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ABSTRACT: We investigate the response of perfect
quasiperiodic and orientation-preserving random struc-
tures when their bonds are perturbed homogeneously.
We find that the perfectly quasiperiodic networks are
stable against such perturbations while the (transla-
tionally) disordered structures exhibit significant accu-
mulation of strain. These grown networks are char-
a‘cterized by root-mean-square (rms) phason fluctua-
tions which grow linearly with system size and exhibit
strain accumulation which also grows linearly with sys-
temn size. Furthermore, we find a dependence of strain
accumulation on cooling rate.

Defects in quasiperiodic structures, called phasons, have been intro-

duced in order to account for the broad diffraction peaks and distorted
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diffraction patterns observed in scattering experiments on quasicrystals. Also,
orientation-preserving random structures! ~4 have been introduced in order
to account for these features. More specifically, phason strains are created
during the growth process. Shifts of the scattering peaks are due to the linear
component of the phason strain while peak broadening is due to the nonlin-
ear modulations. In t} iper, our definition of the word “quasicrystal”
corresponds to the experuiental one, i.e. a solid having a sharp but non-
crystallographic diffraction pattern. In addition to quasiperiodic structures
this definition includes random aggregation models!™ 4l such as the icosahe-
dral glass. The two dimensional analog of these systems has been observed

experimentally by different groups.5]

We have followed!! the standard approach to study strain accumulation
in solid mechanics: (1) homogeneously perturb a system in order to generate
non-zero forces (i.e., stresses); (2) this stresses produce displacements (e,
strains); (3) for very small strains (10% or smaller) the behavior of most
solids is perfectly elastic (i.e., the body recovers its original shape and size
after the stress is removed); (4) compute the displacement field, substracting
the average translation and the average rotation, and its root-mean-square

average.

The procedure summarized above has been appliedll to about fifty two
dimensional (2D) elastic networks by using molecular dynamics techniques.
These networks were all different from each other. More specifically, we stud-
ied the following aspects of strain accumulation: (a) size dependence (aggre-
gates ranging from 50 to 5000 decagons), (b) perfect quasiperiodic structures,
obtained by decorating Penrose lattices, versus several orientation-preserving
random structures, (c) relation with the behavior in the phason field, (d)
cooling-rate dependence, (e) dependence of the results with the magnitude
of the applied stresses, and verification that the structures studied were in the
elastic regime, (f) point out recent experimental works which are consistent

with our results.

The building blocks of our model are decagons packed edge to edge.

These decagons can always be related by a pure translation. Furthermore,
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such a translation can always be expressed as an integral linear combina-
tion of four basis vectors ey (f = 1,...,4). This fact is equivalent to the
statement that the possible decagon centers may be obtained by projecting
a suitable 4D lattice. Therefore, each decagon is associated with a pair of
2-component vectors: x”, the location of its center; and x+, its “phason” co-
ordinates. The pair (x”,xl) define a point in a 4D lattice. This procedure
is a simple extension of the projection technique used for incommensurate
structures. Details of this technique are given elsewhere.2] For our purposes,
it is sufficient to note that if the separation (in the physical plane) of two
decagons is given by Axl = }:?zl n,iey , then Axt = Y4 1 M eii

2=
gives the separation of their phason coordinates.

Our strain-free reference solid is the geometrical structure of edge-
sharing decagons. The local structure is constrained by the requirement that
the next-nearest-neighbor (nnn) decagon separation is 7 = (1+/5)/2 times
the nearest-neighbor (nn) or edge-sharing separation, which will be taken as
unity. The inclusion of nnn bonds greatly increases the connectivity of the
network. We use both types of bonds to stabilize the network mechanically.
The original edge-sharing structure, or reference solid, is stabilized by the
choice r(r)/r(1) = r where r(r)/r(1) is the ratio of the nnn and nn equilib-
rium distances between the centers of the decagons. We are interested in the
formation of strains, 1.e. deformation of the reference solid, when r(7)/r(1)
differs infinitesimally from 7. In this limit, i.e. the elastic regi me, the actual
form of the potential is irrelevant since the harmonic behavior dominates
the dynamics. A trivial consequence of modifying the potential is a uniform
strain, e.g. isotropic contraction or expansion, of the unrelaxed packing. The
uniform component of the strain was eliminated using the method of least
squares. Our samples have a circular shape in order to minimize the ratio of

boundary over bulk decagons, thus minimizing boundary effects.

Several works®! have also regarded covalent glasses, like a-Si and window
glass, as elastic networks. Of course, glasses, which are either random-packed
(e.g., metallic glasses) or covalent, do not exhibit the long-range orientational
order present in our packings. However, they all can be described by networks

or graphs. The graph for covalent glasses is called a continuous random
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network. The vertices of the graph represent the atoms while the edges
represent the bonds. This graph, called regular, has a fixed coordination
number because the atoms have a fixed chemical valency. In metallic glasses,
the edges are defined through the Voronoi partition of space. As in the
covalent case, the vertices represent the atoms and the coordination number
is four in three dimensions. A central question refers to the origin of the
macroscopic rigidity of the network. A proposed answer invokes a harmonic
elastic energy which is isotropic, as in rubbers and gels. Another refers to an
elastic energy which is invariant under rigid-body rotations, as in solids. The
elasticity of covalent networks is often prescribed by a potential energy with
a bond-stretching force term, which is central but locally anisotropic, and
also a bond-bending force term, which involves next-nearest neighbors and is
responsible for the rigidity of the network. Note that these locally anisotropic
forces must hold together a disordered material which, macroscopically, is

elastically isotropic.

The scattering phase angle is given by
Gl v ox) = —Gtoxt + Gl sx;  (mod 2n).

where xt“ is the position of the ith decagon in the reference solid and éx; its
displacement after relaxation. Several difflraction experiments in quasicrystals
have established a linear growth of peak width with phason momentum G=.
The apparent linear growth of AL(R) with R, seen also in the 3D icosahedral
model,4] is consistent with this behavior. From equation (1), it is clear that
fluctuations in both xij' and éx,; lead to peak broadening. In particular, for

peaks with | G | > | Gl | one considers a coherence radius R. defined by
|Gt at(r) ~ .

From the behavior AL(R) ~ aR we observell one then obtains a peak

broadening
6G ~ 1/R; ~ a| Gt |.

Diffraction peaks in the opposite limit, r.e. | Gl |>| Gt |, exhibit

systematic departures from linear | G! | peak broadening. The interpolating
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form
6G? = |aGL 2 4 |Gl 2

78 and Horn et al.”) have

has been fit to experimental data with some success
argued that a Gl termis a consequence of dislocations. If we apply the same
argument given above to the rms fluctuations in éx;, then the corresponding

peak broadening takes the form

6G ~ b| Gl |
where now b comes from the behavior

A(R) ~ bR

we observe. Therefore, our model, which is free of dislocations, reproduces
the main features of peak broadening in quasicrystals. Experimentally, the
ratio a/b is Iarge.gl Our results, where b depends linearly on 6, give a similarly
large ratio suggesting that the analogue of 6 in real quasicrystals is also small.
Furthermore, we find! a dependence of strain accumulation on cooling rate,
in that slow cooling induces larger strain. This surprising result is consistent

with recent experiments in Ga—Mg—Zn.gl

In conclusion, we have studied the dynamic response of different types
of 2D elastic networks to homogeneous perturbations. In all the quasiperiodic
systems studied, the distorsions are bounded, while in the grown samples,
the strain accumulation increases linearly with system size. We suggest that
the inhomogeneity which causes strain accumulation is a long wavelength
modulation in the phason coordinates. We find a dependence of strain ac-
cumulation on cooling rate: slow cooling induces larger strain. This strik-
ing result is consistent with recent experimental observations.?l Moreover,
we propose a mechanism for peak-broadening in quasicrystalline materials

which is in sharp contrast with the usual dislocation mechanism.’]
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