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Self-induced terahertz-wave transmissivity of waveguides with finite-length layered superconductors
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We predict and study theoretically a new nonlinear electromagnetic phenomenon in a sample of a layered
superconductor of finite length placed in a waveguide with ideal walls. Two geometries are considered here:
the superconducting layers parallel or perpendicular to the waveguide axis. We show that the transmittance of
the superconductor slab can vary over a wide range, from nearly zero to one, when changing the amplitude of the
incident wave. Thus, one can induce the total transmission or reflection of the incident wave by simply changing
its amplitude. Moreover, the dependence of the superconductor transmittance on the incident wave amplitude
has a hysteretic behavior with jumps. The considered phenomenon of self-induced transparency can be observed
even at small amplitudes, if the wave frequency ω is close to the cutoff frequency for linear Josephson plasma
waves.
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I. INTRODUCTION

There is considerable interest in studies of metama-
terials and nanostructures with unusual electromagnetic
properties. Layered high-temperature superconductors, e.g.,
Bi2Sr2CaCu2O8+δ single crystals, definitely belong to this
type of materials. Experimental studies (see, e.g., Refs. 1
and 2) have shown that the electrodynamics of layered
superconductors can be described by a theoretical model,
which assumes that thin superconducting CuO2 layers (with
a thickness s of about 2–3 Å) are coupled through thicker
dielectric layers (with a thickness d of about 15 Å and
a dielectric constant ε ∼ 15) via an intrinsic Josephson
effect. Due to the layered structure of Bi2Sr2CaCu2O8+δ and
similar compounds, they support the propagation of specific
electromagnetic waves, the so-called Josephson plasma waves
(JPWs) (see, e.g., Refs. 3 and 4 and references therein). These
waves belong to the terahertz frequency range, which is very
important for various applications but not easily accessible
with modern electronic and optical devices. This technological
perspective provides a strong motivation for research on these
waves. From a scientific point of view, the interest in layered
superconductors is mainly related to the specific type of
plasma formed, the so-called Josephson plasma. An essential
property of the Josephson plasma is the strong anisotropy of its
current-carrying capability. This anisotropy manifests not only
in the difference of the absolute values of the flowing currents
(currents along the crystallographic a–b plane are two orders
of magnitude higher than those along the c axis) but also in
their physical nature. Indeed, the current along the layers has
the same nature as in the usual bulk superconductors and can
be described within the framework of London’s theory, while
the current along the c axis is of Josephson origin.

A. Waves in usual plasmas versus Josephson plasma waves

In the Josephson plasma, not only phenomena common to
other types of plasmas can be observed but also those specific

for layered superconductors. As in usual plasmas, there is a gap
in the spectrum of Josephson waves. JPWs can only propagate
with frequencies higher than the threshold Josephson plasma
frequency ωJ . As was theoretically demonstrated in Refs. 5
and 6, the surface Josephson plasma waves (SJPWs) can
propagate along the interface between layered superconductors
and a vacuum, similar to usual plasmas. The excitation of these
waves leads to various resonant phenomena6 similar to the
Wood anomalies well known in optics (see, e.g., Refs. 7–9).
However, contrary to usual plasmas, SJPWs can propagate
with frequencies not only below the plasma frequency but also
above it.6 The Josephson plasma can also exhibit properties
characteristic for left-handed media: a negative refractive index
for terahertz waves can be observed at its interface with a
vacuum.6,10

B. Nonlinearities

Since the current along the c axis is of Josephson origin,
the electrodynamic equations for layered superconductors are
nonlinear. This can lead to a number of nontrivial nonlinear
effects accompanying the propagation of JPWs, e.g., slowing
down of light,11 self-focusing of terahertz pulses,11,12 excita-
tion of nonlinear waveguide modes,13 as well as self-induced
transparency of the slabs of layered superconductors and
hysteretic jumps in the dependence of the slab transparency
on the wave amplitude.14

C. Finite-size samples

It should be noted that the majority of the theoretical
studies of JPWs consider infinite samples. However, the sizes
of layered superconducting samples used in experiments are
comparable to or even smaller than the wavelength of the
terahertz radiation. Obviously, in this case the sample cannot
be treated as infinitely large. This means that the theory should
consider finite sample sizes.
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In this paper we discuss a nonlinear phenomenon that
can be observed in a finite slab of layered superconductor
placed inside of a rectangular waveguide with ideal walls. We
have considered two geometries: waves propagating across
the layers or along them. It turns out that the transmittance of
the slab, being exposed by an incident wave from one of its
sides, depends not only on the wave frequency but also on the
wave amplitude for both of the geometries considered here.
Therefore, a slab of fixed length can be completely transparent
(when neglecting dissipation) for waves of certain amplitudes
and nearly totally reflecting for other amplitudes. Moreover,
the dependence of the transmittance on the wave amplitude
shows hysteretic behavior with jumps. The transmittance of the
slab with layers perpendicular to the waveguide axis can vary
over a wide range, from nearly zero to one, if the frequency ω

of the irradiation is close to the Josephson plasma frequency
ωJ . Meanwhile, in the case of layers parallel to the waveguide
axis, the transmittance can change significantly at frequencies
far from ωJ .

The paper is organized as follows. In the next section,
we discuss the configuration in which waves propagate in a
waveguide along the superconducting layers. We start with the
geometry of the problem and present the main equations for
the electromagnetic fields both in the vacuum regions of the
waveguide and also in the slab of the layered superconductor.
The electrodynamics of layered superconductors is described
by nonlinear coupled sine-Gordon equations.3,15–19 The non-
linearity originates from the nonlinear relation J ∝ sin ϕ

between the Josephson interlayer current J and the gauge-
invariant interlayer phase difference ϕ of the order parameter.
We emphasize that the nonlinearity can play a crucial role in the
propagation of JPWs even for small wave amplitudes, |ϕ| � 1,
when sin ϕ can be expanded into a series: sin ϕ ≈ ϕ − ϕ3/6.
Then we express the transmittance T in terms of the amplitude
of the incident wave and analyze this dependence for different
frequency ranges. In the third section, we discuss the same
points for the second configuration, in which waves propagate
in a waveguide across the superconducting layers.

II. PROPAGATION OF WAVES ALONG THE
SUPERCONDUCTING LAYERS

A. Geometry of the problem

Consider a waveguide of lateral sizes L1 and L2 with a
slab of a layered superconductor of length D inside it. The
coordinate system is chosen in such a way that the crystal-
lographic a–b plane of the layered superconductor coincides
with the x–y plane, and the c axis is along the z axis. We start
our consideration from the case in which the electromagnetic
wave of frequency ω propagates in the waveguide along the
x axis, which is parallel to the superconducting layers (see
Fig. 1).

We now consider an extraordinary incident wave with the
magnetic field parallel to the superconducting layers:

�E = {0,0,Ez}, �H = {Hx,Hy,0}. (1)

For simplicity, we assume here that the electromagnetic field
is uniform in the z direction (across the layers) and the
electric field is perpendicular to the superconducting layers.

FIG. 1. (Color online) Schematic geometry for JPWs propagating
in a waveguide along the superconducting layers. Note that here S and
I stand for superconducting and insulator layers, respectively. The
green translucent layer (cut off to show the sample inside) represents
the walls of the waveguide.

Otherwise, the transformation of the polarization of the wave
would occur after its reflection and transmission through
the anisotropic superconductor. The incident wave is partly
reflected and partly transmitted through the slab.

B. Electromagnetic field in the vacuum regions

The waveguide has two vacuum regions (see Fig. 1).
In the first one (at x < 0), the electromagnetic field can
be represented as a sum of incident and reflected waves
with amplitudes Hi and Hr , respectively. Using the Maxwell
equations and boundary conditions (the equality of the
tangential components of the electric field to zero on the
waveguide walls), one can derive the electric- and magnetic-
field components:

E(v1)
z = [Hi cos(kxx − ωt)

−Hr cos(kxx + ωt + α)] sin(kyy),

H (v1)
x = −ky

k
[Hi sin(kxx − ωt)

(2)
+Hr sin(kxx + ωt + α)] cos(kyy),

H (v1)
y = kx

k
[Hi cos(kxx − ωt)

+Hr cos(kxx + ωt + α)] sin(kyy).

Here

ky = nπ

L1
, kx = (

k2 − k2
y

)1/2
, k = ω

c
, (3)

n is a positive integer number that defines the propagating
modes in the waveguide, α is the phase shift of the reflected
wave, and c is the speed of light.

There is only a transmitted wave of amplitude Ht in the
second vacuum region (at x > D). Here the electro-magnetic-
field components are

E(v2)
z = Ht cos[kx(x − D) − ωt + β] sin(kyy),

H (v2)
x = −ky

k
Ht sin[kx(x − D) − ωt + β] cos(kyy), (4)

H (v2)
y = kx

k
Ht cos[kx(x − D) − ωt + β] sin(kyy),

where β is the phase shift of the transmitted wave.
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C. Electromagnetic field in the slab of the layered
superconductor

The electromagnetic field in a slab of the layered super-
conductor is related to the distribution of the gauge-invariant
interlayer phase difference ϕ(x,y,z,t) of the order parameter
(see, e.g., Refs. 3 and 15–19). For the extraordinary wave, this
relation is defined by the equations

Es
x = −λ2

ab

c

∂2Hy

∂t∂z
, Es

y = λ2
ab

c

∂2Hx

∂t∂z
, Es

z = H0
1

ωJ

√
ε

∂ϕ

∂t
,

∂H s
y

∂x
− ∂Hs

x

∂y
= H0

λc

[
sin ϕ + 1

ω2
J

∂2ϕ

∂t2

]
. (5)

Here H0 = �0/2πdλc, �0 = πch̄/e is the magnetic flux
quantum; λab and λc = c/ωJ ε1/2 are the London penetra-
tion depths across and along the layers, respectively; ωJ =
(8πedJc/h̄ε)1/2 is the Josephson plasma frequency; Jc is the
maximal value of the Josephson current density; and e is the
elementary charge. We do not take into account the relaxation
terms because they are small at low temperatures and do not
play an essential role in the phenomena considered here.

The phase difference is defined by a solution of a set of
coupled sine-Gordon equations that, in the continuous limit,
has the following form (see, e.g., Ref. 3 and references therein):
(

1 − λ2
ab

∂2

∂z2

) [
1

ω2
J

∂2ϕ

∂t2
+ sin ϕ

]
− λ2

c

(
∂2ϕ

∂x2
+ ∂2ϕ

∂y2

)
= 0.

(6)

The term with the second derivative over z in Eq. (6) takes into
account the so-called inductive interlayer coupling. Note that
the z component of the electric field causes the breakdown
of electroneutrality of superconducting layers. This results
in an additional, so-called capacitive, interlayer coupling.
This coupling can significantly affect the properties of the
longitudinal JPWs with wave vectors oriented across the
layers. The dispersion equation for linear plane JPWs with
account of the capacitive coupling was obtained in Ref. 20.
According to this dispersion equation, the capacitive coupling
is important if the component kz (normal to the layers) is
close to k = ω/c. For the cases in which (k2

x + k2
y)1/2 = ω/c,

kz = 0 (considered in this section) or (k2
x + k2

y)1/2 ∼ kz ∼ ω/c

(considered in the next section), the capacitive coupling can
be safely neglected due to the smallness of the parameter
α = R2

Dε/sd. Here RD is the Debye length for a charge in
a superconductor.

For the mode in Eq. (1) with an electric field Es
z proportional

to sin(kyy) and uniform in the z direction, Eq. (6) is rewritten
as (

1

ω2
J

∂2ϕ

∂t2
+ k2

yλ
2
cϕ + sin ϕ

)
− λ2

c

∂2ϕ

∂x2
= 0. (7)

Note that there is no coupling between the layers in this case,
and Eq. (6) reduces to the usual sine-Gordon equation (7). It
shows that a linear Josephson plasma wave can propagate
along the waveguide if its frequency exceeds the cutoff
frequency ωcut:

ωcut = ωJ

(
1 + k2

yλ
2
c

)1/2
. (8)

Here we consider the weakly nonlinear waves when the
Josephson current density Jc sin ϕ can be replaced approxi-
mately by Jc(ϕ − ϕ3/6). We assume that the wave frequency
ω is close to ωcut. In this case, the linear terms in brackets
in Eq. (7) nearly cancel each other. Therefore, in spite of
the weakness of the nonlinearity, the term ϕ3 plays a very
important role in the wave propagation. Moreover, one can
neglect the generation of higher harmonics when the frequency
ω is close to ωcut (similar to the effects considered in Refs. 11
and 13).

We seek a solution of Eq. (7) in the form of a wave with the
x-dependent amplitude a and phase η:

ϕ(x,y,t) = a(x)μκ sin[η(x) − ωt] sin(kyy), (9)

where

μ = 8

3

√
2, κ = ∣∣�2 − �2

cut

∣∣1/2
, � = ω

ωJ

, �cut = ωcut

ωJ

.

(10)

Introducing the dimensionless coordinate and the normalized
length of the sample,

ξ = x

λc

κ , δ = D

λc

κ , (11)

and substituting the phase difference ϕ given by Eq. (9) into
Eq. (7), we obtain two differential equations for the functions
η(ξ ) and a(ξ ):

η′(ξ ) = − L

a2(ξ )
, (12)

a′′(ξ ) = −σa(ξ ) − a3(ξ ) + L2

a3(ξ )
. (13)

Here σ = sign(� − �cut), L is an integration constant, and the
prime denotes derivation over ξ .

Using Eqs. (5) and (9), we express the tangential compo-
nents of the electric and magnetic fields via the functions a(ξ )
and η(ξ ):

Ez = −H0λcμκka(ξ ) cos[η(ξ ) − ωt] sin(kyy),
(14)

Hy = H0μκ2 {a(ξ ) sin[η(ξ ) − ωt]}′ sin(kyy).

Now we can find the amplitudes of the reflected and transmitted
waves by solving Eqs. (12) and (13) and matching the
tangential components of the electric and magnetic fields at
both interfaces (at x = 0 and x = D) between the vacuum
regions and the layered-superconductor.

D. Transmittance of the superconducting slab

In this subsection, we analyze the transmittance T of the
finite-length slab of layered superconductor in the waveguide.
Matching the fields given by Eqs. (14) for the superconductor
and Eqs. (2) and (4) for the vacuum regions, we obtain the
following three equations for the amplitudes a(0), a(δ), and
their derivatives on both edges of the layered superconductor,
as well as the expression for the amplitude of the transmitted
wave:

[�a′(0)]2 +
[

�L

a(0)
+ a(0)

]2

= 4h2
i , (15)

a2(δ) = �L, (16)
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a′(δ) = 0, (17)

h2
t = a2(δ). (18)

Here

hm = Hm

H0kλcμκ
, m = i,t (19)

are the normalized amplitudes of the incident (m = i) and
transmitted (m = t) waves, and � = κ/(kxλc).

Equations (15)–(17) together with Eqs. (12) and (13)
determine the integration constant L as a function of the
amplitude hi of the incident wave. Using Eqs. (16) and (18),
we find that the constant L defines directly the transmittance
T of the superconducting slab:

T = h2
t

h2
i

= a2(δ)

h2
i

= �

h2
i

L. (20)

As we show below, the dependence of the transmittance T

on the amplitude of the incident wave is multivalued due to
the nonlinearity of Eqs. (12) and (13). Below, we analyze this
dependence for the cases of negative and positive frequency
detunings (� − �cut) (negative and positive σ ).

1. Transmittance of a superconducting slab for negative
frequency detunings (σ = −1)

We start our consideration from the case of negative
frequency detunings when

� < �cut. (21)

As was mentioned above, the linear Josephson plasma waves
cannot propagate along the superconducting layers under such
conditions; i.e., the transmittance of the slab of layered super-
conductor is exponentially small because of the skin effect.
However, the nonlinearity promotes the wave propagation due
to the effective decrease of the cutoff frequency.

Using Eqs. (12), (13), and (15)–(17), we find the integration
constant L and the transmittance T given by Eq. (20). Figure 2
shows the numerically calculated dependence T (hi). We
consider also the spatial distribution of the amplitude a(ξ )
and the phase trajectories a′(a). The curves a′(a) are shown in
the bottom panels of Figs. 3 and 4. The movement along the
spatial coordinate ξ [proportional to x, as defined in Eq. (11)]
from zero to δ is shown by arrows. The upper panels in Figs. 3
and 4 demonstrate the three-dimensional curves for a and a′
dependences on the coordinate ξ . Each trajectory corresponds
to some value of the amplitude hi . According to Eqs. (16) and
(20), the value a(δ) defines the transmittance of the slab.

Consider in detail the dependence of the transmittance T

on the amplitude hi of the incident wave shown in Fig. 2.
When increasing the amplitude hi , the transmittance grows
following the red lower arrows and passing points 1 and 2 in
the T (hi) plot. For such amplitudes, the phase trajectories a′(a)
represent nonclosed curves (see curves 1 and 2 in Fig. 3). At
hi ≈ 1.7 the phase trajectory turns into a closed loop (curve
3 in Fig. 3), and transmittance achieves its maximum value
T = 1. Then, when increasing hi , the transmittance oscillates,
achieving the maximum value T = 1 in points 4 and 7 (in
Fig. 2). The interesting thing is that there exists a special value

FIG. 2. (Color online) The transmittance T vs the normalized
amplitude hi of the incident wave for negative frequency detuning,
� − �cut < 0. Movement along the lower red (upper blue) arrows
shows the evolution of the transmittance when increasing (decreasing)
the amplitude hi . The numbers near the points on the T (hi) curve
correspond to the same numbers of the phase trajectories a′(a) shown
in Figs. 3 and 4. Inset: The enlarged region near the first three
maximums in the T (hi) dependence. The values of the parameters
are κ = 0.1, δ = 1.5 (D = 15λc), λc = 4 × 10−3 cm, λab = 2000 Å,
ωJ /2π = 0.3 THz, n = 1, and L1 = 0.1 cm.

of hi ≈ 2.4 where the phase trajectory a′(a) shrinks into a
point (see point 4 in Fig. 3). This means that, for such a value
of hi , the amplitude a of the electromagnetic wave, given by
Eq. (14), is constant inside the slab and the phase η changes
linearly with ξ , similar to linear waves. The slab is completely
transparent in this case (see point 4 in Fig. 2).

The continuous change of the transmittance with an
increase of hi is abruptly terminated in point 9 (at hi ≈ 7.7) in
Fig. 2. Further increase of the amplitude hi results in a jump
to the upper branch of the T (hi) dependence (to point 11).
Similar jumps occur again and again when further increasing
the amplitude hi of the incident wave.

Let us now consider the T (hi) dependence when decreasing
the incident wave amplitude hi , following the blue upper
arrows in Fig. 2. The decrease of hi causes an increase of
the transmittance T until we achieve the situation in which
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FIG. 3. (Color online) The phase trajectories a′(a) for negative
frequency detuning, � − �cut < 0. These trajectories correspond to
points from 1 to 6 in the T (hi) plot shown in Fig. 2. The upper panel
demonstrates in three dimensions the dependences of a and a′ on the
spatial coordinate ξ along the slab (for points 1, 3, and 6 in Fig. 2).
The parameters here are the same as in Fig. 2.

the slab is completely transparent. Here a branch of the T (hi)
dependence breaks and further movement along the curve is
possible only after a jump to the lower branch. As one can see

FIG. 4. (Color online) The same as in Fig. 3 for points 7–12
shown also in Fig. 2.

FIG. 5. (Color online) The spatial distribution of the electric-field
amplitude (normalized to the incident wave amplitude Hi) inside
the waveguide. Panels (a), (b), and (c) correspond to the points 10,
11, and 12 in Fig. 2, respectively. The color determines the value
of the amplitude. The vertical straight lines show the edges of the
superconducting sample. The parameters are the same as in Fig. 2.

from Fig. 2, an additional decrease of the amplitude hi results
in a similar behavior until we reach point 10 (hi ≈ 6.8), where
the last jump to the lower branch (to point 8) occurs. Further
decrease does not exhibit additional jumps.

Thus, for frequencies � less than the cutoff frequency �cut,
the transmittance of a superconducting slab has a hysteretic
dependence with jumps on the amplitude of the incident wave.

In Fig. 5, we illustrate the spatial distribution of the
electric-field amplitude inside the waveguide for three values
of the incident amplitude hi . Figure 5(a) corresponds to point
10 in Fig. 2, where the layered superconductor is almost
transparent. This means that the reflected wave is almost
absent and the interference pattern in the vacuum regions is
too blurry. Figures 5(b) and 5(c) correspond to points 11 and
12 in Fig. 2. They show a pronounced interference pattern for
the region x < 0. Note that the field distribution along the y

axis corresponds to n = 1.

2. Transmittance of a superconducting slab for positive frequency
detunings (σ = +1)

Now we discuss the case of positive frequency detunings
when

� > �cut. (22)

014506-5



T. N. ROKHMANOVA et al. PHYSICAL REVIEW B 88, 014506 (2013)

0.0 0.2 0.4 0.6 0.8 1

1

. hi

T
ra

ns
m

it
ta

nc
e

T

κ

FIG. 6. (Color online) Dependence of the transmittance T on
the value of hi · κ for different frequency detunings. According to
Eq. (19), the argument hi · κ is proportional to the non-normalized
amplitude Hi of the incident wave and is independent of the frequency
detuning. The red, orange, and yellow curves (the upper curves at
small amplitudes) correspond to positive frequency detunings with
κ = 0.2, 0.1, and 0.05, respectively. The purple, blue, and green
curves (the lower curves at small amplitudes) correspond to negative
frequency detunings with κ = 0.2, 0.1, and 0.05, respectively. Other
parameters are the same as in Fig. 2.

Under this condition, contrary to the case � < �cut, even
the linear Josephson plasma waves can propagate in the
superconductor along the layers. Therefore, the transmittance
is not exponentially small in the linear regime. It varies over
a wide range, from zero to one, depending on the relation
between the length of the slab and the wavelength. Figure 6
shows the dependence of the transmittance on the incident
wave amplitude for different frequency detunings. For proper
comparison of the curves, we use here another normalization of
the incident wave amplitude, independent of κ and, therefore,
different from Eq. (19). Namely, we plot all the curves
as functions of the parameter hi · κ . One can see that the
transmittance T depends strongly on κ and σ for small values
of hi · κ . However, all the dependences of T on the incident
wave amplitude show similar behavior at larger hi · κ . This
means that, for high enough amplitudes Hi , the nonlinearity
plays the most important role in the transmissivity, regardless
of the frequency detuning.

E. Mechanical analogy

The problem discussed here has an interesting mechanical
analogy. Indeed, Eqs. (12) and (13) coincide with equations
describing a motion of a particle of mass one in a centrally
symmetric field. The amplitude a(ξ ), the phase η(ξ ), and
the coordinate ξ along the layers of the superconductor play

Ω > Ω cut

cut
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lU

ef
f

Ω < Ω

−

FIG. 7. (Color online) Dependence of the potential Ueff given by
Eq. (24) on the radial coordinate a. The movement of the particle
in this potential is the mechanical analog for the spatial distribution
of the amplitude a of the electric field in the superconductor. The
solid red curve corresponds to the positive frequency detuning and
the dashed blue curve corresponds to the negative one. The value of
the constant L is 0.1, and the other parameters are the same as in
Fig. 2.

the roles of the radial coordinate, polar angle, and time,
respectively. The constant L in Eqs. (12) and (13) can be
considered as the conserved angular momentum of the particle.

Integrating Eq. (13), we find the energy conservation law:

(a′)2

2
+ Ueff(a) = E, (23)

with the effective potential energy

Ueff(a) = L2

2a2
+ σ

a2

2
+ a4

4
. (24)

The first term in Eq. (23) is the kinetic energy of the radial
motion, E is the total energy, the first term in Eq. (24) is the
centrifugal energy, and the last two terms in Eq. (24) describe
the potential of the central field.

The dependence Ueff(a) illustrated in Fig. 7 shows that the
potential energy is a single-valued function of a, although the
dependence T (hi) is multivalued (see Fig. 2). This feature
seems to be paradoxical, because the particle motion in
any potential field is unambiguously defined by the initial
conditions. However, an assignment of the value of hi of
the incident wave amplitude in Eqs. (15)–(17) does not
always mean an imposition of definite initial conditions for
the particle motion. To demonstrate this, let us consider the
inverse problem. We seek the amplitude hi of the incident
wave that is necessary to obtain a definite amplitude ht of
the transmitted wave. From Eqs. (16) and (18), we see that
the value of ht defines unambiguously the angular momentum
L = h2

t / � of the particle. According to the motion equations
(12) and (13) and the boundary conditions Eqs. (15)–(17), the
dependence of hi on the amplitude ht of the transmitted wave
and, correspondingly, the dependence of the transmittance

T = h2
t

/
h2

i
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FIG. 8. (Color online) Solution of the inverse problem (the
dependence of the incident wave amplitude hi and the transmittance
T = h2

t /h2
i on the transmitted wave amplitude ht ). The values of the

parameters and the numbers of the points on the curves correspond
to the numbers in Fig. 2. The curves show the nonmonotonic
behavior of hi(ht ). This results in the multivalued dependence
T (hi).

on ht are single valued (see Fig. 8). Nevertheless, the de-
pendence hi(ht ) is nonmonotonic. Therefore, the dependence
T (hi) appears to be multiple valued.

III. PROPAGATION OF WAVES ACROSS
SUPERCONDUCTING LAYERS

Consider now the case in which the electromagnetic wave
propagates in the waveguide across the superconducting lay-
ers, i.e., the crystallographic c axis of the superconductor and
the z axis are parallel to the waveguide axis (see Fig. 9). Let the
incident extraordinary wave have the following polarization:

�E = {Ex,Ey,Ez}, �H = {Hx,Hy,0}. (25)

In the first vacuum region (at z < 0) the electromagnetic
field can be represented as a sum of incident and reflected
waves with amplitudes Hi and Hr , respectively. There is only
the transmitted wave of amplitude Ht in the second vacuum
region (at z > D). Using the Maxwell equations and boundary
conditions (the equality of the tangential components of the
electric field to zero on the waveguide walls), one can derive

FIG. 9. (Color online) Schematic geometry for JPWs propagating
in a waveguide across the superconducting layers. Note that here S and
I stand for superconducting and insulator layers, respectively. The
green translucent layer (cut off to show the sample inside) represents
the walls of the waveguide.

the electric- and magnetic-field components in the first and
second vacuum regions:

E(v1)
x = kxkz

k2
[Hi sin(kzz − ωt) − Hr sin(kzz + ωt + α)]

× cos(kxx) sin(kyy),

E(v1)
y = kykz

k2
[Hi sin(kzz − ωt) − Hr sin(kzz + ωt + α)]

× sin(kxx) cos(kyy),

H (v1)
x = −ky

k
[Hi sin(kzz − ωt) + Hr sin(kzz + ωt + α)]

× sin(kxx) cos(kyy),

H (v1)
y = kx

k
[Hi sin(kzz − ωt) + Hr sin(kzz + ωt + α)]

× cos(kxx) sin(kyy), (26)

E(v2)
x = kxkz

k2
Ht sin[kz(z − D) − ωt + β] cos(kxx) sin(kyy),

E(v2)
y = kykz

k2
Ht sin[kz(z − D) − ωt + β] sin(kxx) cos(kyy),

H (v2)
x = −ky

k
Ht sin[kz(z − D) − ωt + β] sin(kxx) cos(kyy),

H (v2)
y = kx

k
Ht sin[kz(z − D) − ωt + β] cos(kxx) sin(kyy).

(27)

Here

kx = πn1

L1
, ky = πn2

L2
, kz = (

k2 − k2
x − k2

y

)1/2
, (28)

n1 and n2 are non-negative integer numbers that define
propagating modes in the waveguide (they cannot be equal to
zero simultaneously), and α and β are the phase shifts of the
reflected and transmitted waves. We do not write the equation
for the z component Ez of the electric field since it is not used
further in the text.

For the region occupied by the layered superconductor, we
seek a solution of Eq. (6) in the form of a mode:

ϕ(x,y,z,t) = a(z)|1 − �2|1/2

× sin(kxx) sin(kyy) sin[η(z) − ωt], (29)

with the z-dependent amplitude a(z) and phase η(z).
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We introduce the dimensionless coordinate ζ and the
normalized length of the sample as

ζ = κ̄z

λab

, δ̄ = κ̄D

λab

, (30)

where

κ̄ = λc

k||
|1 − �2|1/2

, k|| = (
k2
x + k2

y

)1/2
. (31)

Substituting the phase difference ϕ in the form of Eq. (29) into
Eq. (6), we obtain two differential equations for the phase η(ζ )
and the amplitude a(ζ ):

η′(ζ ) = − L

h2(ζ )
, (32)

h′′(ζ ) = a(ζ ) + L2

h3
+ h(ζ )

κ̄2
, (33)

where L is an integration constant, prime denotes derivation
over ζ , and

h(ζ ) = −sign(� − 1)a(ζ ) − 9
128a3(ζ ). (34)

Note that the cutoff frequency for linear waves propagating
across the superconducting layers coincides with the Joseph-
son plasma frequency ωJ . Therefore, for the geometry consid-
ered in this section, the transmittance of the superconducting
slab is sensitive to the frequency detuning (� − 1).

Equations (5), (29), and (34) allow one to express the
electromagnetic field inside the slab via the functions h(ζ ) and
η(ζ ). The tangential components of the electric and magnetic
fields are

Es
x = −H0�̄

kxkz

k

|1 − �2|
k||κ̄

×{h(ζ ) cos[η(ζ ) − ωt]}′ cos(kxx) sin(kyy),

Es
y = −H0�̄

kykz

k

|1 − �2|
k||κ̄

×{h(ζ ) cos[η(ζ ) − ωt]}′ sin(kxx) cos(kyy),

H s
x = H0ky

|1 − �2|
k||κ̄

h(ζ )

× sin[η(ζ ) − ωt] sin(kxx) cos(kyy),

H s
y = −H0kx

|1 − �2|
k||κ̄

h(ζ )

× sin[η(ζ ) − ωt] cos(kxx) sin(kyy), (35)

with

�̄ = k2λab

kz

κ̄. (36)

Matching the fields given by Eqs. (35) for the superconduc-
tor and Eqs. (26) and (27) for the vacuum regions, we obtain
the following three equations for the amplitudes a(0), a(δ̄), and
their derivatives on both edges of the layered superconductor,
as well as the expression for the amplitude of the transmitted
wave:

�̄2[h′(0)]2 +
[
h(0) + �̄L

h(0)

]2

= 4h2
i , (37)

h2(δ̄) = �̄L, (38)

FIG. 10. (Color online) Dependence of the transmittance T on the
amplitude hi of the incident wave for negative frequency detuning,
� − 1 = −5 × 10−5. Arrows show the change of the transmittance
when changing hi . Inset: The enlarged region near points 1 and 2.
The values of the parameters used here are δ̄ = 2, λc = 4 × 10−3 cm,
λab = 2000 Å, ωJ /2π = 0.3 THz, n1 = n2 = 1, and L1 = L2 =
0.1 cm.

h′(δ̄) = 0, (39)

h2
t = h2(δ̄). (40)

Here

hm = Hm

H0

k||κ̄
k|1 − �2| , m = i,t (41)

are the normalized amplitudes of the incident (m = i) and
transmitted (m = t) waves. These equations, together with
Eqs. (32) and (33), determine the integration constant L as
a function of the amplitude hi of the incident wave. Similar
to the previous section, the constant L defines directly the
transmittance T of the superconducting slab:

T = h2(δ̄)

h2
i

= �̄

h2
i

L. (42)

Figure 10 shows the numerically calculated hysteretic
dependence of the transmittance T on the amplitude hi of the
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FIG. 11. (Color online) Dependence of the transmittance T on
the amplitude hi of the incident wave for different positive values of
the frequency detuning: � − 1 = 4.97 × 10−3, or δ̄/π = 1.21 (dotted
curve); � − 1 = 4.74 × 10−3, or δ̄/π = 1.24 (solid curve); � − 1 =
1.64 × 10−3, or δ̄/π = 2.11 (inset). Arrows show the change of the
transmittance when changing the amplitude hi of the incident wave.
The sample length is D = 4.3 × 10−5 cm. Other parameters are the
same as in Fig. 10.

incident wave for the case of negative detuning, � − 1 < 0.
The red curve close to the abscissa in Fig. 10 shows the low-
amplitude branch of the T (hi) dependence. The low-amplitude
waves cannot propagate across the superconducting layers
at � < 1 and, therefore, the transmittance is exponentially
small on this branch. When increasing the amplitude hi of
the incident wave, the jump from the low-amplitude branch
of the T (hi) dependence to the high-amplitude branch occurs
at hi = (128/243)1/2. The high-amplitude branch is shown
by the blue solid curve in Fig. 10. The high-amplitude
solutions describe nonlinear Josephson plasma waves that can
propagate in the layered superconductor for even negative
frequency detunings. Changing the amplitude hi one can
control the relation between the wavelength and the length
of the slab, and the transmittance varies from nearly zero to
one, depending on this relation. Thus, one can obtain total

transparency of the slab choosing the optimal value of the
amplitude hi .

Figure 11 shows the T (hi) dependence for the case
of positive detunings, � − 1 > 0. In this case, even linear
JPWs can propagate in the superconductor across the layers.
Therefore, the linear transmittance can vary from nearly zero
to one depending on the relation between the length of the slab
and the wavelength. The analysis of Eqs. (32)–(34), (37)–(40),
and (42) shows that the dependence T (hi) is single valued if the
frequency detuning exceeds some threshold value. For small
�̄, this threshold value is defined by the following asymptotic
equation:

(�thr − 1) ≈
(

Dλck‖√
2πλab

)2

. (43)

Such a reversible T (hi) dependence is shown by the dotted
curve in Fig. 11. The hysteresis in the T (hi) dependence exists
for frequencies smaller than the threshold value, for � < �thr.
In this case, the complete transparency of the sample can be
observed if the incident wave amplitude hi is first increased
and then decreased.

Note that plots in Figs. 10 and 11 are very similar to
T (hi) curves obtained in Ref. 14 for the case of an infinite
slab. It is not surprising because the statements of these two
problems differ in not very important details. Namely, the
nonlinear waves running in the infinite slab at some angle
with respect to the superconducting layers were considered in
Ref. 14, whereas the nonlinear waves standing in the x and y

directions and propagating only across the layers are studied
in this section. Therefore, the sets of equations for finding the
transmittance in these two problems differ in the numerical
coefficients only.

IV. CONCLUSION

In this paper, we have studied theoretically the phenomenon
of self-induced transparency of finite-length slabs of layered
superconductors placed in a waveguide with ideal walls. This
phenomenon can be observed for two geometries: the super-
conducting layers parallel or perpendicular to the waveguide
axis. We show that the transmittance of a superconducting
slab is very sensitive to the amplitude of the incident wave due
to the nonlinear dependence of the Josephson c axis current
on the interlayer phase difference of the order parameter. A
very interesting feature of the predicted phenomenon is the
hysteretic behavior of the T (hi) dependence. It is important
to note that the tunable transmittance can vary over a wide
range, from nearly zero to one, when changing the incident
wave amplitude, even in the case of weak nonlinearity when
the interlayer phase difference is small.

Here, we did not take into account damping caused by
the quasiparticle conductivity. As was shown in Ref. 21,
the quasiparticle conductivity along the layers is suppressed
for the waves with small frequency detuning, considered in
our paper. However, the quasiparticle conductivity across the
layers reduces both the transmittance and the reflectance of
the sample, making the predicted effects less pronounced. The
main results discussed in the paper, namely, the self-induced
transparency of the sample and the hysteretic behavior of the
amplitude dependence of the transmittance, remain practically
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the same for not very strong damping. This is true when
the damping coefficient is small compared to the frequency
detuning of the waveguide mode. The role of damping is
very interesting and worth separate investigations. Another
important problem, not discussed here, is the stability of the
solutions obtained. This question is nontrivial for nonlinear
waves in samples of finite size, especially if damping is taken
into account, and requires further investigations.
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