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We examine the propagation of the recently discovered electron vortex beams in a longitudinal

magnetic field. We consider both the Aharonov-Bohm configuration with a single flux line and the

Landau case of a uniform magnetic field. While stationary Aharonov-Bohm modes represent Bessel

beams with flux- and vortex-dependent probability distributions, stationary Landau states manifest

themselves as nondiffracting Laguerre-Gaussian beams. Furthermore, the Landau-state beams possess

field- and vortex-dependent phases: (i) the Zeeman phase from coupling the quantized angular momentum

to the magnetic field and (ii) the Gouy phase, known from optical Laguerre-Gaussian beams. Remarkably,

together these phases determine the structure of Landau energy levels. This unified Zeeman-Landau-Gouy

phase manifests itself in a nontrivial evolution of images formed by various superpositions of modes. We

demonstrate that, depending on the chosen superposition, the image can rotate in a magnetic field with

either (i) Larmor, (ii) cyclotron (double-Larmor), or (iii) zero frequency. At the same time, its centroid

always follows the classical cyclotron trajectory, in agreement with the Ehrenfest theorem. Interestingly,

the nonrotating superpositions reproduce stable multivortex configurations that appear in rotating super-

fluids. Our results open an avenue for the direct electron-microscopy observation of fundamental

properties of free quantum-electron states in magnetic fields.

DOI: 10.1103/PhysRevX.2.041011 Subject Areas: Optics, Quantum Physics

I. INTRODUCTION

Propagating waves carrying intrinsic orbital angular
momentum (OAM), also known as vortex beams, are
widely explored and employed in optics [1–3]. The vortex
beams typically represent paraxial wave beams with a
‘‘doughnutlike’’ transverse intensity profile and twisted
helical phase. The azimuthal gradient of the helical phase
produces a spiraling current and well-defined OAM along
the beam axis. Remarkable wave and dynamical features of
optical vortices and OAM reveal themselves in the inter-
ference between different modes and in interactions with
matter.

A few years ago, we introduced vortex beams carrying
OAM for free quantum electrons [4]. That paper was
followed by several experimental observations using elec-
tron microscopy [5–8] and other theoretical investigations
[9–14]. The main distinguishing feature of the electron
vortex beams, as compared with their optical counterparts,
is that they carry a magnetic moment proportional to the
OAM (up to hundreds [7] of Bohr magnetons per electron),

and, hence, can effectively interact with external magnetic
fields [4,6,10,12–14]. This feature can be exploited both in
free-space fields [4,14] and in magnetic structures in solids
[6,12,13].
In analogy to the magnetic spin properties of quantum

electrons, it is natural to expect that the main manifesta-
tions of the electron OAM–magnetic-field interaction are
as follows: (i) Stern-Gerlach–like transport in a transverse
field [4], (ii) Larmor precession of the magnetic moment
[4,14], and (iii) Zeeman coupling and corresponding
energy (phase) shift in a longitudinal field. Note that the
case of longitudinal field, which we consider in this paper,
is of particular interest because it naturally occurs in
electron-microscope lenses. Besides, the longitudinal mag-
netic field is described by a vortex in the vector potential,
and an interesting interplay of coaxial electron and vector-
potential vortices appears.
Stationary quantum-electron states in a constant

magnetic field are well known as quantized Landau states
[15,16]. They contain vortex phases and have a well-
defined OAM along the magnetic field. However, so far,
these states have mostly been associated with collective
properties of condensed-matter electrons inside solids in a
magnetic field such as the quantum-Hall, De Haas–van
Alphen, and Shubnikov–De Haas effects [17,18]. In a
similar way, electron vortex OAM states naturally occur
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in the presence of an infinitely thin magnetic solenoid, i.e.,
as eigenstates of the Aharonov-Bohm problem and related
problems in superconductors [19–21]. Individual Landau
and Aharonov-Bohm states underpin a number of funda-
mental condensed-matter phenomena, but so far they have
never been observed directly in free-space magnetic fields.

In this paper, we examine the propagation of OAM
vortex modes in a longitudinal magnetic field. We argue
that electron vortex beams allow the direct observation and
studies of the Aharonov-Bohm and Landau quantum states.
It should be emphasized that, in the typical Landau and
Aharonov-Bohm problem, the free propagation along the
magnetic field is eliminated, while the transverse transport
and energy levels are considered (Fig. 1). In contrast, in
vortex beams, the energy is fixed while the free longitudi-
nal propagation unveils new remarkable dynamics, see
Fig. 1. We show that the propagating Aharonov-Bohm
modes represent Bessel beams with field-dependent
probability and current distributions, and that the propagat-
ing Landau states represent non-diffracting Laguerre-
Gaussian (LG) beams, similar to those in multimode
optical fibers [22]. Furthermore, the Landau modes acquire
nontrivial field- and vortex-dependent phases on propaga-
tion in the magnetic field: (i) the Zeeman phase from

coupling the quantized OAM to a magnetic field and
(ii) the Gouy phase, known from optical LG beams
[1,23]. Together, these phases determine the structure of
Landau energy levels. This unified Zeeman-Landau-Gouy
phase manifests itself in a nontrivial evolution of interfer-
ence patterns formed by various superpositions of modes.
Namely, the interference patterns rotate in a magnetic field
with a rate that is strongly dependent on the chosen super-
position of modes—The angular velocity can vary between
the Larmor, cyclotron, and zero frequencies. This fact
allows direct experimental observations of different terms
in the Landau-level structure, akin to optical pattern rota-
tions in Gouy-phase diffraction experiments [24–27]
and Berry-phase [28–32] and rotational-Doppler-effect
[33–35] observations. (It is worth noticing that the optical
Berry-phase and rotational-Doppler (Coriolis) effects are
caused by rotations of the reference frame and are similar
to the electron Zeeman effect, according to Larmor’s
theorem.)

II. BESSEL AND LAGUERRE-GAUSSIAN
BEAMS IN FREE SPACE

For completeness and convenience of the exposition
below, we summarize in this section the main properties
of the electron vortex beams in free space. To start, let us
recall that the canonical momentum and OAM operators

in the coordinate representation are p̂ ¼ �i@r and L̂ ¼
r� p̂, respectively. Using cylindrical coordinates ðr; ’; zÞ,
one has L̂z ¼ �i@@’. The eigenmodes of p̂z ¼ �i@@z are

c / expðikzzÞ, i.e., plane waves propagating along the z
direction, with continuous-spectrum eigenvalues pz ¼ @kz.

At the same time, the eigenmodes of OAM L̂z are c ‘ /
expði‘’Þ, i.e., vortices, which are characterized
by the quantized eigenvalues Lz ¼ @‘, where ‘ ¼
0;�1;�2; . . . is the vortex charge. Modes with well-
defined momentum pz and OAM Lz are called vortex
beams. Naturally, the expectation value of the canonical
OAM (normalized per one particle) for vortex modes is
determined as

hLzi ¼ hc jL̂zjc i
hc jc i ¼ @‘: (1)

Hereafter, the inner product implies the corresponding
volume integration. At the same time, the local structure
of the vortex can be characterized by the probability dis-
tribution � and current j:

� ¼ jc j2; j ¼ 1

m
ðc jp̂jc Þ ¼ @

m
Imðc �rc Þ: (2)

It is easy to see that, for vortex beams with c ‘ /
expði‘’þ ikzzÞ, Eqs. (2) result in a nonzero azimuthal
component of the current:

j‘ðrÞ ¼ @

m

�
‘

r
e’ þ kzez

�
�‘ðrÞ; (3)

FIG. 1. (a) Standard ‘‘transverse’’ geometry of the Aharonov-
Bohm and Landau problems. The electron wave propagates
orthogonally to the magnetic field and shows an edge wave-
front dislocation in the case of an isolated magnetic flux line. A
field-induced transport (e.g., a shift of the interference fringes in
the Aharonov-Bohm effect, or quantum-Hall effect) occurs in the
direction orthogonal to both the magnetic field and the main
propagation of the electrons. (b) In contrast, the ‘‘longitudinal’’
geometry, considered in this paper, involves the propagation of
electron waves along the magnetic field. In this case, the wave
fronts carry a screw dislocation, whereas the field-induced
transport (e.g., a shift of the Landau interference patterns or
radial Aharonov-Bohm effect) occurs in the azimuthal or radial
directions. (See Figs. 6 and 4.)
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where e’ and ez are the unit vectors of the corresponding

coordinates, and we neglect the radial component of the
current that might appear due to diffraction. The kinetic
momentum and OAM spatial densities are given bymj and
mr� j, respectively, so that the averaged kinetic OAM per
one electron, hLzi, can be calculated via the following
volume integration:

hLzi ¼
m
R
rj�dVR
�dV

¼ @‘: (4)

In free space, this equation naturally coincides with
Eq. (1), and one can say that it is the circulating azimuthal
current that produces the well-defined OAM in the vortex
beams.

Let us explicitly summarize the main examples of free-
space electron vortex beams. Assuming monoenergetic
electrons, the problem is described by the stationary
Schrödinger equation:

Ĥc ¼ Ec ; Ĥ ¼ p̂2

2m
: (5)

Using cylindrical coordinates, Eq. (5) takes the form

� @
2

2m

�
1

r

@

@r

�
r
@

@r

�
þ 1

r2
@2

@’2
þ @2

@z2

�
c ¼ Ec : (6)

The axially symmetric solutions of Eq. (6) represent
nondiffracting Bessel beams [36]:

c B
‘ / Jj‘jð�rÞ exp½ið‘’þ kzzÞ�: (7)

Here, Jj‘j is the Bessel function of the first kind, whereas �
is the transverse wave number. The solutions in Eq. (7)
satisfy Eq. (6) provided that the following dispersion rela-
tion is fulfilled:

E ¼ @
2

2m
k2 ¼ @

2

2m
ðk2z þ �2Þ: (8)

Evidently, the Bessel beams (7) are eigenmodes of

momentum p̂z and OAM L̂z with the corresponding

eigenvalues pz ¼ @kz and Lz ¼ @‘. Calculating the proba-
bility density and current (2) for modes (7), we obtain

�B
j‘jðrÞ/ jJj‘jð�rÞj2; jB‘ ðrÞ¼

@

m

�
‘

r
e’þkzez

�
�B
j‘jðrÞ: (9)

These transverse distributions for Bessel beams with dif-
ferent OAM quantum numbers ‘ are shown in Fig. 2.
Substituting the wave function (7) and probability distri-
butions (9) into Eqs. (1) and (4), it is easy to verify that the
OAM expectation values are hLzi ¼ hLzi ¼ @‘.
Bessel beams have a simple mathematical form and

are well suited for systems with radially-limited apertures.
The Bessel modes in such systems have been described
elsewhere [9]. However, in unbounded free space, they are
not well localized in the radial direction because the
integral

R
�B
j‘jrdr is divergent. The simplest transversely

confined vortex beams in free space are diffracting LG
beams [1]. They are solutions of the approximate paraxial
Schrödinger equation (6) with @2=@z2 ’ k2 þ 2ik@=@z,
where it is assumed that k2 � k2z � k2, i.e., the transverse
wave number is small. In this approximation, the LG
beams have the form [1]

c LG
‘;n /

�
r

wðzÞ
�j‘j

Lj‘j
n

�
2r2

w2ðzÞ
�

�exp

�
� r2

w2ðzÞþ ik
r2

2RðzÞ
�
eið‘’þkzÞe�ið2nþj‘jþ1Þ�ðzÞ;

(10)

where Lj‘j
n are the generalized Laguerre polynomials,

n ¼ 0; 1; 2; . . . is the radial quantum number, wðzÞ ¼
w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2=z2R

q
is the beam width, which depends on z

due to diffraction, RðzÞ ¼ zð1þ z2R=z
2Þ is the radius of

curvature of the wave fronts, and �ðzÞ ¼ arctanðz=zRÞ.
Here, the characteristic transverse and longitudinal scales
of the beam are the waist w0 (width in the focal plane
z ¼ 0) and the Rayleigh diffraction length zR:

FIG. 2. Transverse probability-density distributions and azimuthal currents, Eqs. (9), for free-space Bessel beams (7) with different
OAM quantum numbers ‘. The dimensionless coordinates X ¼ �x and Y ¼ �y are used. Here and in the following figures, the radii
and thicknesses of the current circles correspond to the positions and values of the maxima (normalized in each panel independently)
of the quantity rj’ that determines the contribution to the kinetic OAM, Eq. (4).
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w0 � 2�=k�1; zR ¼ kw2
0=2 � w0: (11)

Note that the last exponent factor in Eq. (10) describes the
Guoy phase [23]. It yields an additional phase delay

�G ¼ ð2nþ j‘j þ 1Þ� (12)

on the beam propagation from z=zR � �1 to z=zR � 1.
The Gouy phase is closely related to the transverse con-
finement of the modes [37]. The dispersion relation for LG
beams is simply E ¼ @

2k2=2m [cf. Eq. (8)], whereas the
small transverse wave-vector components are taken into
account in the z-dependent diffraction terms.

Clearly, the LG beams (10) are eigenmodes of the OAM

L̂z, with eigenvalues Lz ¼ @‘. At the same time, they are
approximate eigenmodes of p̂z with eigenvalues pz ’ @k,
as long as the diffraction effects are neglected. Calculating
the probability density and the azimuthal component of the
current (2) for the modes (10), we obtain

�LG
j‘j;nðr;zÞ/

�
r2

w2ðzÞ
�j‘j��������Lj‘j

n

�
2r2

w2ðzÞ
���������2

exp

�
� 2r2

w2ðzÞ
�
;

jLG‘;n’ðr;zÞ¼‘
@

mr
�LG
j‘j;nðr;zÞ;

(13)

Figure 3 shows these transverse distributions at z ¼ 0
for the LG modes with different quantum numbers ‘
and n. It is easy to see that the OAM expectation values,
Eqs. (1) and (4), are hLzi ¼ hLzi ¼ @‘.

Up to this point, the properties of the electron vortex
beams are entirely analogous to those of the corresponding
optical beams in free space [1–3], but the presence of a
magnetic field and the electric charge of the electron
introduce an interaction that has no optical counterpart.

III. BESSEL BEAMS IN THE PRESENCE OF AN
AHARONOV-BOHM FLUX

Before we proceed to explicit examples, we describe the
basic fundamental features of the electron OAM in the
presence of a magnetic field BðrÞ. This problem is de-
scribed by the Schrödinger equation (5) with modified
kinetic (or covariant) momentum p̂ ¼ p̂� eA,

Ĥ ¼ p̂2

2m
¼ 1

2m
ðp̂� eAÞ2; (14)

where AðrÞ is the magnetic vector-potential, B ¼ r�A,
and e ¼ �jej is the electron charge. The kinetic momen-
tum characterizes the velocity and mechanical momentum
of the electron; it also determines the probability current
satisfying the continuity equation [15]:

� ¼ jc j2; j ¼ 1

m
ðc jp̂jc Þ ¼ @

m
Imðcrc Þ � e

m
A�:

(15)

Using kinetic momentum p̂, one can define the operator of

kinetic OAM, L̂ ¼ r� p̂, which yields L̂z ¼ �i@@� �
erA� [38,39]. The circulation of the probability current

(15) yields the expectation value of the kinetic OAM
[cf. Eqs. (1) and (4)]:

hLzi ¼ hc jL̂zjc i
hc jc i ¼ m

R
rj�dVR
�dV

: (16)

Note that the kinetic quantities (15) and (16) are invariant
under the gauge transformation

FIG. 3. Transverse probability-density distributions and azimuthal currents, Eqs. (13), for free-space LG beams (10) at z ¼ 0 with
different OAM quantum numbers ‘ and radial indices n ¼ 0 (upper row) and n ¼ 1 (lower row). The dimensionless coordinates
X ¼ x=w0 and Y ¼ y=w0 are used.
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A ! Aþr�; c ! c exp

�
i
e

@
�

�
; (17)

[�ðrÞ is an arbitrary function], and that they describe the
observable mechanical OAM of the electron.

Thus, in the presence of a magnetic field, the canonical
and kinetic OAM, Eqs. (1) and (16), differ from each other.
It is noteworthy that, in the case of an axially symmetric
longitudinal magnetic field, the vector-potential can be
chosen in the form of a vortex, AðrÞ ¼ AðrÞe’, and the

two summands in the second Eq. (15) represent either
cocirculating or countercirculating vortices for vortex
beams. Hence, depending on the mutual direction of the
OAM and the magnetic field, the kinetic OAM (16) is
either enhanced or diminished by the magnetic vector-
potential. As we show below, this effect occurs even in
the Aharonov-Bohm configuration, i.e., with the electron
wave function localized outside the magnetic field.

Let us now consider the electron vortex beams in the
presence of a magnetic-flux line (i.e., an infinitely thin
shielded solenoid) directed along the z axis and containing
the flux�. Such a magnetic field is described by the vortex
vector-potential

AðrÞ ¼ �

2�r
e’; (18)

and the Schrödinger equation (14) in cylindrical coordi-
nates takes the form

� @
2

2m

�
1

r

@

@r

�
r
@

@r

�
þ 1

r2

�
@

@’
� i�

�
2þ @2

@z2

�
c ¼Ec : (19)

Here, � ¼ e�
2�@ is the dimensionless magnetic-flux

parameter.
Aharonov and Bohm found cylindrical eigenmodes of

Eq. (19) [19], which, in fact, represent Bessel beams (7)
with the Bessel-function order shifted by the magnetic-flux
parameter � (see Fig. 4):

c AB
‘ / Jj‘��jð�rÞ exp½ið‘’þ kzzÞ�: (20)

Here, the wave numbers still satisfy the dispersion relation
(8). Equation (20) is also consistent withBerry’s prescription
[20] concerning the shift of the order of the radial function of
the OAM modes. Note that the magnetic-flux parameter �
can be regarded as a vortex charge of the vector-potentialA,
i.e., the Dirac phase [40] calculated for the closed loop
C ¼ fr ¼ const; ’ 2 ð0; 2�Þg and divided by 2�:

�D ¼ e

@

I
C
A � dr ¼ e�

@
¼ 2��: (21)

Evidently, the modified Bessel beams (20) are still

eigenmodes of the canonical OAM operator L̂z, with the
eigenvalues Lz ¼ @‘ and expectation value (1) hLzi ¼ @‘.
At the same time, the kinetic OAM (16) is different.
Calculating the probability density and current (15) for the
Aharonov-Bohm states (20), we arrive at

�AB
j‘��jðrÞ / jJj‘��jð�rÞj2;

jAB‘��ðrÞ ¼
@

m

�
‘� �

r
e’ þ kzez

�
�AB
j‘��jðrÞ:

(22)

Substituting this result into Eq. (16), the expectation value of
the kinetic OAM yields [38,39]

hLzi ¼ @ð‘� �Þ: (23)

Thus, as predicted, depending on the sign of�, the magnetic
flux can either enhance or diminish the kinetic OAM, com-
pared to the canonical OAM value @‘.
Equations (22) and (23) reveal an important general

feature of the OAM solutions in the presence of a magnetic
field. Namely, the vector-potential contribution breaks the
symmetry between the current distributions and OAM in
the modes with opposite vorticities �‘ or opposite mag-
netic fields ��. The observables �, jj’j, and jhLzij are
invariant with respect to the transformation ð‘; �Þ !
ð�‘;��Þ, but not with respect to ð‘; �Þ ! ð�‘; �Þ or
ð‘; �Þ ! ð‘;��Þ. This symmetry breaking resembles the
effect of spin-orbit interaction considered in [10,41], but
here it is caused by the Zeeman-type interaction between

FIG. 4. Transverse probability-density distributions and azimuthal currents, Eqs. (22), for the Aharonov-Bohm Bessel modes (20)
with different OAM quantum numbers ‘ in the presence of a magnetic-flux line of strength � ¼ �1:5. The free-space symmetry
between modes with the opposite ‘ (see Fig. 2) is significantly broken here by the magnetic flux �. The probability currents generate
kinetic OAM (23), which is shown above the panels. The dimensionless coordinates X ¼ �x and Y ¼ �y are used.
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OAM and magnetic field. We do not see any Zeeman
energy or phase in the Aharonov-Bohm modes, because,
in the case of the magnetic-flux line, the wave function (20)
with hLzi � 0 is localized outside the area of the magnetic
field. Nonetheless, the Zeeman-type symmetry is present in
the probability distributions (22) and kinetic OAM (23)
owing to the vector-potential (Aharonov-Bohm) effect.
The possibility of the radial Aharonov-Bohm effect in
the longitudinal geometry with a vortex beam is also
mentioned in [14]. Radial dependencies of the probability
densities and azimuthal currents (22) for different Bessel
beams (20) are shown in Fig. 4. It is seen that the absolute
values of the azimuthal current and kinetic OAM are larger
for parallel OAM and magnetic field (� �‘ > 0) as
compared to the case of antiparallel OAM and field
(� �‘ < 0). A similar symmetry breaking is also observed
in magnetic electronic transitions that underpin the asym-
metric scattering of electron vortex beams on magnetized
samples [6].

It is worth remarking that the absolute value of the
kinetic OAM (23) determines the radius of the Bessel
beam in the Aharonov-Bohm problem. Namely, the radius
of the cylindrical caustic underlying the first radial maxi-
mum of the mode, Rj‘��j, can be written as

�Rj‘��j ¼ @
�1jhLzij ¼ j‘� �j ¼

��������‘��D

2�

��������: (24)

This expression is entirely analogous to the quantization
of caustics for Bessel beams with spin-orbit interaction
[10,41]. In this manner, the Dirac phase from the vector
potential substitutes here the Berry phase from nonparaxial
spins. Note that, in contrast to the Berry phase, the Dirac
phase (21) can be arbitrarily large, and here it is clearly
observable in its full value, not only modulo 2�.

IV. LANDAU LEVELS AND LAGUERRE-GAUSSIAN
BEAMS IN A UNIFORM MAGNETIC FIELD

We are now in a position to consider electron vortex
beams in a uniform magnetic field B ¼ Bez. The problem
is described by the Hamiltonian (14) with the vortex vector
potential

A ¼ Br

2
e’; (25)

which yields the Schrödinger equation

� @
2

2m

�
1

r

@

@r

�
r
@

@r

�
þ 1

r2

�
@

@’
þ i�

2r2

w2
m

�
2 þ @2

@z2

�
c ¼ Ec ;

(26)

where wm ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=jeBjp ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2@=mj�jp
is the magnetic

length parameter, � ¼ eB=2m is the Larmor frequency
corresponding to the g factor g ¼ 1 for OAM [4,10,14],
and we introduce the parameter � ¼ sgnB ¼ �1, which
indicates the direction of the magnetic field. Note that

it is the Larmor frequency �, rather than the cyclotron
frequency !c ¼ eB=m ¼ 2�, that is the fundamental
frequency in this problem [14,42]. This fact is related to the
Larmor’s theorem, conservation of the angular momentum,
and it will be clearly seen below from the quantum picture
of the electron evolution. Solutions of Eq. (26) with well-
defined OAM are known as quantized Landau states
[15,16,43]. Remarkably, they have the form of nondiffract-
ing LG beams (see Fig. 5):

c L
‘;n /

�
r

wm

�j‘j
Lj‘j
n

�
2r2

w2
m

�
exp

�
� r2

w2
m

�
exp½ið‘’þ kzzÞ�:

(27)

The Landau states (27) are identical to the LG beams (10)
with beam waist w0 ¼ wm at z ¼ 0. We also introduce a
longitudinal scale zm determined by the Larmor frequency

and the electron velocity v ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
2E=m

p
: zm ¼ v=j�j. The

transverse magnetic length wm and longitudinal Larmor
length zm represent counterparts of the beam waist and
Rayleigh length of the free-space LG beams, Eqs. (11), but
here they are uniquely determined by the electron energy
and magnetic-field strength:

wm¼ 2
ffiffiffi
@

p
ffiffiffiffiffiffiffiffiffijeBjp ; zm¼2

ffiffiffiffiffiffiffiffiffiffi
2Em

p
jeBj ; i:e:; zm¼

ffiffiffiffiffiffiffiffiffiffi
E

@j�j

s
wm: (28)

In optics, nondiffracting LG modes entirely analogous
to Eq. (27) appear in parabolic-index optical fibers [22].
This observation is related to the fact that the Schrödinger
equation in a uniform magnetic field can be mapped onto a
two-dimensional quantum-oscillator problem [14,16], as
well as paraxial focused beams [44]. The fact that non-
diffracting eigenmodes in the magnetic field are trans-
versely confined (i.e., possess a discrete radial quantum
number n) reflects the boundedness of classical electron
orbits in a magnetic field.
While the diffracting LG beams (10) represent approxi-

mate paraxial solutions of the Schrödinger equation,
Landau LG modes (27) yield exact solutions of the prob-
lem with a magnetic field. In doing so, the wave numbers
satisfy the following dispersion relation:

E ¼ @
2k2z
2m

� @�‘þ @j�jð2nþ j‘j þ 1Þ
	 Ek þ EZ þ EG|fflfflfflffl{zfflfflfflffl}

E?

: (29)

While Ek ¼ @
2k2z=2m is the energy of the free longitudinal

motion, the quantized transverse-motion energy in Eq. (29)
can be written as

E? ¼ @j�jð2N þ 1Þ; with

N ¼ nþ j‘j½1þ sgnð�‘Þ�=2 ¼ 0; 1; 2; . . .
(29

0
)
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Thus, Eq. (290) describes the structure of Landau energy
levels [15,16]. In the form of Eq. (29), we see that the term
EZ ¼ �@�‘ ¼ 	B‘B ð	B ¼ jej@=2mÞ represents the
Zeeman energy of the canonical OAM @‘ in a magnetic
field B. At the same time, the term EG¼@j�jð2nþj‘jþ1Þ
can be associated with the Gouy phase (12) of the diffrac-
tive LG modes. (The Gouy-phase term can be associated
with the transverse kinetic energy of spatially confined
modes, which shifts the propagation constants and eigen-
frequencies of the waveguide and resonator modes
[23,37].) Thus, one can say that the Landau energy of an
electron in a magnetic field is the sum of the Zeeman and
Gouy contributions: E? ¼ EZ þ EG. This observation is
one of the central points in this paper. As we show below,
these two contributions are separately observable and lead
to remarkable behavior of interference patterns in a mag-
netic field.

Obviously, the Landau LG modes (27) are eigenmodes

of the momentum p̂z and the canonical OAM L̂z with
corresponding eigenvalues pz ¼ @kz and Lz ¼ @‘, and
the expectation value (1) hLzi ¼ @‘. Calculating the proba-
bility density and current (15), we obtain

�L
j‘j;nðrÞ /

�
r2

w2
m

�j‘j��������Lj‘j
n

�
2r2

w2
m

���������2

exp

�
� 2r2

w2
m

�
;

jL‘;nðrÞ ¼
@

m

�
1

r

�
‘þ �

2r2

w2
m

�
e’ þ kzez

�
�L
j‘j;nðrÞ:

(30)

It is worth noting that, for countercirculating vortex
expði‘’Þ and vector-potential A’, ‘� < 0, the azimuthal

current changes sign at r ¼ rj‘j 	 j‘jwm=
ffiffiffi
2

p
, i.e., around

the first radial maximum of the LG mode. For r < rj‘j, the
current from the vortex expði‘’Þ prevails, whereas, for
r > rj‘j, the contribution from the vector-potential A’

becomes dominant (see Fig. 5). When integrated, the
vector-potential contribution always exceeds the vortex
one. Indeed, calculating the kinetic OAM (16) for the
Landau state (27), we have

hLzi ¼ @

�
‘þ �

�
2r2

w2
m

	�
: (31)

Here, the quantity�
2r2

w2
m

	
¼ hc j2r2=w2

mjc i
hc jc i ¼ 2

R1
0 ½
j‘jLj‘j

n ð2
2Þe�
2�2
3d
R1
0 ½
j‘jLj‘j

n ð2
2Þe�
2�2
d

¼ ð2nþ j‘j þ 1Þ (32)

determines the squared ‘‘spot size’’ of the LG beam [45].
Hence, the magnetic-field correction to the kinetic OAM
is directly related to the Gouy energy of the LG modes,
Eq. (29), and the resulting OAM (31) becomes

hLzi ¼ @½‘þ �ð2nþ j‘j þ 1Þ�: (33)

Using Eq. (290), this equation can also be written as,

hL zi ¼ @�ð2N þ 1Þ: (33
0
)

FIG. 5. Transverse probability-density distributions and azimuthal currents, Eqs. (30), for the Landau LG modes (27) with different
OAM quantum numbers ‘ in a magnetic field with � ¼ 1. While the probability-density distributions have the same form as for the LG
beams in free space (see Fig. 3), the current distributions differ drastically due to the strong vector-potential contribution. Here, the
integral azimuthal current and kinetic OAM (33) are always positive, independent of the sign of ‘. The dimensionless coordinates
X ¼ x=wm and Y ¼ y=wm are used.
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Hence, the sign of the kinetic OAM is determined solely by
the direction of the magnetic field, �, and is independent
of the vortex charge ‘. Note that the value of hLzi is
independent of the magnitude of the magnetic field, jBj,
because the radius of the beam changes as wm / 1=

ffiffiffiffiffiffiffijBjp
,

Eq. (28), whereas the angular velocity � / jBj, and
Lz / �w2

m. In contrast to classical electron motion in a
magnetic field, which can have zero OAM, Eq. (330) shows
that there is a minimal kinetic OAM of quantum Landau
states: jhLzijmin ¼ @. Note also that, for parallel OAM and
magnetic field,�‘ > 0, the canonical OAM @‘ is enhanced
(in absolute value) by the magnetic-field contribution:
hL>

z i ¼ @½2‘þ �ð2nþ 1Þ�. At the same time, in the op-
posite case of antiparallel OAM andmagnetic field,�‘<0,
the kinetic OAM takes the form hL<

z i ¼ @�ð2nþ 1Þ, i.e.,
becomes independent of the vortex charge ‘. This property
is caused by the partial cancellation of the countercirculat-
ing azimuthal currents produced by the vortex expði‘’Þ
and by the magnetic vector-potential A’.

Using the kinetic OAM (33), the Landau-level structure
(29) can be written as

E ¼ @
2k2z
2m

��hLzi: (34)

In other words, the Landau levels can be described by a
single Zeeman energy, whereas the Gouy term is incorpo-
rated into the kinetic OAM. This finding is consistent with
the actual magnetic moment of the electron in the presence
of a magnetic field. Indeed, the magnetic moment can be
defined using the current as [10]

hMi ¼ e

2

Rðr� jÞdVR
�dV

¼ e

2m
hLi; (35)

so that the Zeeman energy in Eq. (34) is equal to E? ¼
�hMziB. It is worth remarking that the Gouy term in
the Zeeman energy (34) represents a type of ‘‘nonlinear’’
coupling between the vector potential and the magnetic
field. Namely, this term originates from the vector-potential
current jvector-potential ¼ �e�A=m in Eq. (15) interact-

ing with the magnetic field B. Such coupling is possible
because the Hamiltonian (14) contains the quadratic term
e2A2=2m, which is responsible for the Gouy terms.

Figure 5 shows transverse distributions of the probability
densities and currents (30), as well as kinetic OAM (33), for
different Landau LG beams (27). Akin to the Aharonov-
Bohm Bessel beams, these beams demonstrate the asym-
metry of the azimuthal currents jj’j and kinetic OAMs

jhLzij for the modes with opposite vorticities �‘ or oppo-
site magnetic-field directions ��. However, unlike the
Aharonov-Bohm case, the probability distribution � in
Eq. (30) is independent of sgnð‘Þ and �. Correspondingly,
the radii of the Landau LG modes are determined by the
absolute value of the OAM quantum number, j‘j, and radial
quantum number n [cf. Eq. (24)]. In contrast to the
Aharonov-Bohm modes with common field-independent

dispersion (8), for Landau modes, the main features of
the interactions with the magnetic field are contained
in the dispersion relations (29) and (34). These
Landau-Zeeman-Gouy relations bring about phases
strongly dependent on the mode quantum numbers and
the magnetic field; below, we argue that this finding can
be employed in interferometry of electron vortex beams.

V. UNVEILING LANDAU-ZEEMAN-GOUY PHASES
VIA IMAGE ROTATIONS

In the typical Landau-level problems, the z propagation
is eliminated and the quantized energy levels (29) underlie
the transverse electron transport [17,18]. In contrast, here
we consider the LG vortex modes (27) and their super-
positions generated in a system with a fixed electron energy
E and free propagation along the z axis. Then, different
modes will have different longitudinal wave numbers kz
satisfying the dispersion relation (29) and (34). Assuming
paraxial electrons, E? � E, wm � zm, one can represent

the wave number as kz ’ kþ�kz, where @k ¼ ffiffiffiffiffiffiffiffiffiffi
2Em

p
and

�kz ¼ �½�‘þ ð2nþ j‘j þ 1Þ�=zm: (36)

It is seen from here that the Larmor length zm, Eq. (28),
determines the characteristic longitudinal scale of the
beam evolution. On propagation along the z axis, the
magnetic-field correction to the longitudinal wave vector,
Eq. (36), yields an additional phase,

�LZG ¼ �kzz: (37)

Equations (36) and (37) describe the vortex- and field-
dependent phase, which we call the Landau-Zeeman-
Gouy phase because of its intimate relation to the
Landau levels, Zeeman coupling, and Gouy phase. The
phase described by Eqs. (36) and (37) is one of the central
results of this paper, which reveals itself in a rich evolution
of interference patterns in a magnetic field.
Let us first consider an ‘‘OAM-balanced’’ superposition

of two LG modes (27) with the same radial number n but
opposite vortex charges �‘:

c ð1Þ ¼ c L
�‘;n þ c L

‘;n: (38)

This superposition has zero net canonical OAM, hLzi ¼ 0,
and is characterized by a ‘‘flowerlike’’ symmetric pattern

with 2j‘j radial petals [24,46]: jc ð1Þj2 / cos2ð‘’Þ (see
Fig. 6). The difference of phases (37) for the modes

c L
�‘;n is described by the Zeeman terms ��ð1Þ

LZG ¼

‘��0, �0 ¼ z=zm. These phases modify the azimuthal
vortex dependencies as exp½�i‘’�! exp½�i‘ð’���0Þ�
and result in the rotation of the interference pattern by
the angle

�’ ¼ �z=zm: (39)

Since z=zm ¼ j�jz=v, the rotation (39) is characteri-
zed by the Larmor frequency j�j. Examples of the
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Larmor-frequency rotations (39) are shown in Fig. 6.
Mathematically, this rotation is analogous to the optical-
image rotations caused by the Berry phase [28–32] or
rotational-Doppler (Coriolis) effect [33–35]. Indeed, all
these phenomena are described by ‘-dependent phases,
which are similar in the rotational and magnetic-field
systems according to Larmor’s theorem.

As another example, we consider an ‘‘OAM-
unbalanced’’ superposition of two Landau modes (27)
with the same number n and vortex charges 0 and ‘:

c ð2Þ ¼ c L
0;n þ ac L

‘;n; (40)

where a is some constant amplitude. Such superposition
has a nonzero net canonical OAM, hLzi / ‘, and is
characterized by a pattern with j‘j ‘‘off-axis vortices’’
[24,25,33,46,47] (see Fig. 7). Landau modes with different
j‘j involve the Gouy term in the difference of phases
(36) and (37). Specifically, in the superposition (40),

the mode c L
‘;n acquires an additional phase ��ð2Þ

LZG¼
�ð‘�þj‘jÞ�0, as compared with the c L

0;n mode. From

here, it follows that the superposition (40) characterized by
a parallel OAM and magnetic field, �‘ > 0, exhibits a
rotation of its interference pattern by the angle

�’>
LZG ¼ 2�z=zm; (41a)

whereas the superposition with an antiparallel OAM and
magnetic field, �‘ < 0, shows no rotation at all:

�’<
LZG ¼ 0: (41b)

Equation (41a) describes the rotation of the image with the
double-Larmor (i.e., cyclotron) frequency !c ¼ 2j�j,
which corresponds to the cyclotron orbiting of the classical
electron in a magnetic field. At the same time, no-rotation
of Eq. (41b) should be associated with a classical trajectory
parallel to the magnetic field (see Fig. 9). As we have
pointed out above, in this case, the kinetic quantum
OAM becomes vortex-independent: hL<

z i ¼ @�ð2nþ 1Þ.
Examples of image rotations described by Eqs. (41) are
shown in Figs. 7 and 8.

The image rotation in an external magnetic field is well

known in electron microscopy [48]. There, it is associated

with the classical cyclotron motion, and it is assumed that

the rate of rotation always corresponds to the cyclotron

frequency !c ¼ 2j�j. However, from the above analysis,

it follows that the rotation of the quantum-electron inter-

ference patterns can be drastically different and can dem-

onstrate either Larmor-, cyclotron-, or even zero-frequency

rotations, Eqs. (39) and (41). (For more complicated super-

positions [24,49], the rotation rate can be between these

FIG. 6. Evolution of the OAM-balanced superpositions (38) with ‘ ¼ 1 (upper panels) and ‘ ¼ 3 (lower panels) in the magnetic field
with � ¼ 1. Probability densities and currents are shown. The rotation on propagation along z, Eq. (39), corresponds to the Larmor
frequency j�j. The dimensionless coordinates X ¼ x=wm, Y ¼ y=wm, and Z ¼ z=zm are used.
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frequencies and the evolution can be accompanied by

deformations of the image.)
Importantly, this rich rotational dynamics is fully con-

sistent with the classical equations of motion in a magnetic
field. According to the Ehrenfest theorem, the expectation
values of the electron coordinates and momentum must
obey the classical equations of motion:

dhri
dt

¼ hpi
m

;
dhpi
dt

¼ e

m
hpi �B; (42)

where hri ¼ hc jrjc i=hc jc i characterizes the coordinates
of the centroid of the electron states, whereas hpi ¼
hc jp̂jc i=hc jc i is the expectation value of the kinetic

momentum p̂ ¼ p̂� eA. For a single LG mode (27), we

have

hpi ¼ hpi ¼ @kzez; hri ¼ zez; (43)

which corresponds to a rectilinear motion of the electron
along the magnetic field with velocity v ¼ pz=m. A simi-
lar rectilinear motion of the centroid takes place for
‘‘balanced’’ superpositions (38). However, any superposi-
tion involving eigenmodes with OAM quantum number ‘
differing by �1 produces a transverse shift of the centroid
and a simultaneous tilt of the beam in the orthogonal

direction [33,47,50,51]. Such state acquires, e.g., shift
hxi � 0 and tilt hpyi � 0 (which generate extrinsic OAM

hLzi ¼ hxihpyi [41]), and the trajectory of the centroid

becomes helical along the cyclotron orbit, Eqs. (42).
Figure 9(a) shows examples of numerically calculated
centroid trajectories for the superpositions (40) with
‘ ¼ �1 and � ¼ 1. Such superpositions represent off-
axis vortices with shifted centroids. Strikingly, the cent-
roids of similar superpositions with ‘� > 0 and ‘� < 0
demonstrate, respectively, the cyclotron orbiting and recti-
linear propagation along the magnetic field. Such behavior
is explained by the fact that, in the case ‘� < 0, the
transverse component of the kinetic momentum vanishes,
hp?i ¼ 0, whereas hp?i � 0 in the ‘� > 0 case. (At the

same time, the canonical momentum has a nonzero trans-
verse component, hp?i � 0, in both cases.) Figure 9(b)
shows that the addition and cancellation of the codirecting
and counterdirecting current contributions from the vortex
expði‘’Þ and from the vector-potential A’ underpin such a

remarkable behavior.
In general, the rotation of the interference pattern and

the orbiting of its centroid can be unrelated to each
other. For instance, we have calculated the evolution
of the superposition c ¼ c L�2;0 þ c L�1;0 þ c L

1;0 þ c L
2;0

FIG. 7. Evolution of the superpositions (40) with a ¼ 2, ‘ ¼ 1 (upper panels) and ‘ ¼ 3 (lower panels) in the magnetic field with
� ¼ 1. Probability densities and currents are shown. The rotation on propagation along z, Eq. (41a), corresponds to the double-Larmor
(i.e., cyclotron) frequency !c ¼ 2j�j. The double rotation is caused by the addition of the transverse-current contributions from the
vortex expði‘’Þ and from the vector-potential A’ (see Fig. 9). The dimensionless coordinates X ¼ x=wm, Y ¼ y=wm, and Z ¼ z=zm
are used.
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FIG. 8. Same as in Fig. 7, but for opposite vortex charges ‘ ¼ �1 and ‘ ¼ �3 (or opposite magnetic field, � ¼ �1). Propagation
without rotation corresponds to Eq. (41b) and is explained by the cancellation of the transverse-current contributions from the vortex
expði‘’Þ and from the vector-potential A’ (see Fig. 9).

FIG. 9. (a) Trajectories of the centroids of superpositions (40) with ‘ ¼ 1 and ‘ ¼ �1 in a magnetic field with � ¼ 1. These
trajectories satisfy the classical equations of motion (42) and correspond to evolutions shown in the upper panels of Figs. 7 and 8.
(b) Transverse distributions of the probability densities � and currents jvortex ¼ ð@=mÞ Imðc �rc Þ and jvector-potential ¼ �ðe=mÞA�,

where jvortex þ jvector-potential ¼ j, Eq. (15). In the cases ‘� > 0 (‘� < 0), the addition (cancellation) of the vortex and vector-potential

currents yields a nonzero (vanishing) transverse momentum hp?i � 0 (hp?i ¼ 0). These facts explain the cyclotron orbiting and

rectilinear propagation of the superpositions with ‘� > 0 and ‘� < 0, respectively.
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(not shown here), and found that, while the image follows
the Larmor-frequency rotation due to the Zeeman effect for
the opposite-‘ modes, the centroid orbits with the cyclo-
tron frequency. Naturally, such two-frequency evolution is
accompanied by deformations of the interference pattern.
In all cases, the interference of the LG modes (27) with the
Landau-Zeeman-Gouy phases (36) and (37) underpins the
evolution of any mixed electron state, whereas its centroid
follows the classical equations of motion (42). In this
manner, the quantum-interference picture complements
the classical dynamics and significantly enriches the elec-
tron evolution in magnetic fields.

VI. CONCLUSIONS

We have considered stationary electron vortex modes
propagating in an external magnetic field. Although, for-
mally, these modes (for the Landau and Aharonov-Bohm
problems) have been known before, the discovery of free
electron vortex beams gives a new twist to these classical
problems. Indeed, traditionally, the Landau and Aharonov-
Bohm modes were mostly considered as hidden (some-
times auxiliary) states underlying the transverse transport
effect in magnetic fields, and their OAM features have been
marginally investigated. In contrast, here we have consid-
ered free propagation of the vortex-beam modes along the
magnetic field (see Fig. 1) and have paid particular atten-
tion to their canonical and kinetic OAM properties, as well
as to the probability density and current distributions. We
have shown that it is natural to associate the Aharonov-
Bohm and Landau states with the free Bessel and
Laguerre-Gaussian vortex beams, which properties are
modified by the presence of the magnetic field. This obser-
vation opens up a new avenue of investigations into these
fundamental quantum states using electron vortex beams.

We have associated specific features of the Aharonov-
Bohm and Landau modes with the coupling between the
OAM from the vortex wave function and an external
magnetic field. In all cases, this coupling breaks the
symmetry between the vortex beams with opposite OAM
values and brings about a rich variety of observable

phenomena. The main manifestations of the
OAM–magnetic-field coupling in the Aharonov-Bohm
and Landau problems are summarized in Table I.
For the Aharonov-Bohm Bessel states, the symmetry

breaking is sharply pronounced in the probability-density
distributions (see Fig. 4), while the phase and propagation
characteristics are not affected by the magnetic-flux line.
This result offers a novel approach to the Aharonov-Bohm
effect, where the Dirac phase can be detected via measure-
ments of the radius of the vortex beams propagating along
the flux line [see Eq. (24)] [52].
In contrast, the probability density of the Landau LG

modes is practically unaffected by the presence of the
magnetic field, whereas the currents are strongly asymmet-
ric and the resulting kinetic OAM is determined solely by
the sign of the magnetic field and the quantum numbers of
the modes (see Fig. 5). Furthermore, the OAM–magnetic-
field interaction manifests itself in the dispersion relation
for the propagation constant kz, which underpins the
Landau energy levels. We have revealed an intimate con-
nection between the structure of the Landau levels, kinetic
OAM, the Zeeman energy, and the Gouy phase, known in
optics for diffracting LG beams. Together, they bring about
a rich propagation dynamics of superpositions of the LG
modes in a magnetic field (Figs. 6–9). In particular, we
have found that, depending on the OAM properties of the
superposition, it can rotate in a magnetic field with a rate
corresponding to either the Larmor, cyclotron, or zero
frequency.
The rotational interference effects described here de-

serve particular attention. One can find their analogues
and manifestations in strikingly contrasting situations.
Note that, according to Larmor’s theorem, a uniform
magnetic field is equivalent to a rotation of the reference
frame with the Larmor angular frequency. Then, subtract-
ing the Larmor rotation from the dynamics shown in
Figs. 6–9, one uncovers its similarity with free-space prop-
agational dynamics. Specifically, the balanced flowerlike
superposition of Fig. 6 would undergo no rotation, whereas
the ‘‘unbalanced’’ superpositions with ‘‘off-axis vortices’’

TABLE I. Summary of the main features of the OAM–magnetic-field coupling revealed in the Aharonov-Bohm (AB) and Landau
stationary propagating modes. These modes represent the Bessel and LG beams in the presence of a magnetic-flux line and uniform
magnetic field, respectively.

Free-space

analogues Kinetic OAM Probability density Azimuthal current Phase (dispersion)

Evolution

(propagation)

AB

states

Bessel

beams

@ð‘� �Þ;
determines the beam

radius, Eq. (24)

Asymmetric

with respect to

‘ $ �‘, B $ �B

Asymmetric

with respect to

‘ $ �‘, B $ �B

B and ‘
independent

Free

propagation

Landau

states

LG

beams

@½‘þ �ð2nþ j‘j þ 1Þ�
¼ @�ð2N þ 1Þ;
determines Landau

levels (29) and (34) and

phase (36) and (37)

Symmetric

with respect to

‘ $ �‘, B $ �B

Asymmetric

with respect to

‘ $ �‘, B $ �B

B and ‘
dependent

Landau levels

¼ Zeeman energy

þ Gouy phase

Image

rotations:

(i) Larmor,

(ii) cyclotron,

or (iii) zero rates
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of Figs. 7 and 8 would demonstrate opposite rotations
with the same angular velocities. Such behavior precisely
coincides with the Gouy-phase behavior observed in opti-
cal experiments with analogous superpositions of the dif-
fracting LG beams [24–27]. Another remarkable analogy
can be found in rotating trapped Bose-Einstein condensates
(BEC) and superfluids. (For a review, see [53].) There, the
rotation of the trap can be associated with an external
magnetic field, and the Landau problem naturally arises
accompanied by the vortex excitations. According to our
Fig. 5, the modes with minimal Landau energy E?min ¼
@j�j [and kinetic OAM hLzimin ¼ @)] are the LG modes
with n ¼ 0 and ‘ ¼ 0;�1;�2; . . . (assuming � ¼ 1).
Superpositions (40) of these lowest-energy negative-vortex
modes yield j‘j off-axis vortices with no rotation in the
field (see Fig. 8). This is the type of stable vortex excita-
tions that appear in rotating Bose-Einstein condensates and
superfluids; see the comparison in Fig. 10 [53–56].

We anticipate that the theory laid out here will stimulate
experimental observations of the Aharonov-Bohm and
Landau modes using electron vortex beams. The theory
enables one to investigate novel manifestations of the
Aharonov-Bohm effect as well as the Zeeman and Gouy
phenomena that underlie the Landau levels and corre-
sponding kinetic OAM in a magnetic field. In this paper,
we have considered scalar electrons, neglecting their vec-
tor (spin) properties. The effects of the spin evolution in the
magnetic field can be readily added to this picture because

the spin-orbit coupling is negligible for paraxial electrons
in a uniform field [10,12].
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Öhberg, and A. S. Arnold, Optical Ferris Wheel for
Ultracold Atoms, Opt. Express 15, 8619 (2007).

[47] G. Mollina-Terriza, J. P. Torres, and L. Torner,
Management of the Angular Momentum of Light:
Preparation of Photons in Multidimensional Vector
States of Angular Momentum, Phys. Rev. Lett. 88,
013601 (2001).

[48] M. De Graef, Introduction to Conventional Electron
Microscopy (Cambridge University Press, Cambridge,
England, 2003).

[49] J. Courtial, Self-Imaging Beams and Gouy Effect, Opt.
Commun. 151, 1 (1998).

[50] M.V. Vasnetsov, V.A. Pas’ko, and M. S. Soskin, Analysis
of Orbital Angular Momentum of a Misaligned Optical
Beam, New J. Phys. 7, 46 (2005).

[51] M. P. J. Lavery, G. C. G. Berkhout, J. Courtial, and M. J.
Padgett, Measurement of the Light Orbital Angular
Momentum Spectrum Using an Optical Geometric
Transformation, J. Opt. 13, 064006 (2011).

[52] A vortex beam propagating along an infinite flux line is a
rather theoretical concept. In practice, one can consider
scattering of the electron beam by a thin longitudinal

ferromagnetic cylinder. In this case, the two ends of the
cylinder act as magnetic monopoles with opposite charges,
so that the transition from free-space solutions to the
Aharonov-Bohm modes is equivalent to the scattering by
a single magnetic monopole. This interesting problem will
be considered elsewhere.

[53] A. L. Fetter, Rotating Trapped Bose-Einstein Condensates,
Rev. Mod. Phys. 81, 647 (2009).

[54] E. J. Yarmchuk, M. J. V. Gordon, and R. E. Packard,
Observation of Stationary Vortex Arrays in Rotating
Superfluid Helium, Phys. Rev. Lett. 43, 214 (1979).

[55] K.W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard,
Vortex Formation in a Stirred Bose-Einstein Condensate,
Phys. Rev. Lett. 84, 806 (2000).

[56] B. P. Anderson, P. C. Haljan, C. E. Wieman, and E.A.
Cornell, Vortex Precession in Bose-Einstein Condensates:
Observations with Filled and Empty Cores, Phys. Rev. Lett.
85, 2857 (2000). Here, the Magnus-force precession of the
off-axis vortices in rotating supermedia is caused by the
radial inhomogeneity and is much slower than the rotation
of the trap.

[57] C. Greenshields, R. L. Stamps, and S. Franke-Arnold,
Vacuum Faraday Effect for Electrons, New J. Phys. 14,
103040 (2012).

ELECTRON VORTEX BEAMS IN A MAGNETIC FIELD: A . . . PHYS. REV. X 2, 041011 (2012)

041011-15

http://dx.doi.org/10.1364/OE.15.008619
http://dx.doi.org/10.1103/PhysRevLett.88.013601
http://dx.doi.org/10.1103/PhysRevLett.88.013601
http://dx.doi.org/10.1016/S0030-4018(98)00069-8
http://dx.doi.org/10.1016/S0030-4018(98)00069-8
http://dx.doi.org/10.1088/1367-2630/7/1/046
http://dx.doi.org/10.1088/2040-8978/13/6/064006
http://dx.doi.org/10.1103/RevModPhys.81.647
http://dx.doi.org/10.1103/PhysRevLett.43.214
http://dx.doi.org/10.1103/PhysRevLett.84.806
http://dx.doi.org/10.1103/PhysRevLett.85.2857
http://dx.doi.org/10.1103/PhysRevLett.85.2857
http://dx.doi.org/10.1088/1367-2630/14/10/103040
http://dx.doi.org/10.1088/1367-2630/14/10/103040

