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Ballistic charge transport in graphene and light propagation in periodic dielectric structures
with metamaterials: A comparative study
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We explore the optical properties of periodic layered media containing left-handed metamaterials. This study
is based on several analogies between the propagation of light in metamaterials and charge transport in graphene.
We derive the conditions when these two problems become equivalent, i.e., the equations and the boundary
conditions for the corresponding wave functions coincide. We show that the photonic band-gap structure of a
periodic system built of alternating left- and right-handed dielectric slabs contains conical singularities similar
to the Dirac points in the energy spectrum of charged quasiparticles in graphene. Such singularities in the zone
structure of the infinite systems give rise to rather unusual properties of light transport in finite samples. In
an insightful numerical experiment (the propagation of a Gaussian beam through a mixed stack of normal and
metadielectrics), we simultaneously demonstrate four Dirac point-induced anomalies: (i) diffusionlike decay of
the intensity at forbidden frequencies, (ii) focusing and defocussing of the beam, (iii) absence of the transverse
shift of the beam, and (iv) a spatial analogue of the Zitterbewegung effect. All of these phenomena take place
in media with nonzero average refractive index and can be tuned by changing either the geometrical and
electromagnetic parameters of the sample or the frequency and the polarization of light.
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I. INTRODUCTION

Highly unusual properties of monolayers of graphite
(graphene) and of optical media with negative refractive
indices (left-handed metamaterials) had been independently
predicted and studied theoretically a long time ago.1,2 At
that time, however, these predictions were perceived as rather
intriguing but unrealistic exotica and remained unnoticed
for about a half-century, until quite recently (and nearly
simultaneously), they were embodied in real materials. This
immediately triggered an explosion of interest and activities,
in metamaterials and graphene, both in solid state physics and
optics. Researchers also realized that the most unusual proper-
ties of electron transport in graphene were also peculiar to the
propagation of light in dielectric systems with metamaterials.
Mathematically, this is because, under some (rather general)
conditions, the Maxwell equations for electromagnetic waves
in an inhomogeneous dielectric medium can be reduced to the
Dirac equations for charge carriers in graphene subjected to
an external electric potential.

A. Similarities between Maxwell and Dirac equations

The history of recasting Maxwell equations in alternative,
more compact, spinor forms goes back to the beginning of
the past century, and is still in progress (for a comprehensive
historical overview see Refs. 3 and 4, with recent examples
in Refs. 5–8). Therefore it is not surprising that the similarity
between Maxwell and Dirac equations has long been noticed
(according to Ref. 3, Majorana discussed it already in 1930). In
the general case of inhomogeneous media, the close analogy
between (i) the quantum-mechanical form of the equations
for the Reimann-Silberstain vector fields (linear combinations
of the electromagnetic vectors �D and �B) and (ii) the Dirac

equation, written in the chiral representation of the Dirac
matrices, was explicitly demonstrated in Ref. 3.

Recently, as graphene became increasingly more popular in
solid state physics, the mathematically established similarity
of Maxwell and Dirac equations took on a new physical
significance. Inspired by the very unusual predictions and
discoveries made in graphene, research groups in optics
started endeavors to reproduce the unique transport properties
of graphene in specifically designed dielectric structures.
An additional incentive to these efforts came from the fact that,
while the elementary building blocks of graphene are fixed,
modern micro and nanotechnologies enable manufacturing
periodic dielectric samples with a variety of types and sizes
of unit cells. Moreover, the electrodynamic parameters of
photonic crystals can, in principle, be controlled by external
fields, providing unique opportunities to study condensed
matter phenomena in optical ways; for example, by opening
a gap between Dirac cones, as well as breaking and restoring
space-inversion and time-reversal symmetries.5 Rather simple
electrodynamical analogies furnish physical insights into
properties and applications of graphene such as the Klein
phenomenon,9 breaking the valley degeneracy,10 graphene
quantum dots,11,12 the electronic Goos-Hanchen shift,13 delo-
calization in one-dimensional disordered systems,14 etc. Fur-
thermore, some exotic phenomena predicted and discovered in
optical systems (like, for example, the “light wheel” localized
mode,15 or confined cavity modes and ministop bands in
broad periodic photonic waveguides16,17) could prompt unique
possibilities for creating new graphene-based devices. In this
regard, particularly promising is the analogy between photonic
crystal broad waveguides and zigzag graphene nanoribbons
studied in Ref. 18, where it was shown that the photonic
mode coupling also arises in nanoribbons at low energies.
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FIG. 1. (Color online) Surface ω(kx,ky) described by the disper-
sion equation (1) for electromagnetic waves. The contact of two cones
looks like a Dirac point in graphene; however, in contrast to graphene,
for light, both cones correspond to the same field.

The implementation of the analogy between Dirac electrons
and light could be rewarding for the optical community
as well, because it is relatively easy to create in graphene
an inhomogeneous potential pattern with any distribution
of p-n and n-n junctions, while designing a periodic or
random stack of alternating positive-negative dielectric layers
is nowadays a feasible task. Thus graphene could provide
analogue laboratory models in order to test the optics of
metamaterials in a controlled way.

B. Dirac point

The key feature of graphene, from which all its unique
transport properties stem, is the existence of Dirac cones in
the band structure of its energy spectrum. At first glance,
one does not have to work hard to obtain in optics a double-
conical, graphenelike dispersion law: it is inherent in any plane
monochromatic wave propagating in a homogeneous medium,
as the relation between its frequency ω and the wave number
k is given by

ω2 = c2k2. (1)

However, the contact of two cones in Fig. 1 only looks like
a Dirac point (DP). In fact, of the two cones in Fig. 1, only one
(for example, the upper one) is related to a photon, while the
second solution of Eq. (1) (lower cone in Fig. 1) is redundant.
This lower cone does not carry any additional information and
is not related to any different physical entity like, for example,
a hole in graphene or a positron in the case of relativistic
QED. In other words, the photon and antiphoton are identical.3

Hence the challenge in optics is to create a structure with a
real DP in its spectrum, so that different types of waves would
correspond to two different cones (a sort of optical “particle-
antiparticle” pair). Appropriate for this purpose are photonic
crystals in which two modes degenerated in a homogeneous
space become split by the periodicity.19

The analytical and numerical studies of two-dimensional
periodic structures (infinite rods embedded in a background

medium with a different dielectric constant) were carried out
as early as in 1991, for square20 and triangular21 lattices. Linear
singularities (that nowadays are called Dirac points) are clearly
seen in the band structures of both systems, although they
escaped the attention of Refs. 20 and 21 mostly interested
in absolute band gaps for different polarizations. Afterwards,
during more than two decades, studies of two-dimensional
photonic crystals were primarily aimed on maximizing the
photonic band gap22–24 (see also the review Ref. 25, and
references therein), until the discovery of the unusual trans-
port properties in graphene, and the potential to reproduce
them in optics switched efforts towards the search and
further exploration of photonic structures with Dirac-conelike
singularities in their transmission spectra.5,7,19,26 A number
of new optical phenomena arising due to the existence of
Dirac points were predicted and discovered: diffusionlike
1/L-dependence of the pulse intensity on the distance L of
propagation inside the photonic crystal19,27 (which is unusual
for nonrandom media), oscillatory motion of a Gaussian beam
(optical analogue of the Zitterbewegung effect),28–30 extinction
of coherent backscattering,31–33 conical diffraction,34 as well
as the existence of graphenelike and novel edge states.35,36

From the above-mentioned publications, one can conclude
that the existence of Dirac points in two-dimensional periodic
structures is a rather universal phenomenon, in the sense that
they appear irrespective of sample details, such as the shape
and dielectric parameters of the “atoms” and its structural
symmetry. For example, in the band structures presented in
Refs. 7,20,21, and 37, DPs show up at square, triangular, and
honeycomb lattices. The general criteria for the existence of
DP in periodic dielectric samples were discussed in Ref. 38.

The situation in layered periodic media is quite different and
less studied. As we show below, DPs cannot exist in periodi-
cally layered dielectric structures built of monotype (i.e., with
either all positive or negative refractive indices) dielectrics, no
matter their period, size, and dielectric contrast between the
layers. In Refs. 38 and 39, a one-dimensional periodic array
of metallic unit cells of a special shape was considered, which
exhibited Dirac points created by the accidental degeneracy of
two modes. To create photonic Dirac cones in one dimension,
both normal and metamaterials should be used. Interestingly
enough, a single DP can exist in a homogeneous dispersive
metamedium at a frequency at which both the dielectric
permittivity and the magnetic permeability approach zero
simultaneously.6 Eigenwaves in structured, infinite periodic
systems built of alternating normal and left-handed dielectric
layers, and the transmission and reflection from finite samples,
were analyzed in Refs. 40–42. It was shown that, when the spa-
tial average of the refractive index over the period was zero, the
band structure consisted of gaps at all frequencies except for
a set of isolated points (discrete modes), for which the optical
thicknesses of the adjacent layers were equal to the same inte-
ger number of half-wavelengths. New Dirac cones in graphene
supelatices created by double-periodic and quasiperiodic
electrostatic potentials have been considered in Ref. 43.

C. Brief summary

Here we study the transport properties of layered periodic
dielectric systems “electronically similar” to graphene, in the
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sense that they possess Dirac cones in their photonic band
gap structures. In Sec. II, we demonstrate, using a simple
example, and discuss the similarity and differences between
the Maxwell and Dirac equations as well as between the
corresponding boundary conditions. Section III presents the
transmission through potential barriers created in graphene
by applying steplike electrostatic potentials, in comparison
with light propagation in slabs of normal dielectrics and
metamaterials. In Sec. IV, the photonic band-gap structures of
periodically layered dielectrics are compared with the structure
of the electron energy zones of graphene subjected to a periodic
potential. It is shown that, unlike a two-dimensional photonic
crystal, Dirac cones in a layered periodic medium can exist
only when the medium consists of alternating slabs of left-
and right-handed dielectrics (mixed samples). In Sec. V, we
study the propagation of Gaussian beams of light through
periodically layered mixed samples built of alternating slabs
with positive and negative refractive indices, and of beams
of charge carriers through finite graphene superlattices. We
demonstrate the anomalous, diffusionlike dependence of the
intensity on the propagation distance, and an analog of the
Zitterbewegung effect in a wide range of parameters. New
unusual transport properties of such samples are predicted. In
particular, it is shown that two contacting Dirac cones manifest
themselves differently: given two beams with frequencies
belonging to different cones, one is focused and another
is defocused. The magnitude of the shift of the focus is
independent on the distance of the sample from the focal plane
of the incident beam and is proportional to the width of the
sample. At oblique incidence, a Gaussian beam is not displaced
along the sample even at nonzero values of the mean value of
the dielectric constant.

II. EQUATIONS AND BOUNDARY CONDITIONS

The dynamics of the charge carriers in an external potential
u in graphene is described by a spinor

ψ = (ψA,ψB)T

whose components are related to two sublattices in the unit
cell of the crystal.44 In the low-energy limit, near the Dirac
point, the components of this spinor obey the Dirac equations.
When the energy w of the charge carrier is fixed, then the time
dependence of the spinor is given by exp(−iwt/h̄), and these
equations can be written as

ψA = − ivFh̄

w − u(x,y)

(
∂ψB

∂x
− i

∂ψB

∂y

)
,

(2)

ψB = − ivFh̄

w − u(x,y)

(
∂ψA

∂x
+ i

∂ψA

∂y

)
,

where u(x,y) is the electrostatic potential and vF is the Fermi
velocity.

In order to link this to Maxwell equations, we now consider,
as an example, a TE electromagnetic wave (where the magnetic
field has only one nonzero z component) propagating in
a homogeneous medium and introduce two complex-valued
functions

E = Ey − iEx, H = ZHz, (3)

where Z = μ/ε is the medium impedance, μ and ε are
the medium permeability and permittivity, accordingly. In
Ref. 3, instead of Eq. (3), the Reimann-Silberstain vector
wave functions were used to derive a quantum-mechanical
matrix form of the classical wave equations in the general case
of arbitrary electromagnetic fields propagating in media with
space-dependent permittivity and permeability. The analogy
with the relativistic Dirac equations was noted.

It is easy to show that for monochromatic fields E and H
[the time dependence is given by exp(−iωt)], the Maxwell
equations yield

H = − i

k0n

(
∂E
∂x

− i
∂E
∂y

)
, E = − i

k0n

(
∂H
∂x

+ i
∂H
∂y

)
.

(4)

Here, n is the medium refractive index, and k0 = ω/c. It is
evident that after the replacement

E ↔ ψA, H ↔ ψB, nω ↔ (w − u)/h̄, c ↔ vF , (5)

Eq. (4) coincides with Eq. (2). Namely, the 2D Maxwell
equations for the complex effective fields (3) in a homogeneous
medium and the Dirac equations for the wave functions of
the charge carriers in graphene become identical. The role of
the refractive index of the corresponding effective medium is
played by the quantity neff = (w − u)/h̄ω. Therefore, if, for
example, the potential is a piecewise-constant function of one
coordinate, the corresponding graphene superlattice models a
layered dielectric structure.14 In particular, a layer, in which the
potential u exceeds the energy w of the particle, w − u < 0, is
similar to a slab with negative refractive index n. This means
that a junction of two regions having opposite signs of w − u is
similar to an interface between left- and right-handed dielectric
media with the refractive indices n1 and n2, if

n1

n2
= w − u1

w − u2
. (6)

Because of this similarity, a p-n junction can focus Dirac
electrons in graphene45 in the same way as the focusing of
electromagnetic waves by the boundary between a normal
dielectric and a metamaterial.1,46 However, it is important
to realize that, as it follows from Eq. (6), a change of w

necessarily implies the corresponding change of the ratio
n1/n2. Thus, to model the same (i.e., with fixed values of u1

and u2) graphene bilayer structure, but at different energies,
one has to chose different pairs of dielectrics.

It follows from Eq. (2) that the energy spectrum of the
charge carriers in graphene in a homogeneous potential u =
const is linear near k = 0, i.e., consists of two cones touching
at the Dirac point (see Fig. 1):(

w − u

h̄vF

)2

= k2
x + k2

y. (7)

After substituting Eq. (5), Eq. (7) looks exactly like the
dispersion law (1) for photons. Whilst Eqs. (2) and (4) are akin,
the similarity between the two problems is not complete. First,
unlike Dirac wave functions, the genuine electromagnetic
fields �E and �H are real, i.e., equal to their complex conjugates.
Due to this, positive and negative frequencies (upper and lower
cones in Fig. 1) correspond to the same fields, in contrast to
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a Dirac spinor, which describes electrons, when (w − u) > 0,
and holes, when (w − u) < 0. One further distinction is that
the electric field �E satisfies the continuity condition

div �E = ∂Ex

∂x
+ ∂Ey

∂y
= 0 , (8)

which is not required for the Dirac wave functions.
Essentially different are also the boundary conditions for the

Dirac wave functions at the interface between two half-spaces
with potentials u1 and u2,

ψ1A = ψ2A, ψ1B = ψ2B, (9)

and for the effective electromagnetic fields E and H at the
boundary between two dielectrics,

Z2H1 = Z1H2, Re E1 = Re E2. (10)

Equations (10) follow from the boundary conditions for the real
fields, E1y = E2y and H1z = H2z (the boundary is assumed to
be parallel to the y axis).

Although the charge transport in graphene and the light
propagation in dielectrics are governed by similar equa-
tions, Eqs. (2) and (4), inside the medium, the boundary
conditions (9) and (10) are distinct from each other. This
means that, generally speaking, the coupling between adjacent
samples in these two cases is different. This difference is more
conspicuous in the particular case of a monochromatic plane
wave, H ∝ E ∝ exp[i(kxx + kyy − ωt)], when the boundary
conditions for the effective fields take the form

Z2H1 = Z1H2, E(1 + iky/k2x) = E2(1 + iky/k1x), (11)

where kjx =
√

k2
0n

2
j − k2

y . It is easy to see that Eqs. (9) and (11)
coincide only when ky = 0 (normal incidence) and Z1 = Z2.
That is, in this particular instance, the transmission of Dirac
electrons through a junction is similar to the transmission of
light through an interface between two media with different
refractive indices but equal impedances. In other words, at
normal incidence, any junction in graphene, either n-n, p-p,
or p-n, is analogous to a contact between two perfectly
matched dielectrics or microwave elements. Such an interface
is absolutely transparent to the normally incident radiation
and therefore to the Dirac electrons in graphene as well.
This provides a more intuitive insight into the physics of the
Klein paradox (perfect transmission through a high potential
barrier44,47) in graphene systems.

III. TRANSMISSION THROUGH POTENTIAL BARRIERS
AND DIELECTRIC SLABS: SIMILARITIES

AND DIFFERENCES

To compare the transport properties of Dirac electrons and
light in the general case of oblique incidence, ky �= 0, we
first consider the transmission of particles through a steplike
potential barrier, i.e., through the line x = 0 separating two
domains (1 and 2) of a graphene sheet with different values
u1 and u2 of the potential. In what follows, we will consider
only one spinor component, say ψA ≡ ψ , because ψB could be
found using Eq. (2). The solutions of Eq. (2) in both domains
can be presented as a linear combination of plane waves with

equal (at the chosen geometry of the system) values of ky :

ψj = ei[kyy−(w−uj )t/h̄][ψ (+)
j eikjxx + ψ

(−)
j e−ikjxx], j = 1,2.

(12)

From now on, we consider the range of parameters where there
are no total internal reflections and therefore Imkx = 0. From
the continuity of the wave functions at the boundary, Eq. (9),
it follows (the incident wave now propagates from medium 1
to medium 2) (

ψ
(+)
2

ψ
(−)
2

)
= M̂1→2

(
ψ

(+)
1

ψ
(−)
1

)
, (13)

where the transfer matrix M̂1→2 for the interface x = 0 is equal
to

M̂1→2 = 1

2 cos θ2

∣∣∣∣∣
∣∣∣∣∣ g

(+)
1→2 g

(−)
1→2

g
(−)
1→2

∗
g

(+)
1→2

∗

∣∣∣∣∣
∣∣∣∣∣ (14)

and the matrix elements are

g
(±)
1→2 = e−iθ2 ± s1s2e

±iθ1 . (15)

Here, sj = sgn(w − uj ), θ1 and θ2 are the angles of incidence
and refraction, respectively, while θj = arctan(ky/kjx).

We determine the transmission T and reflection R coeffi-
cients as the ratios of the normal-to-the-boundary components
of the densities of the transmitted, �J (+)

2 , and reflected, �J (−)
1 ,

currents divided by the normal component of the incident
current density J

(+)
1x :

T = J
(+)
2x /J

(+)
1x , R = J

(−)
1x /J

(+)
1x , (16)

where

J
(±)
jx = ±2sj cos θj |ψ (±)

j |2. (17)

From Eqs. (16) and (17), the following formulas can be
obtained (see, e.g., Refs. 48 and 49):

T = 2 cos θ1 cos θ2

1 + cos(s1θ1 + s2θ2)
, R = 1 − cos (s1θ1 − s2θ2)

1 + cos(s1θ1 + s2θ2)
,

(18)

where the angles of incidence θ1 and refraction θ2 are
connected by the relation

sin θ2 = w − u1

w − u2
sin θ1. (19)

The same signs of s1 and s2 correspond to n-n (or p-p)
junctions, while for an n-p (or p-n) junction s1 = −s2. It is
easy to see that at normal incidence (θ1 = θ2 = 0) the potential
barrier of any height is absolutely transparent at any energy
(the Klein tunneling effect).

In the case of light propagating through the interface
between two dielectrics, whose parameters are ε1, μ1 and ε2,
μ2, the transfer matrix

M̂1→2 = 1

2 cos θ2

∥∥∥∥∥ G(+)
1→2 G(−)

1→2

G(−)
1→2

∗ G(+)
1→2

∗

∥∥∥∥∥ (20)

connects the amplitudes of leftward and rightward propagating
waves at both sides, and has the same form as Eq. (14), with
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the matrix elements g
(±)
2→1 replaced by

G(±)
1→2 = cos θ2 ± s1s2 cos θ1

Z2

Z1
(21)

for TE waves and by

G(±)
1→2 = cos θ2

Z2

Z1
± s1s2 cos θ1 (22)

for TM radiation. In Eqs. (21) and (22), sj = sgn nj , nj =
±√

εjμj , and Zj = √
μj/εj . For left-handed dielectrics (ε <

0, μ < 0), the refractive index n is negative.
When Z1 = Z2, the expressions (21) and (22) are identical

and are related to the matrix elements (15) of the corresponding
transfer matrix in graphene, Eq. (13), as

G(±)
1→2 = Re g

(±)
1→2. (23)

This relation is a consequence of the above mentioned
difference between the solutions of the Dirac and Maxwell
equations: the former are complex-valued functions, while the
electromagnetic fields are real.

The light transmission and reflection coefficients are deter-
mined as the ratios of the normal components of the transmitted
(for T ) and reflected (for R) energy fluxes divided by the
normal component of the incident energy flux. When Z1 = Z2

(the situation most favorable for the analogy between Dirac
electrons and light), T and R take the forms

T = 4 cos θ1 cos θ2

(cos θ1 + cos θ2)2 , R = (cos θ1 − cos θ2)2

(cos θ1 + cos θ2)2 . (24)

One can see that even in the particular case, Z1 = Z2, Eqs. (18)
and (24) are, generally speaking, different, and coincide only
when θ1 = θ2 = 0, i.e., when the boundary conditions (11) are
equivalent. This means that in spite of the identity of Eqs. (2)
and (4), the analogy between the transport of Dirac electrons in
graphene and electromagnetic radiation in dielectrics should
not be extended too far. Due to the differences in the boundary
conditions, the analogy holds only for normal incidence on the
interface between two perfectly matched media.

The transmission of Dirac electrons trough a potential
barrier of finite width d, and of an electromagnetic wave
through a dielectric slab of the same width are described by
similar matrices of the form

B̂ = Â2→1Ŝd Â1→2, (25)

where the indices 1 and 2 now correspond, respectively, to the
outside and inside of the barrier (slab). The matrix Â is equal
to M̂ , as in Eq. (14) for graphene, and Â = M̂, as in Eq. (20)
for dielectrics. Obviously, Â2→1Â1→2 = Î , where Î is a unit
matrix. The diagonal matrix Ŝd = diag(eiϕ,e−iϕ), with ϕ =
k2xd describes the propagation inside the barrier (dielectric
slab). From Eq. (25), it follows that under the condition

k2xd = mπ, m = 1,2,3, . . . , (26)

B̂ = (−1)mÎ . This means that either a potential barrier or a
layer of dielectric is transparent if its width is equal to an
integer number of half-wavelengths. This is a general property
of both, Dirac and Maxwell equations, which is independent
of the ratio between the impedances, and its physical nature
has nothing to do with the Klein tunneling.

IV. PERIODICALLY STRIPPED GRAPHENE
SUPERLATTICES AND PHOTONIC STRUCTURES

In this section, we compare the structure of the electron
energy zones of graphene subject to a periodic electrostatic
potential, with the photonic band gap structures of periodically
layered dielectrics. To do this, we assume that the potential in
graphene takes the two values u1 and u2 in alternating areas
of widths d1 and d2, and the corresponding dielectric sample
is built of alternating layers of the same thicknesses, d1 and
d2, with refractive indices n1 and n2, and impedances Z1 and
Z2, respectively. In both cases, the propagation in the layers
1 and 2 is described by the matrices Ŝj = diag(eiϕj ,e−iϕj ),
j = 1,2, where ϕj = djkjx . Assuming that the layers are
parallel to the y axis, the transformation matrix P̂ on the
period D = d1 + d2 is defined by ψ(x + D) = P̂ψ(x) and is
equal to

P̂ = Ŝ1M̂2→1Ŝ2M̂1→2 (27)

for graphene and

P̂ = Ŝ1M̂2→1Ŝ2M̂1→2 (28)

for dielectrics.
The eigenvalues λ = exp(ik‖D) (k‖ is the Bloch wave

number along the x axis) of the matrix P̂ (P̂) depend on
the energy (frequency) and on the tangent component ky of the
wave vector. Both periodic structures are transparent if

|λ| = 1. (29)

In other words, Eq. (29) determines the transparency zones:
the ranges of the energies (frequencies) and wave numbers ky

for which the longitudinal wave number k‖ is real.50 It can be
shown that

λ = F ±
√

F 2 − 1, (30)

where

F (w,ky) = cos ϕ1 cos ϕ2

+
(

tan θ1 tan θ2 − s1s2

cos θ1 cos θ2

)
sin ϕ1 sin ϕ2

(31)

for Dirac electrons in graphene and

F (ω,ky) = cos ϕ1 cos ϕ2

− s1s2

2

(
Z1 cos θ1

Z2 cos θ2
+ Z2 cos θ2

Z1 cos θ1

)
sin ϕ1 sin ϕ2

(32)

for electromagnetic waves in layered dielectrics. In both cases,
the eigenmodes obey the dispersion equation

cos(k‖D) = F. (33)

It follows from Eqs. (29) and (30) that a periodic structure
is transparent for the points in the plane (ky,w) [or (ky,ω)] for
which the inequality |F | � 1 holds. On the other hand, in each
of these two planes, the conditions

ϕ1 = pπ, p = 1,2,3, . . . ,
(34)

ϕ2 = qπ, q = 1,2,3, . . .
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(p and q are positive integer numbers) determine two sets
of curves, where P̂ and P̂ are equal to (−1)p+q Î . This
means that those types of curves belong to transparency
zones. It is apparent that since at the crossings of these lines
the eigenvalues of the matrices P̂ and P̂ are equal to ±1,
such singular crossing points lie at the edges of the zones
and represent their points of contact, known as “conical
intersection,” or “diabolic points” (see, e.g., Ref. 51).

The coordinates, kyt and k0t = ωt/c, of these points in the
plane (ky,k0) can be found from Eq. (34):

k2
0t = [(pπ/d1)2 − (qπ/d2)2]

/(
n2

1 − n2
2

)
,

(35)
k2
yt = [

n2
2(pπ/d1)2 − n2

1(qπ/d2)2
]/(

n2
1 − n2

2

)
.

In the case of graphene, the coordinates of the diabolic points
in the plane (w,ky) are calculated in the same way. In the
vicinity of the points defined by Eq. ( (34)), the phases ϕ1 and
ϕ2 can be written as

ϕ1 = pπ + δϕ1, ϕ2 = qπ + δϕ2, (36)

where |δϕj | � 1. Substituting Eq. (36) into Eq. (32) yields

F � (−1)p+q
[
1 − 1

2

(
δϕ2

1 + δϕ2
2 + 2aδϕ1δϕ2

)]
≡ [

1 − 1
2f (δϕ1,δϕ2)

]
(37)

with

a = s1s2

2

(
Z1 cos θ1

Z2 cos θ2
+ Z2 cos θ2

Z1 cos θ1

)

≡ 1

2

(
k1xε2

k2xε1
+ k2xε1

k1xε2

)
,

where the components k1x and k2x are taken at the point
(kyt ,k0t ). In the plane (δky,δk0), where δk0 and δky are small
deviations of k0 and ky from their values given by Eq. (35),
the points for which the quadratic form f (δϕ1,δϕ2) (37) is
positive, constitute a transparency zone, while the points with
f < 0 correspond to a gap in the photonic spectrum.

The relation between δϕj , δky , and δk0 follows from the
formula

ϕj = dj

√
n2

j (k0)k2
0 − k2

y, (38)

where nj (k0) is the refraction index of the j th layer. An
analogue formula for graphene has the form

ϕj = dj

√
[(w − uj )/h̄vF ]2 − k2

y. (39)

While in conventional dielectrics, the dispersion can be
ignored, if it is weak enough, in left-handed materials, it must
always be taken into account. Indeed, the surface ω(k), where
k =

√
k2
x + k2

y , for normal dielectrics, is a cone similar to the
one presented in Fig. 1; i.e., ω(k) = n−1ck, with n = const >

0. For left-handed metamaterials n < 0, and the group velocity
vg = (dω/dk) is negative, vg < 0, i.e., is antiparallel to the
phase velocity ω/k. The surface ω(k), in a small vicinity of a
certain frequency ω0, has the form depicted in Fig. 2. Although
locally it looks like a part of the lower cone in Fig. 1, ω(k) �=
n−1ck, with n = const on this surface, because the contact
point of the cones is shifted from the origin.

Although the absolute values of the transmission and
reflection coefficients in Eqs. (18) and (24) are different, the

FIG. 2. (Color online) Surface ω(kx,ky) in a small vicinity of a
certain frequency for left-handed media.

dispersion characteristics of two adjoining right- and left-
handed dielectric layers, and the energetic spectrum diagrams
of n-p junction in graphene are identical, as it is shown
schematically in Fig. 3. As a consequence of this identity, the
periodic dielectric structure and graphene superlattice formed
by a periodic external potential possess the same unique
transport properties.

A. Photonic structure

From Eq. (38), we obtain

δϕj = dj

kjx

(
ckjt

vjg

δk0 − kyt δky

)
, (40)

where vjg is the wave group velocity in the j th layer at the
frequency ωt = ck0t . The group velocity in Eq. (40) is positive

FIG. 3. (Color online) The dispersion characteristics ω(k), shown
as blue lines, of two adjoined right-handed (left panel) and left-handed
(right panel) dielectric layers is identical to the energetic spectrum
w(ky) of n-p junction in graphene. The horizontal dashed red line
represents the wave frequency, or the quasiparticle energy. The cones’
apexes correspond to the zones touching points.
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for normal dielectric layers, and negative for layers of left-
handed metamaterials.

Equation (40) shows that the phase variations δϕj vanish
on the lines

δk0 = vjgkyt

ckjt

δky. (41)

These lines lie in the transparency zones and intersect at
the point where they touch. The line associated with the
right-handed dielectric lies in the first and the third quadrants,
whereas the line associated with the left-handed metamaterial
lies in the second and the fourth quadrants, as it is shown in
Fig. 4. When the lattice is composed of conventional dielectrics
only, both lines δϕ1(δky,δk0) = 0 and δϕ2(δky,δk0) = 0 lie in
the first and the third quadrants, and the transparency zones
touch one another in a manner shown in Fig. 4(a). There are
band gaps above and below the frequency ωt = ck0t , and these

FIG. 4. (Color online) Transparency zones (gray) in the plane
ω(kx,ky) for (a) a lattice composed of conventional dielectrics only;
(b) and (c) lattices containing both left- and right-handed dielectrics.
In (b), the touching point between the zones provides a pointlike
transparent zone. In (c), the contact of two zones is a pointlike
nontransparent gap. The phase deviations δϕ1,2 vanish on the red
dashed lines.

gaps are degenerate in pointlike nontransparent zones (gaps)
at the frequency ω = ωt . Note that the zone structure of the
lattice composed of both left-handed dielectrics is similar to
the one shown in Fig. 4(a), but symmetrically reflected with
respect to the δk0 axis.

The band structure can be significantly different when
the lattice contains both left- and right-handed dielectrics. In
this case, there are transparency zones above and below the
frequency ωt = ck0t that touch one another at the frequency
ω = ωt , forming a pointlike transparent zone as it is shown in
Fig. 4(b). This band structure is similar to the energy spectrum
of the charge carriers in graphene, and manifests genuine
Dirac points. It must be emphasized that for such points to
exist, the layers with both positive and negative refractive
indices must be present, but the average (over the period)
value of n should not necessarily be equal to zero. Materials
with effective ε and/or effective μ near zero have become
recently the subject of intensive investigation due to their
unusual transport properties, including the existence of conical
singularities in the band gap structures,37,52,54–56 however, this
topic lies outside the domain of our paper.

It is worth noting that the zone structures shown in Fig. 4
have been calculated for TE (p-polarized) waves. In the case
of s-polarized fields, the dielectric permittivities εi in Eq. (37)
are replaced by the magnetic permeabilities μi , therefore the
photonic band structure is different, while the coordinates of
the diabolic points are the same. This means that for a given
frequency and angle of incidence, the same sample could be
transparent for s polarization and opaque p polarization, and
vice versa. This property can by utilized for the separation of
polarizations.

The transparency zones depicted in Fig. 4 are the pro-
jections onto the plane (ky,k0) of the surface ω = ω(kx,ky),
described by the dispersion equation (33) and shown in
Fig. 5. The zone structures, presented in Figs. 4(a), 4(c),
and 4(b), correspond to the surfaces shown in Figs. 5(a)
and 5(b), respectively.

It is important to note that the presence of both left- and
right-handed dielectrics in the periodic structure is a necessary,
but not sufficient condition for the graphenelike band structure
to exist. Generally speaking, the lines (41) and the band
edges do not coincide, and can be widely separated. When
the distance between the lines (41) and the zone edges is large
enough, as, for example, in Fig. 4(c), the zones shape is similar

FIG. 5. (Color online) Surfaces δk0(δk‖,δky) for (a) the zone
structure depicted in Fig. 4(b) and (b) the zone structures shown
in Figs. 4(a) and 4(c).
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to that of a lattice formed by right-handed dielectrics only [see
Fig. 4(c)]. A detailed analysis of the zones shape is presented
in Appendix.

The fundamental qualitative difference between the zone
shapes of mono- and mix-lattices owes its origin to the strong
dispersion, which is an inherent characteristic of left-haded
media. Ignoring this fact (“for simplicity,” as this is sometimes
done) leads to wrong results for the zones structure in the
vicinity of their contact.

Indeed, assuming a constant refractive index nj (k0) =
const, the phase variation δϕj can be written as

δϕj = dj

kjx

(
n2

j k0δk0 − kyδky

)
, (42)

i.e., the phase variation vanishes on the line that lies in the first
and the third quadrants, independently of the sign of nj .

B. Graphene superlattice

It follows from Eq. (39) that in a graphene superlattice cre-
ated by an electrostatic potential with periodically alternating
values u1 and u2, the phase variations δϕ vanish on the lines

δw = h̄2v2
F kyt

wt − uj

δky, (43)

where wt and kyt are the coordinates of the zone touching point
in the plane (ky, w). The slopes of these lines have opposite
signs when the energy wt lies between the values u1 and u2

of the potential, i.e., when sgn[(w − u1)(w − u2)] = −1. In
this case, the zones touch each other either as it is shown in
Figs. 4(b) or 4(c) (depending on the relation between the layer
thicknesses d1 and d2, and the touching point indices p and
q). In the opposite case, when sgn[(w − u1)(w − u2)] = +1,
the zone structure is similar to the one shown in Fig. 4(a), or
symmetrically reflected with respect to the ordinate axis. Thus
the pointlike transparent zones (new Dirac points) can appear
in the graphene superlattice only in the energy range between
u1 and u2.

V. TRANSMISSION NEAR THE DIRAC POINTS

As it was mentioned in Introduction, the similarity between
the energy spectra of electromagnetic waves in homogeneous
media and Dirac quasiparticles is only formal and physically
meaningless, because the two cones in the photon spectra are
identical. To demonstrate that the singular points (presented
above) in the band gap structure of mixed periodic dielectric
samples possess the properties that make them bona fide Dirac
points, we considered the transmission of a monochromatic
wave of a frequency ω through a finite stack of alternating
left- and right-handed dielectric slabs. The dependencies
of the amplitudes and phases on the complex transmission
coefficients t(ky) of the y component of the wave vector [i.e.,
of the angle of incidence θ = arcsin(cky/ω)] are shown in
Figs. 6(a) and 6(b), for two different frequencies belonging,
respectively, to the upper and the lower cones in Fig. 2. While
the amplitudes |t(ky)| are similar, the phases β = arg t(ky)
manifest quite distinct behaviors:

β(ky) � ±b(ky − kym)2, (44)

FIG. 6. (Color online) The magnitude (blue) and the phase (red)
of the complex transmission coefficient t(ky) of a monochromatic
wave propagating through [(a) and (b)] finite periodic stacks of
alternating left- and right-handed dielectric layers and (c) a stack
of normal dielectric layers. The frequencies in (a) and (b) belong to
the upper and lower cones in Fig. 2, respectively. The ky component of
the wave vector determines the angle of incidence θ = arcsin (cky/ω).
The parameters of the numerical simulations used here are number of
periods N = 9, p = 1, q = 8, d1 = 0.35D, ε1 = n1 = 1, |ε2| = 0.8,
|n2| = 2.5, |v2g| = 0.25c, and D|δk0| = 0.05.

where opposite signs correspond to two different cones, and
kym is the position of the phase β(ky) extremum. For com-
parison, the dependencies of |t(ky)| and β(ky) for a periodic
stack of normal dielectric layers are shown in Fig. 6(c). In this
case, the phase is a monotonic (close to linear) function of the
angle of incidence at all frequencies and has no singularities
at ky = kyt .

Exactly the same parabolic dependence of the phase
β(ky) of the transmission coefficient is intrinsic to graphene
superlattices, when the contact point corresponds to the
pointlike transparent zone. The dependencies of the amplitudes
and phases of the complex transmission coefficients t(ky) on
the y component of the wave vector are shown in Fig. 7
for two different energies: one above [see Fig. 7(a)] and
another below [see Fig. 7(b)] the energy wt of the zones
contact.
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FIG. 7. (Color online) Magnitude (blue) and phase (red) of
the complex transmission coefficient t(ky) of a monoenergetic
quasiparticle propagating through [(a) and (b)] a finite periodic set
of alternating p-n and n-p junctions in graphene. The quasiparticle
energies are (a) above and (b) below the energy of the zones touching
wt . The indexes of the zones contact point are p = 1, q = 5, and
the layer thicknesses are d1 = 0.3D and d2 = 0.7D. In the same
lattice, the zones contact point, whose indexes are p = 3 and q = 1,
corresponds to a pointlike gap, and the dependence t(ky) looks like
the one for a periodic stack of normal dielectrics [see Fig. 6(c)].

As it was mentioned above, the presence of both left- and
right-handed dielectrics, or alternating p-n and n-p junctions
in graphene, is not sufficient for a point of zone touching to
be a pointlike transparency zone (Dirac point). In the same
lattice, points of the zone- touching with different indexes p

and q can be either pointlike gaps, as shown in Fig. 7(c), or
pointlike transparent zones, i.e., Dirac points [see Figs. 7(a)
and 7(b)].

A number of interesting effects emerge in the vicinity of
the Dirac point of the mixed periodic sample or graphene
superlattice. Some of them are caused by the parabolic
dependence (44) of the transmittance coefficient phase on the
angle of incidence (of ky). Let us consider the propagation
of a monochromatic beam of light, bounded in the transverse
dimension (Gaussian beam, for instance), through the mixed
stack of a thickness L. Generally, a beam transmitted through
a slab of a normal dielectric is shifted along the surface, as it
is schematically shown in Fig. 8(a).

FIG. 8. (Color online) (a) A beam of light transmitted through a
slab of a normal dielectric is shifted along the surface. The shift of
the beam passing through a mixed periodic stack is much smaller,
can be either positive or negative, or even equal to zero, as shown
in (b).

The shift � is determined53 by evolution of the phase β of
the transmission coefficient t :

� = − dβ(ky)

dky

∣∣∣∣
ky=ky0

, (45)

where ky0 is the tangential component of the wave vector of
the central ray in the incident beam. It is assumed in Eq. (45)
that the angular width �ky of the incident beam is rather
small. Since mixed periodic stacks are characterized by the
parabolic dependence β(ky), Eq. (44), dβ(ky)/dky is small or
even equal to zero, in which case the longitudinal shift � is
absent completely.

The absence of the longitudinal shift, when
dβ(ky)/dky |ky=ky0 = 0, can also be observed in the so-called
near-zero-index metamaterials57 and in 1D periodic lattices
with birefringent materials.58 It is important to note that in
our case, this phenomenon has a different physical origin.

The parabolic dependence β(ky) affects also the curvature
of the transmitted beam phase front, i.e., it shifts the focal
plane of the incident Gaussian beam. The value �f of this
shift is proportional to the thickness L of the mixed stack and
is independent of the stack position on the beam trajectory.
The sign of the shift �f depends on the sign of the detuning
of the beam frequency ω from the Dirac-point frequency ωt .
The focal plane is shifted forward (defocusing) when ω < ωt ,
and backward (focusing) when ω > ωt .

This surprising focusing properties of mixed periodic
samples are demonstrated in Fig. 9. Of the two beams with the
frequencies resting on two different dispersive cones, the one
corresponding to the upper cone is focused by the sample, blue
curve, while the other (lower cone) is defocused, red line. For
comparison, the black curve presents the intensity distribution
in the beam propagated in free space. This phenomenon is
highly unusual by itself and also reinforces the similarity
of the contact points of the cones to a genuine “optical”
Dirac point: different cones are not identical, and represent
objects with distinct physical properties—a sort of optical
particle-antiparticle pair.

When the frequency ω of the incident beam coincides with
a pointlike gap of the corresponding infinite structure, i.e., ω =
ωt , one would expect an exponential decay of the transmitted
beam intensity Itr as a function of the mixed stack thickness L:
Itr(L) ∝ exp(−γL). However, the well-pronounced constant
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FIG. 9. (Color online) Focusing properties of a mixed periodic
sample. After the transmission through a mixed periodic sample (grey
area), the focus of the beam with a frequency belonging to the upper
cone (blue curve) is shifted to the left with respect to the beam
propagating in free space (black curve). The same sample shifts the
focus of the beam with frequency from the lower cone (red curve) in
the opposite direction. The parameters of the numerical simulations
used here are the number of periods N = 100, p = 2, q = 5,
d1 = 0.4D, ε1 = n1 = 1, ε2 = −0.5, n2 = −0.5, v2g = −0.6c, and
D|δk0| = 0.3.

asymptotic of the function L Itr(L) (see Fig. 10, red line),
demonstrates an anomalously high intensity, decaying as 1/L.
Such a diffusionlike dependence is one of the consequences
of the linear, Dirac conelike dispersion. In two-dimensional
photonic crystals with triangular lattices of normal dielectric
rods, this phenomenon was predicted in Ref. 19. In layered
structures, it could take place only in the presence of left-
handed elements.

Because of the similarity between the energy spectrum
of relativistic electrons and the frequency band structure of
a mixed periodic dielectric structure, it is natural to assume
that the light beam propagation into 1mixed samples can be
accompanied by a Zitterbewegunglike phenomenon. Indeed,
the spatial distribution of the energy flux inside the mixed
sample manifests a trembling motion: the “center of gravity”
of the flux oscillates in the transverse direction (along the y

axis). In Fig. 11, the spatial distribution of the energy flux
inside the mixed sample is shown. The oscillatory motion of
the center of gravity Ic(y) is clearly seen in Fig. 12. Note that
Fig. 11 is similar to Fig. 3 in Ref. 59, where the probability
function of a moving electron (solution of the Dirac equation)
is shown.

Figure 11 also demonstrates the two above-mentioned
effects: the absence of the longitudinal shift (the energy
propagates normally to the sample boundary, whereas the
angle of incidence of the beam is far from the normal) and
the focusing of the beam.

All these effects—the absence of the longitudinal shift, the
focusing of the beam, and the Zitterbewegung phenomenon—
are also seen in graphene superlattices. As an example,
the current density distribution in the Gaussian beam of

FIG. 10. (Color online) Intensity I (N ) (blue line) of the transmit-
ted beam as a function of the distance of propagation inside a mixed
stack. The distance is measured in the numbers of periods N . The
frequency ω of the incident beam belongs to a pointlike transparency
zone (Dirac point) of the corresponding infinite structure, ω = ωt .
The large-N asymptotic of the red line, NI (N ), is constant, which
means that the intensity is inversely proportional to the distance
(diffusionlike dependence). The parameters of the numerical simula-
tions here are p = 1, q = 8, d1 = 0.35D, ε1 = n1 = 1, ε2 = −0.8,
n2 = −2.5, and v2g = −0.25c.

monoenergetic charge carriers propagating through a finite
graphene superlattice is depicted in Fig. 13.

Let us now compare the wave propagation through a
mixed dielectric slab or a graphene superlattice with the
transmission of an electromagnetic wave through a plate
made of a homogeneous (right- or left-handed) dielectric.

FIG. 11. (Color online) Spatial distribution of the energy flux
of the beam propagating (from left to right) through the mixed
sample. The angle of incidence �34◦. The boundaries of the sample
are marked by the vertical dashed lines. The “center of gravity” of
the flux oscillates in the transverse (along the y axis) direction. The
parameters of the numerical simulations used here are the number
of periods N = 100, p = 4, q = 10, d1 = 0.4D, ε1 = n1 = 1, ε2 =
−0.5, n2 = −1.5, v2g = −0.2c, Dδk0 = −0.07, and Dδky = 0.5.
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FIG. 12. Oscillations of the transverse coordinate of the “center
of gravity” of the beam propagating in the mixed sample.

In a small vicinity of the normal angle of incidence, the
dependence β(ky) of the transmission coefficient phase β

on the tangential component of the wave number ky (the
dependence on the angle of incidence) has the same parabolic
form as discussed above [see Eq. (44)], with the only difference
that at homogeneous dielectric plates, kyt = 0 by definition:

β(ky) = ±bk2
y. (46)

Here, the plus sign corresponds to right-handed dielectrics,
while the minus sign corresponds to left-handed dielectrics.
In the first case, the refraction is positive, i.e., the incident
beam and the beam inside the plate lie on opposite sides from
the normal, whereas in the second case, the beams lie on the
same side of the normal (negative refraction). Therefore the

FIG. 13. (Color online) Transmission of the Gaussian beam of
charge carriers through a periodic set of p-n and n-p junctions in
graphene near a pointlike gap. The angle of incidence �48◦. The
sample boundaries are marked by the vertical dashed lines. The
parameters of the numerical simulations used here are the number of
periods N = 100, p = 1, q = 5, d1 = 0.3D, u1 = −u2 = 20h̄vF /D,
δw = −0.3h̄vF /D, and Dδky = 0.2.

shift � is positive for plates of a right-handed dielectric, and
negative for left-handed dielectrics. In other words, in normal
samples, ky and � have the same signs, while in metamaterials
the signs are opposite. Amazingly, these two situations, each
inherent to different kinds of homogeneous materials, can be
observed in the same mixed periodically layered sample, and
graphene superlattice. Indeed, depending on which side of
the Dirac point the frequency lies, the refraction is either
positive (upper cone) or negative (lower cone). In this regard,
it is more appropriate to refer to these two cones as a
“medium-antimedium” pair, rather than “particle-antiparticle,”
as in homogeneous graphene.

VI. CONCLUSIONS

We have shown that some of the exotic properties of charge
transport in graphene can be reproduced in the propagation of
light through layered dielectric samples. Similarities and dis-
tinctions between Maxwell and Dirac equations, and between
the corresponding boundary conditions have been studied.
Although the equations for the real electric and magnetic fields
are essentially different from those for the Dirac electrons,
under some conditions they can be reduced to similar form.
For example, Eq. (4) for the complex combinations given by
Eq. (3) coincides with the Dirac equations (2). Therewith,
the role of the refractive index in graphene is played by the
difference between properly normalized values of the Fermi
energy and the external electrostatic potential [see Eq. (5)].
The boundary conditions for a Dirac quasiparticle incident
on a plane separating two areas with different potentials, and
for an electromagnetic wave propagating through an interface
between two layers of homogeneous dielectrics are, generally
speaking, different. They coincide only when the impedances
of the layers are equal, and the direction of the propagation
is normal to the boundary. It means that at normal incidence,
any junction in graphene is analogous to a contact between
two perfectly matched dielectrics and therefore is absolutely
transparent to normally incident Dirac electrons. This provides
a more intuitive insight into the physics of the Klein paradox
in graphene.

The analytical and numerical analysis of the photonic band
gap structures of infinite periodically layered systems reveals
an infinite number of the so-called “diabolic points” (singular
points of contact of two transparency zones) in the (ω,θ )
spectral diagrams (examples are shown in Fig. 4). A distinction
needs to be drawn between two types of these singularities:
pointlike transparency zones, like in Figs. 4(a) and 4(c), and
pointlike gaps in the spectrum, similar to the one presented in
Fig. 4(c). Although all three pictures in Fig. 4 are topologically
equivalent, the transport properties of the corresponding finite
periodic stacks of layers differ drastically in the vicinities of
these points. Waves with frequencies lying on opposite sides of
the singularities of the first type propagate through the samples
in similar ways. In the same time, when two touching spectral
cones form a pointlike gap, the electromagnetic radiation
interacts with the same sample differently, depending to which
cone its frequency belongs. Studies of the propagation of
beams of light show that only the diabolic points of this type
posses the properties of genuine Dirac points. We demonstrate
that in monotype layered structures (i.e., in those built of either
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normal or left-handed dielectrics), just the diabolic point of the
first type can exist, and conical, Dirac-type singularities appear
only in mixed (with alternating left- and right-handed layers)
samples. This is in contrast to two-dimensional media where
Dirac points were discovered in various types of photonic
crystals with normal dielectric elements. It is important to note
that the physical nature of the Dirac points that we consider
is different from that in systems with zero average value of
the refractive index: in mixed layered structures, they are due
to the specific strong dispersion (phase and group velocities
have different signs) inherent in the elements with negative
refraction.

Although the angular dependencies of the transmission
and reflection coefficients from a single interface in layered
dielectrics and graphene superlatices are different [compare
formulas Eqs. (18) and (24)], the spectral properties of these
two structures are conceptually identical and entail similar
features in the light and charge transport. Considering, as
examples, the transmission of the Gaussian monochromatic
beams of light and monoenergetic Dirac electrons through the
corresponding (dielectric or graphene) samples we predict the
following Dirac-point-induced effects: (i) two touching Dirac
cones influence the propagation of a beam in different ways:
the beam is focused when the frequency (energy) belongs to
the upper cone, and is defocused at frequencies (energies)
lying in the lower one, (ii) the transverse shift of the beam is
anomalously small or even zero, (iii) the decay of the intensity
at forbidden frequencies is diffusionlike, and (iv) a spatial
analog of the Zitterbewegung effect (i.e., trembling motion
of the “center of gravity” of the energy flux) is observed in
periodically layered dielectric structures with nonzero average
refractive indices and in graphene superlattices.
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APPENDIX: BOUNDARIES OF THE TRANSPARENCY
ZONES OF PHOTONIC STRUCTURES

Boundaries of the transparency zones in the plane (δky,δk0)
in the vicinity of the zones touching point are defined by the
equation

δϕ2
1 + δϕ2

2 + 2aδϕ1δϕ2 = 0, (A1)

where δϕj are defined by Eq. (40). It follows from Eq. (A1),
that

δϕ2 = (−a ±
√

a2 − 1), (A2)

where

a = 1

2

(
k1xε2

k2xε1
+ k2xε1

k1xε2

)
.

This equation, using Eq. (40), can be presented in the form

δk
(±)
0 = δky

kyt

k0t

d2k1x − d1k2x(−a ± √
a2 − 1)

d2k1x
c

vg2
− d1k2x

c
vg1

(−a ± √
a2 − 1)

. (A3)

When the photonic structure is formed by either right- or left-
handed layers only, i.e, a > 0 and sgn(vg1/vg2) = 1, both lines
δk

(±)
0 (δky) lie in the same quadrants and the zones touching

point forms a pointlike gap, as it is shown, for instance, in
Fig. 4(a). In the mixed structure, which contains both left- and
right-handed layers, i.e., a < 0 and sgn(vg1/vg2) = −1, the
situation is quite different. The denominator in Eq. (A3) has
the same sign for both δk

(+)
0 and δk

(−)
0 , while the signs of the

numerator can be different. Whether the sign of (δk(+)
0 /δk

(−)
0 )

is equal to −1 or +1 depends on the values of the parameters.
The zones structures in the first [sgn(δk(+)

0 /δk
(−)
0 ) = −1] and

the second [sgn(δk(+)
0 /δk

(−)
0 ) = +1] cases are similar to ones

shown in Figs. 4(b) and 4(c), respectively.
Thus the zones touching point presents the pointlike

transparent zone when the following inequalities hold:

d2k1x

d1k2x

< |a| +
√

a2 − 1,
d2k1x

d1k2x

> |a| −
√

a2 − 1. (A4)

Using the definition of the parameter a and Eq. (35) these
inequalities can be written as

(
d1

d2

)3 (
q

p

)2 (
ε1

|ε2|
)

< 1 <

(
d1

d2

) ( |ε2|
ε1

)
, (A5)

when

(
d2

d1

) (
p

q

) ( |ε2|
ε1

)
> 1,

and reverse to Eq. (A5) inequalities, when

(
d2

d1

) (
p

q

) ( |ε2|
ε1

)
< 1.

As it follows from Eq. (35), the range of allowed values of the
parameters is restricted by the condition

(
d2

d1

)(
p

q

) ( |n2|
n1

)
> 1, (A6)

when n1 > |n2|, and by the reverse inequality when n1 < |n2|.
All these inequalities select a region in the 4-dimensional
space of parameters d1/d2, p/q, ε1/|ε2|, and n1/|n2|, where
the vicinity of the zones contact point is characterized by the
Diraclike spectrum.

Any metamaterial-dielectric pair is characterized by its
own values of the parameters ε1/|ε2| and n1/|n2|. Therefore,
considering these parameters as given, one can define the
corresponding area in the two-dimensional space of parameters
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ξ = p/q and η = d1/d2 (remainder: p and q are integer
numbers). Introducing the notations A = n1/|n2| and B =
ε1/|ε2| we can write the inequalities Eqs. (A5) and (A6) as

Bη3 < ξ 2, η < B, Bη < ξ,
(A7)

Bη3 > ξ 2, η > B, Bη > ξ,

and

ξ > Aη, if A > 1,
(A8)

ξ < Aη, if A < 1.

Equation (A8) means that the line η = A−1ξ divides the plane
(ξ,η) in two parts. The allowed values of variables ξ and
η lie below this line if A > 1, and above the line if A < 1.
Inequalities Eq. (A7) bound an area between the line η = B

and the curve η = (x2/B)1/3. The region where a touching
point of the zones presents the genuine Dirac point is defined
by the intersection of these two areas, as it is shown in Fig. 14.

Note that the group velocities vg1 and |vg2| are not involved
in this analysis. These velocities define the angle of opening
of the Dirac spectrum, but not the fact of its existence.

Usually, metamaterials exhibit their left-handed properties
in a rather narrow frequency range. Because the above-
mentioned region is defined only by the relation between the
layer thicknesses d1 and d2, one can tune the Dirac point

FIG. 14. Plot of the photonic structure parameters ξ = d1/d2 and
η = p/q. The vicinity of the zones contact point is characterized by a
Diraclike spectrum when the structure parameters belong in the gray
region below the dashed line (if A = n1/|n2| > 1) or above this line
(if A = n1/|n2| < 1).

frequency ωt = ck0t by an appropriate choice of the structure
period D.
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