Lagrangian (292) and
the equation of motion (288) in series over . We seek the
function v in the form [159, 160, 163]

Ym0, (295)

n=0

Y(t,x) =

where v, are orthogonal eigenfunctions of the operator

N d 32
L=j- fo ) 5o (296)
The tunneling exponent can be expanded as in [160]
B;V |: Z nmkc’lcmck
nmk
Z W CpCmere + .. ] : (297)
nmkl
where
d
; 9% (cos @)
Uy = /d o Yt (298)
0 %o @o=arcsin(j)
The functions ¢, (t) satisfy the set of equations,
1
Cn — UnCp = —5 Z U(3)kcmck Z Urgér;)klcmckcl — ey,
mk mkl
(299)
with the initial conditions
¢, (0) =0, lim ¢,(t) =0. (300)
T—>00

Here a dot denotes the imaginary time derivative, and u, are
eigenvalues of L.

From the expansion (289) for K (x; x"), we derive the
orthogonal eigenfunctions v, (x) of the operator L,

-
Yo(x) = 7

and the corresponding eigenvalues,

2
Yn(x) = \/;cos k,x, n>0, (301)

an

=01+ 2y : - . (302

u MO[ 5 XN(an)] a L (302)
Equation (298) gives

UD = jsu/Vd, (303)

. 8n,m+k + 8m.n+k + 8k,n+m

U® — ,
~2d

nmk

Note that equations (301) and (302) for ¥, and u,, are derived
in the limit L, /A, < 1 when the stationary solution is almost
uniform, @y(x) & const.

The lowest eigenvalue, wy = /1 — j2, is small when j
is close to 1. Therefore, the functions ¢, (7) should be small,
and we can neglect all the terms on the right-hand side of
equation (299), except the first one. Introducing new variables,

Jen(T)

— , n =/ [oT,
3juov/d

and substituting equations (303) and (304) into the set (299),
we derive

dOl()
o I"Z“w

d’a,
dn?

a,(n) = (304)

(305)

— Ap0y, = —3 (anao + — f Zamanm

m=1

1 n—1
np—m | » n>0,
2f Z )

where A, = w,/[Lo. Equation (297) for the tunneling exponent
B, can be rewritten as

Jo 24(1 — jH)4
B, = F({A ), 306
Y = Sewr 52 {rD) (306)
where
F({})) = E/mdn ol + 3 iaz
g 16 J, 0 il
+— Zanaman+m> ) (307)
nm 1

Substituting equation (306) into equation (293), we can
calculate the escape rate of the fluxon through a set of the
junctions.

Below we assume that N >> 1 and a ~ 1. In this case, the
functions X]lv (an) = 1and Bﬁ\, = B, for all/ with the exception
of /] = 0and [ = N. Neglecting these two contributions to
tunneling, we derive

30ji0B

I' = Nowy exp(—B). (308)

Under the conditions considered here, we obtain from
equation (302)
Ay =1+an/2.

Therefore, the function F({A,}) depends only on the single
parameter a, thatis F ({A,}) = F(a). Equation (308) for I is
derived here in the limit N > 1. To find the dependence
I'(N), we should solve numerically the problem for each
contact 0 < / < N and perform the summation according
to equation (293). However, the results of both procedures are
qualitatively the same as shown in figure 1 of [157].

Our analysis of equation (305) shows that, for any n, we
have aog(n) > a1(n) > ax(n) > ---. Thus, for a given
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Figure 38. The escape rate I" versus sample width L, (from [159]).
The red solid curve is obtained numerically using the equation (308)
for the sample US1 from [151]. The dashed blue line corresponds to
the particle tunneling approximation. The parameters w;y, J. and L,
are taken from table 1 in [151]. The anisotropy coefficient y and
interlayer distance D are chosen as y = 350 and D = 1.5nm. The
red point L, &~ 2 um indicates the experimental result [151]. (Color
online.)

accuracy, we can consider only the first ny equations of the
set (305), taking o, = O for n > ng. This closed set of
equations was solved numerically. The number of equations
that we should take into account depends on the value of a:
the smaller a, the larger ny. The analysis also shows that
there exists a critical value a. = 2.5, or a critical value of the
junction’s width

2y D

¢ = W. (309)
If L, < L., all the solutions of equation (305), except
ao(n), are equal to zero. In this case, F 1 and the
tunneling exponent in equation (306) coincides with the value
calculated under the approximation of the fluxon tunneling
by the tunneling of a single quantum particle in the effective
potential well [151, 162]. Using for an estimate y = 300-500,
D = 1.5nm, we find that L. =~ 1 um.

The function I'(L,) is shown in figure 38 by the red
solid curve. This dependence is calculated by means of the
numerical procedure described above. In our calculations, we
used the parameters of the Bi, Sr,CaCu,Og,s sample US1 from
[151]. The same figure shows the curve I (L, ) calculated using
the quantum particle approach (equation (308) with F = 1 in
equation (306) for the tunneling exponent va). It follows
from figure 38 that the difference between the particle and
field approaches becomes significant if L, exceeds the value
of about 1.3-1.4 um.

The dependence of the escape rate ' on the
dimensionless current j, calculated using equation (308)
and the numerical procedure described above, is shown
in figure 39. The calculations were performed for two
Bi,Sr,CaCu, 03,5 samples described in [151]. The only

45

I (%)

98

Figure 39. The escape rate I" versus dimensionless current

Jj = J/J. (from [159]). The red points (on the left) are for the
experiment on the Bi,Sr,CaCu,0Os,s sample US1 and the blue points
(on the right) are for the sample US4 from [151]; the red (left) and
blue (right) solid curves are obtained numerically using

formula (308) for the samples US1 and US4, respectively. The
parameters wy, J. and L, are taken from table 1 in [151]; the
anisotropy coefficient and interlayer distance were chosen as

y =350 and D = 1.5 nm. Dashed red (left) and dashed blue (right)
lines are obtained using equations (308) and (316) with C = 0.45 to
calculate B for the same samples. The value of gamma for the blue
curve is the same as used for numerical calculations, while y = 455
for the red curve. (Color online.)

adjustable parameter is the product y D, which is about 400—
800 nm for BiySr,CaCu,0g,s. It is seen from figure 39 that
the agreement between the calculated and measured values of
I' is quite good. Small discrepancies can be attributed to the
violation of the semiclassical approximation.

If L, > L., ,(n) # 0 for n > 0 and we should
consider ny equations in set (305). The tunneling of the
fluxon in this case is similar to the tunneling of a quantum
particle in ny dimensions, where the «, play the role of the
particle coordinates in no dimensional space. The field v is
strongly inhomogeneous. In figure 40 we show the spatial
profile ¥ (t, x) of the tunneling fluxon, calculated numerically
for different values of the imaginary time t, which changes
from —oo to zero. The maximum value of v increases
monotonically with 7, while its characteristic size remains
practically constant. This analysis shows that the characteristic
size of the fluxon is about aL, ~ y D, as was mentioned
above.

6.3.4. Analytical approach. In this subsection, we obtain
the analytical formula for calculating the tunneling exponent
va in the case L, <« A.. For this purpose, we reduce the
problem of field tunneling to the tunneling of a quantum
particle. However, in contrast to the usual approach, we
take into account the spatial variation of the gauge-invariant
phase difference ¢ when deriving the effective potential
U [157-159].

We now use the real time ¢ in equation (288) instead of
imaginary t. According to the numerical result shown in
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-0.25 0 x/Lx 0.25
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Figure 40. Spatial profile of tunneling fluxon for different values of
the imaginary time t: for the curves from the bottom to top

n=+pot=—-16,n=—-landn=0; j =0.96,yD/L, =0.22
(from [159]).

figure 40, the function xﬁ(r, Xx) can be presented as 1/_f(l‘, X) ~
f(x)r(t), where df/dx = 0 at x = 0, d. The function f(x)
is normalized by the condition

d
/ dx f2(x) = 1. (310)
0

We substitute = f (x) r(t) into equation (288), then multiply
both sides of this equation by f, and integrate along the
junction. As a result, we obtain the equation of motion for
a hypothetical particle with coordinate r(¢),

Er o= I /dd £
— r—— x f7(x
dr? Ho 2 Jo
d d d d /
:—r/ dx/dx/ FO) p ey L&) 311)
0 0 dx dx’

where the new kernel P (x; x’) is expressed through the kernel
K (x; x), equation (289). Under conditions L, <« A. and
N > 1,a ~ 1, we derive the explicit analytical formula for
P(x;x'):

Sin<7r(x+x’))

.~ _ vDVio 2d

P(x;x") = . In P . (312)
“( 2d )

We approximate f(x) by a step function f(x) = 6(xo —
x)/+/xo. After substitution of this function into equation (311)
and integration, we see that the term on the right-hand side
of this equation has a logarithmic singularity since 9f/dx =
—8(x — x0)/4/X0. To cut off this singularity, we take into
account that the characteristic scale of change of the phase ¥
in the stack of Josephson junctions is y D. Thus, performing
integration, we put |x — x| = CyD at x’ — x, where
C is a constant of the order of unity. Thus, we obtain
the equation of motion for the effective particle in the form
d’r/dt> = —dU(r)/dr, where the effective potential U (r)

46

can be written as

2

jr
U@ = -,
) 64 (ro—r)
3% DV 2L,
ro = N0 L YEVRO, . 313)
J 2w A X CrnyD

Here we neglect the small term o< In | sin(7r (x +x") /2d)| in the
kernel.

The tunneling exponent for the effective particle in the
potential U (r) in a semiclassical approximation reads as [161]

(314)

ro
B = 2¢ / V22U (r)dr.
0

Performing an integration we obtain

= 5/2
Bl = 2Ae0x0 [y YDV, (2L . (315)
552 27T L X CryD

The optimal value for the tunneling of the fluxon is found from
the condition of minimum of B: dB/dxp = 0. Thus, finally,

we derive
\ 3 In
3 ewy

The dependence of I' on j, calculated by means of
equations (308) and (316), is shown by dashed lines in
figure 39. Calculating these curves, we use y and C as
adjustable parameters. The analytical approach is appropriate
to estimate the value of InI". However, the numerical results
are more accurate.

The theory presented here, of MQT in SJJs, is
based on a quantum-field-theory approach, in contrast to
the phenomenological treatment [164,165] of capacitively
coupled Josephson junctions. It allows us to describe
quantitatively this effect in agreement with the experimental
observations. The obtained value of I' is strongly nonlinear
with respect to the number of superconducting layers N, and
changestoI' o« N when N exceeds a certain critical value N..
The proposed numerical approach can also be used to describe
quantum tunneling in arrays of Josephson junctions [166, 167],
as well as in electromechanical [168] and magnetic [169]
systems, where the ‘particle approximation’ can be invalid.

1—j2
j2

yD
L,

2L,
CryD

L _
N =

) . (316)

7. Conclusion

As this review shows, JPWs in layered superconductors
have become a subject of intense study of considerable
physical interest. They are interesting for the physics of
superconductors and nonlinear physics, and can be used for
designing future devices including emitters, filters, detectors
and waveguides working in the sub-THz and THz frequency
ranges, which could be very important for various applications.

Electromagnetic waves in layered superconductors
display many remarkable features that are very unusual for
conducting media. For example, as we have shown in section 2
of this review, the electric and magnetic components of the
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JPWs can be of the same order. This property of JPWs can
be useful to avoid the impedance-mismatch problem when
generating THz radiation from moving JVs (see section 4).

It is also of interest that the interface between the vacuum
and a layered superconductor can support SIPWs. As we have
discussed in section 2, the resonant excitation of these waves
provides Wood-like anomalies in the reflection of sub-THz and
THz electromagnetic waves. This phenomenon could be used
for designing future THz detectors.

Layered superconductors represent nonlinear media with
a very specific kind of nonlinearity. In section 3, we have
reviewed a number of nonlinear phenomena regarding the
propagation of JPWs, which originate from the nonlinear
Josephson relation, J = J.sing, for the interlayer current.
Along with phenomena known from nonlinear optics (e.g.
generation of higher harmonics, self-focusing, pumping of
weak waves by a stronger one, nonlinear resonance), nontrivial
effects can be observed in layered superconductors. A very
interesting example of such a phenomenon is the stop-light
effect that occurs due to both nonlinearity and dissipation.

Several animations demonstrating the unusual properties
of linear and nonlinear JPWs are available in [170]. The
study of the linear and nonlinear electrodynamics of layered
superconductors should also provide important information for
future studies in THz science.
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