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Using numerical calculations, we compare the transition probabilities of many spins in random magnetic
fields, subject to either frequent projective measurements, frequent phase modulations, or a mix of
modulations and measurements. For various distribution functions, we find the transition probability
under frequent modulations is suppressed most if the pulse delay is short and the evolution time is
larger than a critical value. Furthermore, decay freezing occurs only under frequent modulations as the
pulse delay approaches zero. In the large pulse-delay region, however, the transition probabilities under
frequent modulations are highest among the three control methods.
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1. Introduction

Quantum coherence is of key importance in studying micro-
scopic and mesoscopic quantum systems and in developing quan-
tum devices, including quantum registers in quantum comput-
ing [1–5] and spintronic devices [6]. Many methods have been
developed to extend the coherence time of a quantum system, par-
ticularly those methods using the quantum Zeno effect via either
frequent measurements or frequent modulations [7–10].

Utilizing the quantum Zeno effect, the coherence time of a
quantum system can be extended significantly in nuclear and
electron spin systems [11–16], trapped ions [17,18], ultracold
atomic Bose–Einstein condensates [19,20], and other physical sys-
tems [21–32]. Two frequent (periodic) control methods are often
employed: either projective measurements or strong modulations.
A systematic comparison of these two methods was made by Fac-
chi et al. [33]: By calculating the transition rates, they compared
the quantum Zeno/anti-Zeno effect in a two-level system via three
methods: either (i) frequent measurements, (ii) frequent modula-
tions, or (iii) a strong coupling to an auxiliary state. They assumed
in the Markovian approximation that the controlled survival prob-
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abilities of an initial state ps have always an exponential form
and thus a well-defined transition rate γc for short times, i.e.,
ps(t) = e−γct .

Zhang et al. [34–36], however, found that some systems exhibit
decay freezing (exactly zero “transition rate”), where the transition
probability becomes a constant after many modulation periods if
the pulse delay is short, p(t > ts) ≡ p(ts). Experimental evidence
of decay freezing has also been shown in donor spins under dy-
namical decoupling pulse sequences [37,38]. In these cases, the
exponential form assumed in Ref. [33] is invalid due to the vio-
lation of the Markovian approximation. Therefore, it is of particu-
lar interest to directly compare in the same system the transition
probabilities, instead of the transition rates, under either frequent
measurements or frequent modulations (see Fig. 1).

In this Letter, we revisit the study of the transitions of many
spins in random magnetic fields under either frequent measure-
ments or frequent modulations. The spins will be assumed to be
initially in their spin-up state. Using exact numerical calculations,
we systematically compare the performance of the three control
methods in suppressing/enhancing the transition probabilities for
three distributions (Gaussian, Lorentzian, and exponential) of the
random local fields.

This Letter is organized as follows. In Section 2 we formulate
the spin system’s free dynamics and controlled dynamics under ei-
ther (i) frequent measurements, (ii) frequent modulations, or (iii) a
mix of modulations and measurements. We present numerical
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Fig. 1. (Color online.) Comparison of transition probabilities p for free evolution
(dashed line), under frequent measurements (solid line, multiplied by 5), under
frequent modulations (dash-dotted line, multiplied by 100. Presented data are for
even-number modulation pulses), and under a mix of measurements and modula-
tions (dotted line, multiplied by 100). Here the distribution has a Gaussian form
[see Eq. (18)] with ωm = 0 and Γ = 1. The pulse delay is τ = 0.2. The tiny arrow
marks the critical time tc where the transition probabilities are the same under
the modulations and under the mix of modulations and measurements. Frequent
measurements and the mix method suppress the transition rate while frequent
modulations freeze the transition probability.

results in Section 3 for the three magnetic field distributions and
compare in detail the performance of the three control methods
listed above. Conclusions and discussions are presented in Sec-
tion 4.

2. Evolution of the system

We consider K spin-1/2 particles in random longitudinal (z)
magnetic fields, but spatially uniform horizontal (x) fields [39]:

H =
K∑

k=1

ωk

2
σkz + g

K∑
k=1

σkx, (1)

where k is the spin index, and σkz and σkx are the Pauli matri-
ces for the kth spin. Also, ωk and 2g are the Zeeman splitting of
the kth spin along the longitudinal and transverse direction, re-
spectively. We assume that single-spin operations and detection
are not accessible, but the ensemble ones are available, which
is the case in nuclear spin experiments. We also assume that g
is much smaller than the typical value of ωk , i.e., b � g with
b ≡ (

∑
k ω2

k /K )1/2.

2.1. Free evolution

By initially setting all spins in the spin-up state, the transition
probability to the spin-down state becomes

p0(t) = 1

K

K∑
k=1

g2

Ω2
k

sin2 Ωkt (2)

with Ω2
k = (ωk/2)2 + g2. This result is exact. Note that this tran-

sition probability is nothing but the difference between 1 and the
average polarization of the many-spin system m, i.e., p0 = 1 − m.
For a freely evolving system, m shows an exponential decay with
a decay rate proportional to g2. If the distribution of ωk is dense,
we can replace the sum over k with an integral over ω, i.e.,

lim
K→∞

1

K

∑
k

[ ] =
ωc∫

dω [ ]ρ(ω)
−ωc
where ρ(ω) = (1/K )(dk/dω) is the density of “mode” [40] and
ωc = max(|ωk|/2). Then

p0(t) ≈
∫

dωρ(ω)
g2

Ω2
sin2 Ωt,

where ρ(ω) is the distribution (“mode” density) function and is
normalized:

∫
dωρ(ω) = 1. In this short time region, Γ −1 � t �

|g|−1, with Γ being the spectrum width (Γ = ∫
dωρ(ω)(ω−〈ω〉)2

and 〈ω〉 = ∫
dωρ(ω)ω), the integrand sin2 Ωt/Ω2 sharply peaks

at Ω ≈ 0. For a flat distribution function ρ(ω), the transition prob-
ability becomes

p0(t) ≈ g2ρ(0)

∫
dω

sin2 Ωt

Ω2

= 2π g2ρ(0)t. (3)

A transition rate γ0 ≡ dp0/dt = 2π g2ρ(0) is then well defined.
Alternatively, from Eq. (2), the transition rate γ0 to the spin-

down state is given by

γ0 ≡ dp0

dt
= g2

K

K∑
k=1

sin 2Ωkt

Ωk
.

The above definition of the transition rate γ0 agrees with the well-
known one through p0(t) = 1 − e−γ0t if γ0t � 1. Note that this
transition rate γ0 becomes constant if t is long enough (but still
satisfies t � |g|−1). Moreover, the transition probability p0(t) is
still small for large enough t . In the dense-distribution approxima-
tion, the above equation for γ0 becomes

γ0 ≈ 2π g2
∫

dωρ(ω)δ(ω)

= 2π g2ρ(0) (4)

which is consistent with the result of Eq. (3).

2.2. Controlled evolution under frequent modulations

The evolution of two-level systems under many phase-modula-
tion control pulses has been widely investigated [41,26,42,43,33,
44,12,36,45,46]. The control pulses are usually assumed to be hard,
collective, and instantaneous [47]. We denote such a pulse as a Z
pulse. For each spin under the Z pulse, the phase of the spin-down
state is changed by π while the phase of the spin-up state is un-
changed. Such a unitary transformation can be described by the
rotation operator: Z = exp[i(π/2)

∑
k σkz] = ⊗

k(|↑〉〈↑| − |↓〉〈↓|)k .
We have here neglected the constant i = √−1 which does not
affect the conclusion. Since each spin evolves independently, the
time evolution operator for an arbitrary spin after N pulses is [36]

U (t = Nτ ) = (Z U0)
N =

(
U11 U12

−U21 −U22

)N

, (5)

where

U11 = U∗
22 = cosΩkτ − i

ωk

2Ωk
sinΩkτ ,

U12 = U21 = i
g

Ωk
sinΩkτ

with τ being the delay between pulses. After a straightforward
simplification (see Appendix A for a brief derivation), we ob-
tain the controlled-evolution of the transition probability from the
spin-up state to the spin-down state at time t = Nτ



W. Zhang et al. / Physics Letters A 377 (2013) 1837–1843 1839
pmod(t) = 1

K

K∑
k=1

g2

Ω2
k

sin2 Ωkτ
sin2 Nλk

sin2 λk

≈
∫

dωρ(ω)
g2

Ω2
sin2 Ωτ

sin2 Nλ

sin2 λ
, (6)

where λk is determined by sin2 λk = 1 − (ωk/2Ωk)
2 sin2 Ωkτ .

In the limit of short delay τ between pulses, τ → 0, the terms
sin2 λk ≈ 1 and sin2 Ωkτ ≈ Ω2

k τ 2 to the leading order. For a large

N , the term sin2 Nλk oscillates rapidly around its average 1/2.
Thus, the modulated transition probability pmod in Eq. (6) be-
comes, after the integration over ω,

pmod ≈ 1

2

∫
dωρ(ω)

g2

Ω2
sin2 Ωτ

≈ 1

2
g2τ 2, (7)

which is nothing but half of the transition probability in the first
delay τ [36]. In the derivation, we have used (1/Ω2) sin2 Ωτ ≈ τ 2

if τ � Ω−1 and
∫

dωρ(ω) = 1. In this limiting case, pmod becomes
independent of the total evolution time and decay freezing occurs.

2.3. Controlled evolution under frequent measurements

We now assume that the measurements of the spin system
are projective and periodic. The effect of such a measurement
on the spin system is described by the projection operator, P =⊗

k(|↑〉〈↑|)k . By including the free evolution of the system during
the measurement delay τ , we obtain the total evolution operator
in a period for a single spin as

V ≡ PU0 =
(

U11 U12
0 0

)
. (8)

Note that this evolution is nonunitary because of the measure-
ment. It is straightforward to find that for N periods the evolution
operator is

V N =
(

U N
11 U12U N−1

11

0 0

)
. (9)

The survival probability of an initially spin-up state for the kth spin
becomes

pk,s = ∣∣U N
11

∣∣2 =
[

1 −
(

g2

Ω2
k

)
sin2 Ωkτ

]N

. (10)

By including all spins, the above Eq. (10) becomes

ps(t = Nτ ) = 1

K

K∑
k=1

[
1 −

(
g2

Ω2
k

)
sin2 Ωkτ

]N

. (11)

Under the dense-distribution approximation

ps(t) ≈
∫

dωρ(ω)

[
1 −

(
g2

Ω2

)
sin2 Ωτ

]N

. (12)

As a result, the total transition probability away from the initial
spin-up state becomes

pmeas(t) = 1 − ps(t). (13)

In the limit τ → 0, the transition probability in Eq. (13) ap-
proaches

pmeas(t) ≈ 1 −
∫

dωρ(ω)
(
1 − g2τ 2)N

≈ g2τ 2N

≈ γmeast (14)
Table 1
Transition probabilities at t = Nτ for three control methods (modulations, measure-
ments, and mix) in the limit τ → 0 and N � 1.

Modulations Measurements Mix

pmod = (1/2)g2τ 2 pmeas = g2τ 2 N pmix = (1/2)b2 g2τ 4 N

with the transition rate γmeas = g2τ and t = Nτ . Compared to the
modulated case Eq. (7), where the transition rate is zero, Eq. (14)
gives a nonzero transition rate γmeas, unless τ is exactly zero. In
this sense, as long as the number of pulses is large, the transi-
tion probability under frequent measurements pmeas would always
exceed that under frequent modulations (see Fig. 1).

2.4. Controlled evolution under a mix of modulations and
measurements

By combining both frequent modulations and frequent mea-
surements, we may utilize the advantages of both control methods.
Here, a mixed cycle with a period of 2τ involves a modulation fol-
lowed by a measurement. The nonunitary evolution operator for
the cycle becomes

P U0 Z U0 =
(

U 2
11 − U12U21 U12(U11 − U22)

0 0

)
. (15)

The total survival probability of an initial spin-up state at time t =
Nτ is

ps(t) = 1

K

K∑
k=1

(
1 − ω2

k g2

Ω4
k

sin4 Ωkτ

)N/2

.

It is easy to obtain the transition probability

pmix = 1 − 1

K

K∑
k=1

(
1 − ω2

k g2

Ω4
k

sin4 Ωkτ

)N/2

≈ 1 −
∫

dωρ(ω)

(
1 − ω2 g2

Ω4
sin4 Ωτ

)N/2

. (16)

As seen from Eq. (16), it is difficult to obtain any analytical result
in this case without specific information on the distribution func-
tion ρ(ω).

In the limit case τ → 0, the transition probability becomes

pmix ≈ γmixt (17)

where γmix = (1/2)b2 g2τ 3. When t < tc , the mixed transition
probability pmix is smaller than the modulated transition proba-
bility pmod. The critical time tc is

tc = (
b2τ

)−1
.

This advantage of the mix method, for short times, is shown in
Fig. 1. Of course, after many pulses, the transition rate of the mix
method is nonzero, while that of the modulation method is zero.
Thus, pmix > pmod eventually when t > tc .

As a summary, in Table 1 we list the results for the short-τ
limit for the three control methods.

3. Numerical results

Given an arbitrary τ , we have to resort to numerical calcula-
tions in order to compare the transition probabilities in Eqs. (6),
(13), and (16), except in the limiting case τ → 0. Among many
forms of distribution functions ρ(ω), we consider three popular
choices: Gaussian, Lorentzian, and exponential [9,48,36].

The Gaussian distribution function used here has the form:
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ρ(ω) = C exp

[
− (ω − ωm)2

2Γ 2

]
, (18)

where C is the normalization constant, ωm the peak position, and
Γ the spectral width. In the numerical calculations, the lower and
upper cutoff frequencies used here are −ωc and ωc , respectively,
with ωc = 100Γ for the three distributions.

The Lorentzian distribution function used here has the standard
form:

ρ(ω) = C

(ω − ωm)2 + Γ 2
. (19)

The exponential distribution function used is

ρ(ω) = C exp

[
−|ω − ωm|

Γ

]
. (20)

There are many ways to compare the performance of the three
control methods. We employ two ways to compare the transition
probabilities of the spin system: (a) For N = 2 pulses, we vary the
pulse delay τ to investigate the dependence of the performance of
the control method on the pulse delay; (b) We fix the total evo-
lution time t = Nτ by varying the number of pulses (accordingly
the pulse delay τ ) to investigate the dependence on the number
of pulses.

3.1. Comparison of two-pulse results with different pulse delays

As a starting point, let us compare two-pulse effects via either
modulations, measurements, or the mix of a modulation followed
by a measurement. It is easy to find that the transition probability
subject to two modulations is

pmod =
∫

dωρ(ω)
g2ω2

Ω4
sin4 Ωτ (21)

and that under two measurements

pmeas =
∫

dωρ(ω)
g2

Ω2
sin2 Ωτ

(
2 − g2

Ω2
sin2 Ωτ

)
. (22)

The mix of one modulation and one measurement is exactly the
same as two modulations, pmix = pmod.

We plot the two-pulse transition probabilities in Fig. 2 for Gaus-
sian, Lorentzian, and exponential distributions. For the cases of
ωm = 0, the top row of Fig. 2 shows that both modulations and
measurements suppress the transition probability (quantum Zeno
effect), compared to the free-evolution case. In addition, the tran-
sition probabilities under two modulations pmod are always smaller
than those under two measurements pmeas, pmod < pmeas. While
for the cases of ωm = 2Γ , both methods (i.e., two measurements
or two modulations) also suppress the transition probability and
pmod < pmeas, if τ is small, but the two methods enhance the tran-
sition probability (quantum anti-Zeno effect) and pmod > pmeas, if
τ is large. The cross pmod = pmeas occurs around τ ≈ 1 in Fig. 2. In
the limit of extremely small τ , i.e., τ � Γ −1,

p0 ≈
∫

dωρ(ω)
g2

Ω2
sin2 2Ωτ

≈ 4g2τ 2.

Similarly,

pmod ≈ g2τ 4
∫

dωρ(ω)ω2 = g2b2τ 4,

pmeas ≈ 2g2τ 2.

So we find that pmod/p0 → 0 and pmeas/p0 → 1/2, which agrees
well with numerical results shown in Fig. 2 for all the considered
Fig. 2. (Color online.) Transition probabilities (scaled by the free-evolution transition
probability) of a many-spin system under two measurements (green solid lines) or
two modulations (blue dash-dotted lines) for three distribution functions: Left col-
umn [(a) and (d)], Gaussian; Middle column [(b) and (e)], Lorentzian; Right column
[(c) and (f)], exponential. The horizontal black dashed lines in the panels (d), (e), (f)
of the bottom row mark the boundary between quantum Zeno and quantum anti-
Zeno effect. The peaks of the distributions are chosen as ωm = 0 for the top row of
panels [(a), (b), and (c)] and ωm = 2Γ for the bottom row [(d), (e), and (f)], respec-
tively. The parameters Γ = 1 and g = 0.001 are used for all cases. Hereafter, time is
measured in units of Γ −1. The transition probabilities under two modulations are
smaller than those under measurements for all τ s, if ωm = 0 (top panels), and for
small τ s, if ωm = 2Γ (bottom panels).

cases. But in the limit of large τ , we find that both controlled
transition probabilities approach the transition probability of free
evolution, i.e., the control pulses have little effect on the evolution
of the system. It is interesting that all three distributions show
consistent and similar results.

3.2. Comparison of multi-pulse results at fixed evolution time

Next we consider the cases of varying N pulses but a fixed to-
tal evolution time t = Nτ , i.e., τ varies as t/N . We choose t = 10,
which satisfies Γ t � 1. By changing N from 1 to 100, the pulse
delay τ decreases from 10 to 0.1 and Γ τ ∈ [0.1,10] correspond-
ingly, sweeping from a value much larger than 1 to a value much
less than 1. Under these conditions, both the quantum Zeno effect
and the anti-Zeno effect may appear.

The transition probabilities of the spin system for Gaussian,
Lorentzian, and exponential distributions are shown in Fig. 3.
Again, we scale the transition probabilities under measurements,
modulations, or the mix of modulations and measurements, by
dividing the transition probability of the free evolution at the
same time. In the top row of Fig. 3, where ωm = 0, the tran-
sition probabilities under frequent modulations are smaller than
those under frequent measurements and the probabilities for the
mix method lie in between, i.e., pmod < pmix < pmeas. In addition,
pmod,meas,mix < p0 for all N , showing that frequent modulations,
frequent measurements, and the mix method all suppress the tran-
sition probability and only the quantum Zeno effect occurs.

The bottom row of Fig. 3, where ωm = 2Γ , shows a more com-
plex phenomenon:
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Fig. 3. (Color online.) Quantum Zeno effect and anti-Zero effect in controlling the
transition probabilities with frequent measurements (green solid lines), frequent
modulations (blue dash-dotted lines), and the mix of modulations and measure-
ments (red dotted lines). The transition probabilities subject to control pulses are
normalized by dividing the free-evolution transition probability for the same time.
The horizontal black dashed lines in the panels (d), (e), (f) of the bottom row mark
the boundary between quantum Zeno and quantum anti-Zeno effect. The distribu-
tion functions are Gaussian [left column, (a) and (d)], Lorentzian [middle column,
(b) and (e)], and exponential [right column, (c) and (f)]. In the top and the bottom
row, ωm = 0 and 2Γ , respectively. The total evolution time t = Nτ = 10 is fixed.
Other parameters are the same as in Fig. 2. In the top row, the modulation method
outperforms the measurement one in suppressing the transition probability of the
spin system. While in the bottom row, the modulation method is worse than the
measurement one if the number of pulses N is small, but better if N is large.

1. For small N , the quantum anti-Zeno effect pmod,meas,mix > p0
appears (i.e., the enhancement of the transition probabilities)
for all control methods.

2. For large N , the quantum Zeno effect pmod,meas,mix < p0 (i.e.,
the suppression of the transition probabilities) appears for all
control methods.

3. For the same value of N , by comparing the performance of the
modulation, the measurement, and the mix methods, we find
pmod > pmix > pmeas for small N but pmod < pmix < pmeas for
large N .

4. All three methods intersect around N = 10 (or τ = 1), where
pmod ≈ pmeas ≈ pmix.

For extremely small τ (large N), which is outside the region
shown in Fig. 3, the mix method performs better than the modu-
lation method (see Fig. 1). For a given fixed total time t , by setting
pmix = pmod and using the formula listed in Table 1, we find that
the critical value of τ is

τc = 1

b2t
.

Correspondingly, the critical number of pulses is

Nc = t/τc = b2t2.

We remark here that the above conclusions on the performance
order of the quantum Zeno and anti-Zeno effects agree with results
obtained with other analytical methods in the Markovian approx-
imation [33], for instance, the modulation method is the best at
Fig. 4. (Color online.) Transition probability of the spin system under frequent mea-
surements at the fixed time t = 10 for different short pulse delays τ (black solid
line). The distributions are Gaussian (left column), Lorentzian (middle column), and
exponential (right column). Also, we use ωm = 0 (top row) and ωm = 2Γ (bottom
row). The blue dashed lines are obtained from Eq. (27).

suppressing the transition. But we do not assume any specific de-
cay form of the transition probability while an exponential form
is assumed in Refs. [42,33]. In fact, an exponential decay form is
not always the case, especially with the modulation method (see
Fig. 1). Our results of transition probability may be valid in a wider
parameter region.

3.3. Short τ limit at fixed time

Noticing that all the curves for different distribution functions
in Fig. 3 give similar tails at large N (small τ ), we next compare
how the controlled system approaches its limiting case τ → 0.
We note here the difference between cases in this section and
the cases in Section 3.1, where t = 2τ → 0 if τ → 0. For the free
evolution, the transition probability of the spin system can be ap-
proximated as follows if Γ −1 � t � γ −1

0

p0 ≈ γ0t (23)

with γ0 = 2π g2ρ(0) being the transition rate. Similarly, the tran-
sition probability under frequent measurements [see Eq. (14)] at
times t � γ −1

meas is

pmeas ≈ γmeast. (24)

The above equation shows that the transition rate γmeas = g2τ can
be defined. Compared to the case of free evolution, this rate γmeas
is independent of the distribution function and depends linearly
on the pulse delay τ .

Quite differently, the transition probability [see Eq. (7)] under
frequent modulations is frozen for small τ ,

pmod ≈ 1

2
g2τ 2. (25)

Obviously, no decay rate can be defined. It is remarkable that this
transition probability is independent of the total evolution time
and the distribution function. Decoherence is frozen after several
control pulses if τ is small [34,36,49]. This transition freezing ef-
fect shown in Eq. (25) has been demonstrated experimentally in
Refs. [37,38].
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Under the mix control method, the transition probability grows
linearly

pmix ≈ γmixt (26)

with a well-defined transition rate γmix = b2 g2τ 3 in the limit
τ → 0. Note that this transition rate depends on the distribution
function since b2 = ∫

dωω2ρ(ω).
In the small τ limit, it is easy to obtain

pmeas

p0
≈ τ

2πρ(0)
,

pmix

p0
≈ b2τ 3

2πρ(0)
. (27)

We numerically check the relationship for frequent measurements
by redrawing the large-N results of Fig. 3 and using τ as the
horizontal axis. Fig. 4 shows how the above limiting results are
approached for different distributions as τ approaches zero.

4. Conclusion and discussion

In summary, using numerical calculations, we compare the
transition probabilities of a many-spin system in local random
fields (with Gaussian, Lorentzian, or exponential distributions)
under either frequent modulations, frequent projective measure-
ments, or the mix of modulations and measurements. In the
small-τ region, all three control methods suppress the transition
probability of the system. Among the three control methods, the
modulation one exhibits the largest suppression of the transition
probability if the total evolution time is larger than the critical
time, and the transition freezes after many modulation pulses. If
the time is smaller than the critical time, the mix method is the
most effective at suppressing the transition probabilities.

In the large τ region, all three control methods also suppress
the transition probability if ωm = 0, but enhance the transition
probability if ωm is large. Overall, the modulation method changes
more drastically the dynamics of the system [26]: The modulation
method outperforms the other two methods in either suppressing
the transition in the small τ region or enhancing the transition in
the large τ region, provided that the evolution time is larger than
the critical time tc .

The modulation-pulse delay is the same in all of our calcula-
tions. By adopting varying pulse delay, such as concatenation or
Uhrig’s protocol [27,28], we could in principle suppress/enhance
much more the transition probability. We believe that the tran-
sition probability would deviate more from an exponential decay
under these more complicated modulation pulse sequences.
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Appendix A. Derivation of Eq. (6)

Similar to the derivation in Ref. [36], it is easy to find with a
diagonalization method that
U (t = Nτ ) =
(

A B
C D

)
(A.1)

where

A = iN
(

cos Nλk − i cosΩkτ
sin Nλk

sinλk

)
,

B = −iN g

Ωk
sinΩkτ

sin Nλk

sinλk
,

C = iN g

Ωk
sinΩkτ

sin Nλk

sinλk
,

D = iN
(

cos Nλk + i cosΩkτ
sin Nλk

sinλk

)
.

The transition probability from an initial spin-up state to the spin-
down state under frequent modulations is

pmod = 1

K

K∑
k=1

∣∣〈↓k|U |↑k〉
∣∣2

= 1

K

K∑
k=1

|B|2,

which is Eq. (6).
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