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Abstract

Josephson plasma waves are scattered by the Josephson vortex lattice. This scattering results in a strong dependence, on the in-plane
magnetic-field Hab, of the reflection and transmission of THz radiation propagating in layered superconductors. In particular, a tunable
band-gap structure (THz photonic crystal) occurs in such a medium. These effects can be used, by varying Hab, for the selective fre-
quency-filtering of THz radiation.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Strongly-anisotropic high-Tc superconductors (HTS), as
well as artificial multilayered heterostructures, are com-
monly considered as stacks of Josephson junctions (SJJ).
When a magnetic-field Hab is applied parallel to the layers,
Josephson vortices (JVs) penetrate the sample and form a
triangular lattice. The pinning of JVs is weak and the JV
lattice is near perfect.

It is known that the Josephson plasma frequency, xJ, of
HTS layered structures is in the THz-range, which is of
particular interest for applications [1–4]. The radiation pro-
duced by moving JVs, as well as Josephson plasma waves,
were analyzed by many authors [1,3–11]. The influence of a
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JV lattice on the propagation of THz electromagnetic
waves (EMW) was studied in [10]. Here we extend the
recent analysis [10] of forbidden gaps in the frequency spec-
trum (THz photonic crystal) and the magnetic-field depen-
dence of the transmission, T, and reflection, R = 1 � T,
coefficients of EMW in layered superconductors.

2. Model

We consider SJJ with layers in the xz plane and the y-
axis across the layers. The in-plane field Hab and, thus,
the JVs are parallel to the z-axis. The distance dx between
JVs in the lattice along the x-direction is much larger than
along the y-direction, dy, and dx/dy = c (c = 300–600 for
HTS). The gauge-invariant phase difference un in SJJ
can be described by a set of coupled sine-Gordon equa-
tions [12]. We consider the EMW Hðx; y; tÞ ¼
ẑH 0ðxÞ expðiqy � ixtÞ, propagating through the sample,
where ẑ is the unit vector along z. If we neglect the electric
field component along superconducting layers, then, the y
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Fig. 1. Band-gap structure: ~x versus k(hab)�1/2 at hab = 0.3 and for
qs = 0.3p, qs = 0.2p, and qs = 0.1p. The frequency gap (forbidden
frequency range) between the first and the second zone is D~x � 0:2. The
gap diminishes for smaller q (q = y-axis wave-vector). Here, we use
s = 15 Å, kab = 2000 Å, c = 600.
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component of the electric field obeys the Maxwell equation
�E0yðxÞ ¼ ixH=c. We assume that the amplitude H0 is small
compared to Hab and the gauge-invariant phase can be
obtained perturbatively as un ¼ u0

n þ u1
n, where u0

n corre-
sponds to the steady JV lattice and ju0

nj � ju1
nj. For mod-

erate Hab, u0
n can be approximated as a sum,

u0
n ¼

P
mu0ðx� xmnÞ, of solitons [13] u0 = p + 2tan�1 (x/

l0), where 2l0 = cs. Here xnm is the position of the mth JV
in the nth layer and s is the interlayer distance.

Substituting u1(x, y, t) = w(x) exp(iqy � ixt) into the set
of corresponding sine-Gordon equations and averaging
over y for jqj < p/s, we derive in the linear approximation

w00ðgÞ � j2
0ðqÞ½~x2

JðgÞ � ~x2�wðgÞ ¼ 0; ð1Þ
where the following dimensionless variables were intro-
duced: g = x/cs, ~x ¼ x=xJ, ~xJðgÞ ¼ xJðgÞ=xJ,

hab ¼
cs2H ab

2/0

; j2
0ðqÞ ¼

s
kab

� �2

ð1þ q2k2
abÞ; ð2Þ

Here kab is the London penetration depth across the layers,
xJ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8pesJ c=�he

p
is the Josephson plasma frequency, e is

the dielectric constant, and Jc is the critical current density
across the SJJ. We also neglect the relaxation term in Eq.
(1). The function

~x2
JðgÞ ¼ ~x2

Jðx=csÞ ¼
X

m

u0ðx� xmnÞ
* +

n

ð3Þ

has a period dx along the x direction, where h� � �in denotes
an average over the layers. This averaging is valid for
qs < p

ffiffiffiffiffiffi
hab

p
or at any q for hab = 0. The physical meaning

of the spatial modulation in ~xJðgÞ is that the effective crit-
ical current is modulated due to the current suppression
near the JV cores. We can approximate the dependence
~x2

JðgÞ by a stepwise function:

~x2
JðgÞ ¼ 1� p

ffiffiffiffiffiffi
hab

p X
m

F g� mffiffiffiffiffiffi
hab
p

� �
; ð4Þ

where F(g) = 1 if jgj < 1, and F = 0 if jgj > 1, and we use
the relation 2/0/(dxdy) = Hab. The approximate formula
(4) is improved as compared with that in Ref. [10]. The
relations between u and the electromagnetic-field in the
geometry considered can be presented [14] as
H = �/0u 0(x)/2ps, and Ey = ix/0u(x)/2psc. The continu-
ity conditions apply to u(g) and u 0(g) in the sample.

3. Tunable photonic crystal

Forbidden zones in the x(k) dependence (photonic crys-
tal), can occur when the EMW propagates through a peri-
odically modulated structures [15]. The dimensionless
period of the JV lattice is 1=

ffiffiffiffiffiffi
hab

p
. We obtain the solution

of Eq. (1) in the form of the Bloch wave w(x) = u(x,
k) exp(ikx), where u(x, k) is a periodic function with period
1=

ffiffiffiffiffiffi
hab
p

and the wave vector k is in the first Brillouin zone,
�p

ffiffiffiffiffiffi
hab
p

< k < p
ffiffiffiffiffiffi
hab
p

. The solution of Eq. (1), within one
elementary cell j, is a sum of exponential terms multiplied
by constants Cj. Using the continuity of w and w 0 and
the periodicity of these functions, we obtain a set of homo-
geneous linear equations for Cj. The non-trivial solution of
these equations exists only if the determinant of the set of
equations is zero. Then, we find the dispersion equation
for x(k) in the form

cosðj1bÞ cosðj2Þ �
j2

1 þ j2
2

2j1j2

sinðj1bÞ sinðj2Þ ¼ cos½kðbþ 1�;

b ¼ 1=
ffiffiffiffiffiffi
hab

p
� 1; ð5Þ

j1 ¼ j0ð~x2 � 1Þ1=2
;

j2 ¼ j0ð~x2 þ p
ffiffiffiffiffiffi
hab

p
� 1Þ1=2

: ð6Þ

The dependence ~xðkÞ is shown in Fig. 1. The forbidden gap
D~x is suppressed when decreasing Hab or the transverse
wave vector q.

4. Strong magnetic-field dependence of the THz

transmission coefficient

Now we consider a wave with x > xJ propagating from
the vacuum to the sample edge across the ab planes. The
value of qs is small in the THz-range since in vacuum
k2 + q2 = x2/c2, while s is in the nanometer range. The
solution of Eq. (1), for the jth cell of the magnetic structure,
can be expressed as a vector wj

a ¼ fC
j
1a expðijaxÞ;

Cj
2a expð�ijaxÞg, where a = 1, 2. We impose the continuity

of w and w 0 at any discontinuity of the function ~x2ðgÞ. As a
result, we obtain a set of linear equations relating wj�1

a and
wj

a. The solution of these equations can be presented as
wj

a ¼ bLwj�1
a , where bL is a 2 · 2 matrix. We use a linear

transformation bG that diagonalizes bL. By applying N times
such a procedure, we find the linear transformation that
propagates the solution from the 0th to Nth elementary
cell. This is also known as a transfer-matrix approach.
Imposing the continuity of both H and Ey at the sample



1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

3 Oe

1 Oe0.3 Oe

q = 0, L = 1 mm

R

ω

Fig. 2. The reflection coefficient R versus ~x for an EMW propagating
from the vacuum at q = 0, for l = 1000 cs � 1 mm, Hab = 3 Oe (open
circles), Hab = 1 Oe (crosses), Hab = 0.3 Oe (solid line). Here, we use
s = 15 Å, kab = 2000 Å, c = 600.
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surface, we find the expression for the amplitude r of the
reflected wave

r ¼ 1þ Zð~xÞDð~xÞ expð�2ij1bÞ
Zð~xÞ þ Dð~xÞ expð�2ij1bÞ ;

D ¼ b1ðZ þ b2ÞMN
2 � ð1þ b1ZÞMN

1

ðZ þ b2ÞMN
2 � b2ð1þ b1ZÞMN

1

; ð7Þ

Z ¼ ðj1 � ~xgÞ=ðj1 þ ~xgÞ; g ¼ s=ð
ffiffi
e
p

kab

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2c2=x2

p
Þ;

M1;2 ¼ cos j2ðb� 1Þ � i
j2

1 þ j2
2

2j1j2

sin j2ðb� 1Þ
� �

e�iðb�1Þj1

b1;2 ¼ �
M2 �M1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2 �M1Þ2 þ 4L1L2

q
2L1;2

ð8Þ

L1;2 ¼ �i
j2

1 � j2
2

2j1j2

sin j2ðb� 1Þe�iðb�1Þj1 :

The frequency dependence of the reflection coefficient
R = jrj2 is shown in Fig. 2. The transparency (transmission
T) of the crystal increases when increasing the frequency ~xJ

and when decreasing either the sample length l ¼ csN=
ffiffiffiffiffiffi
hab
p

or Hab, due to the decrease of the number of scattering lay-
ers. The oscillation in the transition and reflection coeffi-
cients occurs due to the interference of the scattered and
transmitted waves on JVs and sample boundaries. Varying
the applied magnetic-field Hab tunes the reflection at a gi-
ven frequency from 0 to 1.
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