
Instabilities of the AA-Stacked Graphene Bilayer

A.L. Rakhmanov,1,2,3 A.V. Rozhkov,1,2 A. O. Sboychakov,1,2 and Franco Nori1,4

1Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198, Japan
2Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow, Russia

3Moscow Institute for Physics and Technology (State University), 141700 Moscow Region, Russia
4Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA

(Received 21 November 2011; published 13 November 2012)

Tight-binding calculations predict that the AA-stacked bilayer graphene has one electron and one hole

conducting band, and that the Fermi surfaces of these bands coincide. We demonstrate that as a result of

this degeneracy, the bilayer becomes unstable with respect to a set of spontaneous symmetry violations.

Which of the symmetries is broken depends on the microscopic details of the system. For strong on-site

Coulomb interaction we find that antiferromagnetism is the most stable order parameter. For an on-site

repulsion energy typical for graphene systems, the antiferromagnetic gap can exist up to room

temperature.
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Introduction.—Graphene is a zero-gap semiconductor
with a host of unusual electronic properties [1–3]. In recent
years, bilayer graphene became a subject of numerous
studies, partly driven by the desire to create graphene-
based materials with an electronic gap. Moreover, bilayer
graphene is an interesting material in its own right. Most
efforts have focused on the study of the AB-stacked bilayer
[4] for which high-quality samples are available [5,6].
Lately, the experimental realization of the AA-stacked
graphene has been reported [7,8]. In this Letter, we discuss
the electronic properties of AA-stacked bilayer graphene
(AA-BLG), which, until recently, received very limited
theoretical attention [8–12].

It is known that the AA-BLG tight-binding spectrum
has four bands, of which one electron band and one hole
band cross the Fermi energy [10]. The Fermi surfaces of
these two bands coincide [9,10]. This feature has drastic
consequences for the electronic properties of the bilayer
because it enables several electron and electron-phonon
instabilities, including: antiferromagnetism (AFM),
current-ordered states, bilayer exciton condensation, and
instability toward the shear shift of the layers. The type of
ground state order depends on the microscopic details of
the system and can be changed by applying stress, external
pressure, the presence or absence of the substrate, etc.
Below we will limit our attention to the AFM order and
the structural instability with respect to the shear layer shift
(shear instability for short). These two choices are justified.
The on-site Coulomb repulsion is the strongest interaction
in the AA-BLG system, and this interaction is sufficient to
guarantee the stability or metastability of the AFM order.
As for the shear instability, there are experimental [13,14]
and numerical [15] suggestions that AA-stacked graphene
multilayers may be unstable with respect to the mechanical
displacement of the layers with respect to each other.
However, our calculations show that the shear instability

driven by the conducting electrons seems to have a cross-
over temperature which is too low to be experimentally
observable.
The model.—In the AA-BLG, carbon atoms of the upper

layer are located on top of the equivalent atoms of the
bottom layer. The system is modeled by the tight-binding
Hamiltonian for pz electrons of carbon atoms

H0 ¼ �t
X

hnmii�
ayni�bmi� � t0

X
n�

ayn1�an2� � t0
X
m�

bym1�bm2�

� tg
X

hnmi�
ðayn1�bm2� þ ayn2�bm1�Þ þ H:c: (1)

Here ayni� and ani� (bymi� and bmi�) are creation and
annihilation operators of an electron with spin � in the
layer i ¼ 1, 2 on the sublattice A (B) at site n 2 A
(m 2 B). The amplitude t (t0) in Eq. (1) describes the
in-plane (interplane) nearest-neighbor hopping, while tg
corresponds to the interlayer next-nearest neighbor hop-

ping. The interplane distance in bilayer graphene c �
3:3 �A [8], and it is larger than the in-plane carbon-carbon

distance a � 1:4 �A. Thus, the in-plane hopping integral t
is larger than the interplane one, t0. For calculations we
will use the characteristic values t � 2:57 eV, t0 �
0:36 eV, tg � �0:03 eV [16]. We omit next-next-nearest

neighbor hopping between A (B) sites since the corre-
sponding term only shifts the zero-energy level.
The elementary unit cell of bilayer graphene consists of

four atoms. It is convenient to introduce the bispinors

c y
k� ¼ ðc y

kA�; c
y
kB�Þ, with spinor components c y

kA� ¼
ðayk1�; ayk2�Þ and c y

kB� ¼ e�i’kðbyk1�; byk2�Þ, where ’k ¼
argffkg, and

fk ¼ 1þ 2 exp

�
3ikxa

2

�
cos

�
kya
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3

p
2

�
: (2)
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The components of the spinors c y
kA�, c

y
kB� have differ-

ent values of the layer index.
Let us define a set of Pauli matrices �̂� acting on the

layer index, and a second set �̂� of Pauli matrices acting on
the sublattice index. In terms of these matrices, the

bilayer Hamiltonian in k-space can be written as Ĥ0k ¼
�½t0�̂x þ ðtþ tg�̂xÞ�̂xjfkj�, or, explicitly

Ĥ0k ¼ �

0 t0 tjfkj tgjfkj
t0 0 tgjfkj tjfkj

tjfkj tgjfkj 0 t0

tgjfkj tjfkj t0 0

0
BBBBB@

1
CCCCCA: (3)

The phase shift e�i’k introduced in the definition of the

spinors c y
kB� makes Ĥ0k real. The Hamiltonian (3) is

invariant under the transposition of the sublattices and of

the graphene layers. That is, ½�̂x; Ĥ0k� ¼ ½�̂x; Ĥ0k� ¼ 0.
Thus, the eigenvectors of the matrix (3) can be classified
according to the quantum numbers � and �, which char-
acterize the eigenvector parity under �x and �x transfor-
mations. Using these symmetries it is easy to find the

transformation Û which diagonalizes Ĥ0k:

Û ¼ 1

2
ð�̂x þ �̂zÞð�̂x þ �̂zÞ ¼ Û�1: (4)

The electron spectrum "ðsÞk consists of four bands, and each
band has a unique value of the pair (�, �):

"ð1Þk ¼ �t0 � ðtþ tgÞjfkj; � ¼ 1; � ¼ 1; (5)

"ð2Þk ¼ þt0 � ðt� tgÞjfkj; � ¼ 1; � ¼ �1; (6)

"ð3Þk ¼ �t0 þ ðtþ tgÞjfkj; � ¼ �1; � ¼ 1; (7)

"ð4Þk ¼þt0 þ ðt� tgÞjfkj; �¼�1; �¼�1: (8)

The band structure is shown in Fig. 1. The bands s ¼ 2
and s ¼ 3 cross the Fermi energy level near the Dirac

point K, located at momentum K ¼ 2�f ffiffiffi
3

p
; 1g=ð3 ffiffiffi

3
p

aÞ
and the Dirac point K0 located at momentum K0 ¼
2�f ffiffiffi

3
p

;�1g=ð3 ffiffiffi
3

p
aÞ [see Fig. 1(b)]. The most interesting

feature of this band structure is that at half-filling (which
corresponds to undoped AA-BLG) the Fermi surfaces
of both bands coincide. The Fermi level is "F ¼ tgt0=t �
�0:004 eV, while the Fermi surfaces are given by the
equation jfkj ¼ t0=t. For t0=t � 1, one can expand the
function jfkj near the Dirac points and demonstrate that
the Fermi surface consists of six arcs inside the first
Brillouin zone with the radius kr ¼ 2t0=ð3taÞ [Fig. 1(c)].

The matching of the Fermi surfaces is quite stable
against changes in the tight-binding Hamiltonian. First, it
survives if we add more distant hopping terms to H0.
Moreover, even layer-asymmetric systems (e.g., similar to
the single-side hydrogenated graphene [17]) possess this
property. However, it is clear that the different types of

interactions (e.g., electron-electron, electron-phonon) can
destabilize such a degenerate spectrum.
Mean-field Hamiltonian.—The presence of two bands

with identical Fermi surfaces makes the system unstable
with respect to spontaneous symmetry breaking. We will
demonstrate that the Hamiltonian symmetries �x and �x
can be used to narrow the possible symmetry choices.
In a mean-field approach, the two-particle interaction

operator Hint / c yc yc c is replaced by a single-particle
operator �Hint / hc yc ic yc , where the average hc yc i
represents different types of nonsuperconducting order
parameters. The values of these order parameters are found
from the self-consistency conditions. To be at least meta-
stable, the order parameter must open a gap at the Fermi
level. The most general form of �Hint, which can open an
insulating gap, is

�Hint¼
X
k�

c y
k��Ĥk�c k�;

�Ĥk�¼
X
�

ð��
ABk��̂�þ��

12k��̂�Þþ
X
��

���
k��̂��̂�;

(9)

where ��
ABk�, ��

12k�, and ���
k� are real-valued order

parameters, which, in general, are functions of k. To
open a gap, the corresponding term in �Hint must couple

the conducting bands "ð2Þk and "ð3Þk . Observe that these

bands have unequal values of � and � [see Eqs. (6) and

(7)]. Therefore, ���
k� couples the bands and opens the gap

only when �, � � x. Otherwise, ���
k� commutes either

with �x or �x, and, consequently, do not open the gap.
To calculate the renormalized bands near the Fermi level,

we should diagonalize the matrix Ĥk�¼ Ĥ0kþ�Ĥk�.

Transforming Ĥk� with the Û given by Eq. (4), we find

FIG. 1 (color online). (a) The band structure of the AA-stacked

bilayer graphene. (b) The k-dependence of the spectra "ðsÞk near

the Dirac point K located at momentum K; k ¼ Kþ �kyey.

Bands s ¼ 2 and s ¼ 3 intersect at the Fermi level ("F �
�0:004 eV). (c) Solid (green) arcs show six fragments of the
Fermi surface in the first Brillouin zone.
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Û �1Ĥk�Û ¼

. .
. � � � � � � � � �
..
.

"ð2Þk þ �"ð2Þk� �k�
..
.

..

.
��

k� "ð3Þk þ �"ð3Þk�
..
.

� � � � � � � � � . .
.

0
BBBBBBBB@

1
CCCCCCCCA
;

(10)

where �"ð2Þk� ¼ �x
ABk� ��x

12k� ��xx
k�, �"ð3Þk� ¼

��x
ABk� þ�x

12k� ��xx
k�, and �k� ¼ �zz

k� þ �yy
k� þ

ið�zy
k� þ�yz

k�Þ. Other elements of this matrix are unimpor-

tant for further consideration. Solving the secular equation
for the 2� 2 matrix in Eq. (10), we obtain the renormal-
ized spectrum of the bands with s ¼ 2, 3:

Eð2;3Þ
k� ¼1

2
ð"ð2Þk þ�"ð2Þk�þ"ð3Þk þ�"ð3Þk�Þ

�1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð"ð2Þk þ�"ð2Þk��"ð3Þk ��"ð3Þk�Þ2þ4j�k�j2

q
: (11)

The gap between renormalized bands is equal to �0 ¼
2 minkj�k�j. We see that the contribution to the gap
comes only from the �zz

k�, �yy
k�, �zy

k�, and �yz
k� order

parameters, which break down both sublattice and layer
symmetries. It is easy to show that other elements of the
full 4� 4 matrix (10) give only a second-order contribu-
tion to this result. Neglecting other order parameters, the

matrix �Ĥk� can be written in the form

�Ĥk� ¼

�zz
k� �i�yz

k� �i�zy
k� ��yy

k�

i�yz
k� ��zz

k� �yy
k� i�zy

k�

i�zy
k� �yy

k� ��zz
k� i�yz

k�

��yy
k� �i�zy

k� �i�yz
k� �zz

k�

0
BBBBB@

1
CCCCCA: (12)

Here, all gap-inducing order parameters allowed by the
symmetry are included. To obtain the ground state, we have
to calculate the system energy and minimize it by varying
the �’s. However, this procedure is prohibitively complex
mathematically. In practice, we specify a particular inter-
action and the types of order parameters consistent with it.
Then we calculate the system energy for each order pa-
rameter. The parameter with the lowest energy corresponds
to the ground state. Below we will show that �zz

k� can be

related to the G-type antiferromagnetic order parameter
(i.e., each spin is antiparallel to all its nearest-neighboring
spins) produced by the on-site Coulomb repulsion. The
�yy

k� can be attributed to the instability toward the homo-
geneous shift of one graphene layer with respect to another.
The order parameters �zy

k� and �yz
k� can correspond, e.g.,

to excitons, which produce a current flowing inside and
between the layers, respectively.

Antiferromagnetic state.—It is known that the Coulomb
interaction among electrons in graphene is rather strong
and the value of the on-site Coulomb repulsion energyU	
10 eV [18]. However, graphene remains semimetal since

the electron density of states at the Fermi level is zero. In
contrast, the AA-BLG has a Fermi surface, and the density
of states at the Fermi level is finite. Then, one can expect
that the role of electron-electron interactions in AA-BLG is
more important and it can affect the ground state. Here we
only consider the on-site Coulomb interaction. We write
the Hubbard Hamiltonian

Hint ¼ U

2

X
ni�

nniA�nniA �� þU

2

X
mi�

nmiB�nmiB ��; (13)

where nniA� ¼ ayni�ani�, nmiB� ¼ bymi�bmi�, and �� ¼
��. It is known that the ground state of Hubbard-like
models at half-filling can be antiferromagnetic. For the
AA-BLG symmetry, three types of AFM ordering (having
different spin arrangement inside the unit cell) are possible.
However, only the G-type AFM order opens a gap at the
Fermi level even if the interaction is arbitrarily small.
Two other types of AFM order do not break down both
sublattice and layer symmetries and, therefore, they do not
open a gap at the Fermi level. Consequently, they are
unstable for small U (and metastable for large U).
In mean-field, nnia� (a ¼ A, B) in Eq. (13) has the

form nnia� ¼ nia� þ �nnia�, where nia� ¼ hnnia�i and
�nnia� ¼ nnia� � nia�. The mean-field Hamiltonian is
obtained then by neglecting the terms quadratic in
�nnia�. For G-type AFM, the spin-up and spin-down elec-
tron densities are redistributed as n1A" ¼ n2B" ¼ n2A# ¼
n1B# ¼ ð1þ �nÞ=2, and n1A# ¼ n2B# ¼ n2A" ¼ n1B" ¼
ð1� �nÞ=2, while the total on-site electron density nia� þ
nia �� remains equal to unity. Thus, the mean-field interac-
tion Hamiltonian has the form of Eq. (9) with �zz

k" ¼ ��,

�zz
k# ¼ þ�, and � ¼ U�n=2. Other terms in Eq. (9) are

equal to zero.

The eigenvalues EðsÞ
k� and eigenvectors �ðsÞ

pk� of the ma-

trices Ĥk� ¼ Ĥ0k þ �Ĥk� can be found analytically. The
spectra of spin-up and spin-down electrons are equal. The

bands 2 and 3 are given by Eq. (11) with �"ð2Þk� ¼ �"ð3Þk� ¼
0, and j�k�j ¼ �. The bands 1 and 4 are given by Eq. (11)

where "ð2;3Þk is replaced by "ð1;4Þk . When the gap is open, the

lower two bands are filled, while the upper two are empty.
To find the value of the gap, one needs to solve the self-
consistent equation for �n ¼ 2�=U:

n1A" ¼ 1

2
þ �

U
¼ X

s¼1;2

Z dk

VBZ

j�ðsÞ
1k"j2

¼ 1

2
þ 1

4

Z dk

VBZ

2
4 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ ðtjfkj þ t0Þ2
p

þ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ ðtjfkj � t0Þ2

p
3
5; (14)

where VBZ ¼ 8�2=ð3 ffiffiffi
3

p
a2Þ is the area of the first Brillouin

zone. We introduce the dimensionless density of states

PRL 109, 206801 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

16 NOVEMBER 2012

206801-3



�0ð	Þ ¼
R
dk�ð	 � jfkjÞ=VBZ [�0ð	Þ � 0 for 0< 	 < 3],

which is related [1] to the graphene density of states �grðEÞ
according to �grðEÞ ¼ �0ðjE=tjÞ=t. Equation (14) then be-

comes

Z 3

0
d	

2
4 �0ð	Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ ð	 þ 	0Þ2
p þ �0ð	Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ ð	 � 	0Þ2
p

3
5 ¼ 4t

U
;

(15)

where � ¼ �=t and 	0 ¼ t0=t. The integral of the second
term in the left-hand side of Eq. (15) diverges logarithmi-
cally when � ! 0. In the limit of small �, from Eq. (15)
one can derive

� ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t0ð3t� t0Þ

q
exp

�
� 4t�U
ð	0Þ

2U�0ð	0Þ
�
; (16)

where


ð	0Þ ¼
Z 3

0
d	

�
�0ð	Þ
	 þ 	0

þ �0ð	Þ � �0ð	0Þ
j	 � 	0j

�
: (17)

Figure 2 shows the dependence of � on U. Taking the
value of U ¼ 8 or 9 eV [18], we obtain � ffi 2 or 3 eVand
the magnetic moment at each site �B�n is about 1 �B.
However, the exact value of U for AA-BLG is not known.

Discussion.—The calculations above were done at
T ¼ 0. For T > 0, the long-range AFM order is destroyed
by spin-wave fluctuations. The latter may be described
using the nonlinear �-model with Lagrangian [19,20]

L sw ¼ �

2
½ð@tnÞ2 þ c2swð@rnÞ2�; jnj ¼ 1; (18)

where the unit vector n is the direction of the AFM order-
ing. The spin-wave stiffness � and their velocity csw can be
evaluated from Eqs. (7.89), (7.90) of Ref. [21]:

csw ¼ 3at

2
ffiffiffi
2

p ¼ vFffiffiffi
2

p ; �¼
�
t0=ð8�v2

FÞ; if t0 ��;

�=ð16�v2
FÞ; if t0 ��:

(19)

After standard calculations [19,20] we obtain the spin-
wave correlation length �sw 	 ðcsw=TÞ expð2��c2sw=TÞ,
describing the characteristic size of the short-range AFM
order. This expression is valid until �sw is larger than the
mean-field correlation length �	 vF=�ðTÞ; otherwise,
Eq. (18) is inapplicable, and no short-range order exists.
The condition �sw ¼ � defines the crossover temperature
T� between the short-range AFM and the paramagnet.
Simple analysis gives T� 	 � for all values of t0 and �.
Below T� the short-range AFM order exists on distances
about �sw � a, and this order is destroyed if T > T�. We
plot T� versus U in Fig. 2
Imperfections of the sample, effects of the substrate,

etc., can also affect the AFM order. However, if the energy
disturbance produced by these factors is smaller than �,
they only amount to perturbative corrections.
Other possible types of ordering could be considered

following the same approach used for AFM. However,
whether a particular order is stable and observable depends
on the values of the hopping amplitudes and a character-
istic energy of the appropriate interaction. For example,
applying the mean field approximation to the model with
on-site repulsion we find that the charge density wave is
unstable for our choice of parameters.
The next evident possibility to open a gap is to shear one

graphene layer with respect to another. For illustration, we
consider a shift along the C-C bond. The shift u deforms
the shape of the unit cell, changing AB bonds between
different layers, and giving rise to the appearance of the
order parameter �yy

k�. Assuming that the hopping ampli-
tude tg changes linearly with u, we can write for different

bonds tgðuÞ � tgð0Þ � ð@tg=@uÞu. Now the electronic en-

ergy of the system becomes a function of u. Taking into
account the elastic contribution Cshu

2=2 (where Csh is the
shear modulus) to the total energy and minimizing this
energy with respect to u, we obtain the value of the
equilibrium shift between the layers

ueq � t

j@tg=@uj exp
�
� �Csha

2t2

ð@tg=@uÞ2ct0
�
: (20)

If we assume that Csh is about the shear modulus in
graphite and j@tg=@uj 	 tg=a, we conclude that the shift

ueq and the corresponding energy gain are too small to

be observable. However, this conclusion must be taken
cautiously. First, we have no accurate information on Csh

and j@tg=@uj, whose precise values are important for the

FIG. 2 (color online). AFM gap � at T ¼ 0 (left y axis) and
crossover temperature T� (right y axis) versus the on-site
Coulomb repulsion U. The solid (red) curve is calculated by
solving Eq. (15), while the dashed (blue) curve is calculated
from Eq. (16). The crossover temperature T� is proportional to
�. The figure can be considered as a phase diagram in the U-T
plane, where the solid (red) curve separates the AFM short-range
order phase from the paramagnetic metallic phase. The inset
shows the electron spectrum near the K point at U ¼ 5:5 eV
(� � 0:12 eV).
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estimate of ueq. Moreover, ueq could be enhanced by

pressure or the presence of a substrate. Finally, the shift
can be induced by a different mechanism.

Compared to AA stacking, graphene bilayers with AB
stacking have a different electronic structure and symme-
tries of the Hamiltonian. Thus, the magnetic and electronic
properties of the AA and AB-BLG should be different even
for the same values of the hopping integrals and on-site
Coulomb repulsion U.

In conclusion, we demonstrate that the AA-BLG is
unstable with respect to a set of symmetry-breaking insta-
bilities, which can give rise to several order parameters of
different nature (e.g., magnetic, mechanical, current-
carrying). We show that an AFM order can be observed
in the system. The possible existence of other types of
orders in the AA-BLG depends on the system parameters
and the external conditions (temperature, pressure, sub-
strate, etc.).
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