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Magnetic flux pinning in superconductors with hyperbolic-tessellation arrays of pinning sites
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We study magnetic flux interacting with arrays of pinning sites (APSs) placed on vertices of hyperbolic
tessellations (HTs). We show that, due to the gradient in the density of pinning sites, HT APSs are capable of
trapping vortices for a broad range of applied magnetic fluxes. Thus, the penetration of magnetic field in HT
APSs is essentially different from the usual scenario predicted by the Bean model. We demonstrate that, due
to the enhanced asymmetry of the surface barrier for vortex entry and exit, this HT APS could be used as a
“capacitor” to store magnetic flux.
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I. INTRODUCTION

Non-Euclidean geometries have had a very profound effect
in physics,1 not only in general relativity, but also more
recently in condensed-matter physics.2–4 Some examples
include order and defects in liquids and metallic glasses,5

polytope models of glass6 in a curved icosahedral space,
icosahedral bond-orientational order in supercooled liquids,7

etc. Recently, topological defects, i.e., disclinations, disloca-
tions, and vortices, were studied on rigid substrates of spatially
varying Gaussian curvature.8 Here we present a study on vortex
pinning in hyperbolic two-dimensional (2D) tessellations.

In mesoscopic superconductors, the geometry of a sample
and/or its underlying pinning has a strong impact on its vortex
pattern, for example, the appearance of vortex concentric
“shells”9–11 in mesoscopic disks, which can even merge into
so-called giant vortices12 in very small disks. In symmetric
polygons, e.g., triangles and squares, vortices tend to form
patterns with the symmetry of the polygon boundary. More-
over, the sample symmetry can even lead to a spontaneous
generation of antivortices to restore the broken symmetry
for incommensurate magnetic flux.13,14 Furthermore, vortex
patterns can also be produced by various arrays of pinning
sites (APSs) (see, e.g., Ref. 15). Even for the simplest case of
a square APS, a variety of patterns and phases were found.16

Using APSs incommensurate with vortex lattices results
in an elastic deformation of the vortex lattice and thus in an
increase in the elastic energy. However, pinning properties of
a superconductor can be even improved by using incommen-
surate APS sites, as recently demonstrated (theoretically17,18

and experimentally19–22) for quasiperiodic (QP) tiling APSs.
The important property of QP APSs17–22 is the existence of
many built-in periods resulting in flux pinning for various flux
densities. This unique property, in turn, opens the possibility
for the design of fluxonics devices with enhanced pinning over
a broad range of fields.

In this paper, we investigate pinning properties of a
superconductor with pinning sites placed on the vertices of
a hyperbolic tessellation (HT). One important property which
makes this system different from the family of QP tilings, is
that a HT (i.e., its projection from hyperbolic to a 2D Euclidean
space, e.g., in a Poincaré disk representation) is a finite-size
system. This makes HT somewhat similar to mesoscopic

symmetric experimental samples,9,10,12,13 although with addi-
tional internal structure and less rigid “boundaries.” We show
that a HT APS exhibits an enhanced asymmetry of its surface
barrier, for vortex entry and expulsion.

Hyperbolic tessellations are obtained as a projection of a
tiling of regular symmetric polygons in a hyperbolic space to
a two-dimensional Euclidean space. (Similarly, QP tilings are
obtained as a 2D projection of tilings which are periodic in
a higher dimensional space.) As a result, a 2D HT is a set
of topologically equivalent tilings of decreasing sizes (from
the center and toward the edge) which makes this system
attractive for pinning magnetic flux, as we demonstrate below.
Each tessellation is represented by a Schläfli symbol of the
form {p,q}, which means that q regular p-gons surround each
vertex. There exists a hyperbolic tessellation {p,q} for every
p,q such that (p − 2)(q − 2) > 4.1–3,5,6 Note that the ones
based on a regular {p,q} are the same as the dual ones based
on a regular {q,p}, but shown in a different orientation (see
Fig. 1).

II. SIMULATION

We model a three-dimensional (3D) column, infinitely long
in the z direction, by a 2D (in the xy plane) square simulation
cell (see Fig. 2) with periodic boundary conditions. The free-
of-pinning region between the HT APS and the boundary of
the simulation cell serves as a reservoir of vortices that mimics
the externally applied magnetic field. This approach has been
successfully used in numerous simulations in the past (see,
e.g., Refs. 17, 18, 21, and 23–25). To study the dynamics
of vortex motion, we numerically integrate the overdamped
equations of motion (see, e.g., Refs. 17 and 18):

ηvi = fi = fvv
i + fvp

i + fT
i + fd

i . (1)

Here fi is the total force per unit length acting on vortex i,
fvv
i and fvp

i are the forces due to vortex-vortex and vortex-
pin interactions, respectively, fT

i is the thermal stochastic
force, and fd

i is the driving force; vi is the velocity, and
η is the viscosity. All the forces are expressed in units of
f0 = �2

0/8π2λ3, where �0 = hc/2e, and lengths (fields) in
units of λ (�0/λ

2).
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FIG. 1. (Color online) Hyperbolic tessellations in a Poincaré disk.
The Shchläfli symbols {p,q} describe tessellations where q regular
p-gons meet at each vertex: (a) {3,7} and (b) {4,5} (shown by dark
green/black lines). The corresponding dual tessellations (a) {7,3} and
(b) {5,4} are shown by orange (gray in black and white) lines.

Following Refs. 17, 18, 21, and 23–25, the force due to the
interaction of the ith vortex with other vortices is

fvv
i =

Nv∑
j

f0K1

( |ri − rj |
λ

)
r̂ij , (2)

where Nv is the number of vortices, and K1 is a first-order
modified Bessel function.

Vortex pinning is modeled by short-range parabolic poten-
tial wells located at positions r(p)

k . The pinning force is

fvp

i =
Np∑
k

(
fp

rp

)
|ri − r(p)

k |�
(

rp − ∣∣ri − r(p)
k

∣∣
λ

)
r̂(p)
ik , (3)

where Np is the number of pinning sites, fp is the maximum
pinning force of each potential well, rp is the range of the
pinning potential, � is the Heaviside step function, and r̂(p)

ik =
(ri − r(p)

k )/|ri − r(p)
k |.

The temperature contribution fT
i is represented by a

stochastic term obeying the following conditions:〈
f T

i (t)
〉 = 0 (4)

FIG. 2. (Color online) Vortex configurations in a {3,7}
hyperbolic-tessellation (HT) APS for varying number of vortices
per simulation cell (inside the HT): (a) Nv = 49 (NHT

v = 29), (b)
Nv = 81 (NHT

v = 49), and (c) Nv = 144 (NHT
v = 83). Pinning sites

are shown by dark blue (black) open circles, vortices by green (gray)
dots. Red (gray) dashed lines show the boundaries of concentric rings
[numbered 1 to 4 (a)] of the same area containing 1, 7, 21, and 56
pins. (d) Number of pinned (p) and unpinned (up) vortices in the rings,
corresponding to NHT

v in (a)–(c), shown by symbols (lines connecting
the symbols are guides for the eye).
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and 〈
f T

i (t)f T
j (t ′)

〉 = 2ηkBT δij δ(t − t ′). (5)

To obtain the ground state of a system of vortices, the system
starts at some nonzero value of the “temperature” and gradually
decrease it to zero, i.e., we perform a simulated-annealing
simulation. This procedure mimics the annealing procedure in
field-cooled experiments. This method was employed for the
calculations of equilibrium vortex configurations to study the
pinning properties of the HT APSs.

For the simulation of flux entry, vortices were instead
injected in the simulation region, at random positions at
its boundary, thus mimicking an increasing external field.
Correspondingly, flux expulsion was simulated by the random
removal of vortices from the region outside the HT, mimicking
a decreasing external field. These simulations were performed
at zero temperature.

III. VORTEX CONFIGURATIONS IN
A HYPERBOLIC-TESSELLATION APS

Let us consider vortices on a HT APS. One might naively
expect that, in order to pin all the vortices, the ideal pinning
potential should be a sixfold symmetric HT {3,6}. This tessel-
lation is composed of triangles, such that six triangles join each
vertex, as in usual Abrikosov lattices. However, configuration
{3,6} does not satisfy the condition (p − 2)(q − 2) > 4 and
thus such a HT does not exist.

The so-called Omnitruncated tessellation {3,7} is the
“most nearly planar” of all semiregular or regular hyperbolic
tessellations, in the sense that if one tried to construct it
from Euclidean planar polygons, the sum of the angles at
each vertex would be as small as possible, while exceeding
360◦. Therefore, we choose the {3,7} HT for our numerical
simulations (although other HT will possess similar pinning
properties).

Figure 2 shows simulated stable vortex configurations in a
{3,7} HT APS for various values of the applied magnetic flux.
As shown in Fig. 2(a), for low vortex densities (e.g., for Nv =
49 vortices per simulation cell), vortices are mainly pinned
by the central region of the HT. For higher densities (e.g.,
Nv = 81), vortices are pinned by the central and intermediate
region Fig. 2(b). Finally, for an even higher vortex density
(e.g., Nv = 144), the vortex lattice is commensurate with the
pinning centers near the boundary, and therefore are more
efficiently pinned in that region [Fig. 2(c)].

To analyze this observation in a more quantitative way, we
divide the entire area of the HT in concentric rings of equal
areas [Fig. 2(a)]. These rings of increasing radius contain 1,
7, 21, and 56 pinning sites, correspondingly (hereafter, we
ignore the central pinning site, assuming that the mobility of
the vortices can be examined by rotating them with respect
to the center of the HT, which can be experimentally realized
in a Corbino setup—see, e.g., Refs. 26–28). For the numbers
of vortices considered here inside the HT (i.e., NHT

v = 29,
49, and 83), the inner region contains 3, 11, and 18 unpinned
vortices, correspondingly. The first inner ring accommodates,
respectively, 7, 6, and 6 pinned plus 15 unpinned vortices,
i.e., all the vortices in case of low densities (NHT

v = 29 and
49) in this central ring turn out to be pinned, while for

the higher density, i.e., NHT
v = 83, this ring is less efficient

in terms of its pinning properties. The third ring, which is
characterized by a higher density of pinning sites, is efficient
for all the vortex densities considered, and it is able to trap
more vortices with increasing vortex density. However, for the
highest vortex density (NHT

v = 83), most of the pinned vortices
are pinned by the outer ring. These results are summarized
in Fig. 2(d).

The mobility of vortex matter pinned by the HT APS can be
examined, e.g., by applying a Corbino-type radially decreasing
external current (which, in addition, produces a shear stress) or
simply by applying temperature. Thus, for low temperatures
(and low vortex densities), the following holds: The vortices
at or near the center will be in a liquid state, as they are not
pinned and can freely move; the vortices further away from
the center will be in a viscous liquid vortex state, as they are
only partially pinned (e.g., the vortices in the third ring for
NHT

v = 83); and the vortices located near the edges will be in
a solid phase, because there are many pinning sites near the
edges. Therefore, a single sample could exhibit three different
vortex phases.

IV. MAGNETIC FLUX PENETRATION IN A HT APS

Due to the gradient in the density of pinning sites (which
resulted, as shown above, in strongly inhomogeneous pinning
of vortices), the penetration of magnetic flux in a HT APS
is strongly inhomogeneous. The HT outer boundary has a
high density of pinning sites (note that when approaching
the boundary of a mathematical HT, the number of tiles and
therefore the number of vertices goes to infinity, leading to an
infinite density of pinning sites at the surface of the sample;
however, here we consider a more realistic case of a finite
number of vertices or pinning sites). The high-density-of-pins
sample boundary shields the inner part of the HT APS by
pinning vortices at the edge, thus preventing the magnetic flux
from penetrating the HT.

Figure 3 shows the penetration of magnetic flux into a HT
APS for a number of vortices varying from Nv = 28 [Fig. 3(a)]
to 125 [Fig. 3(d)]. The initial state is prepared by annealing
the vortices outside the HT such that they are homogeneously
distributed in the region without pinning. After reaching
a stable vortex configuration outside the “sample” (which
mimics a homogeneous externally applied magnetic field),
temperature is set to zero and vortices are allowed to freely
move, e.g., enter the HT APS.23 For low densities of the applied
magnetic flux, i.e., ranging from Nv = 28 to 63 [Figs. 3(a)
and 3(b)], vortices are trapped by the dense pinning sites
at the boundary. With increasing flux density, and thus flux
“pressure,” some vortices can pass over the first pinning row
but are still not able to enter the inner region of the HT,
being pinned by the second row of pinning sites [Fig. 3(c)
for Nv = 81]. For higher flux densities, magnetic flux starts to
slowly penetrate the HT APS via jumps from the outer pinning
rows to the inner, less dense, pinning rows, while the edge pins
trap additional incoming vortices, until all the pinning sites are
filled. For even higher flux densities, vortices enter the central
part of the sample where they self-organize in vortex patterns
which are influenced by the circular boundary of the HT and the
pinning sites inside the HT (in a similar way to the formation
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FIG. 3. (Color online) Penetration of magnetic flux in a HT
APS: The ground-state vortex configurations for varying number
of vortices, Nv = 28 (a), 63 (b), 81 (c), and 125 (d). For low and
moderate applied fluxes [(a), (b)], the penetration of the magnetic
flux in the HT is shielded by the outer row (i.e., at the edge) of the
HT, while for higher applied fluxes [(c), (d)], vortices jump into the
inner pinning sites, i.e., at the second pinning “row” and the pins
at the central region, although vortices are still pinned by the outer
pins. This scenario results in a very inhomogeneous magnetic flux
penetration in the HT APS. The corresponding radial distribution
function (RDF) of the magnetic flux penetrating in the HT APS is
shown on the right-hand side panel for each Nv .
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FIG. 4. (Color online) Accumulation of the magnetic flux in a HT
APS and its expulsion: Vortex patterns for Nv = 81 (a) and 93 (b).
The right-hand side panels show the corresponding RDF for the
magnetic flux inside (r/λ � 11) and outside (r/λ � 11) the HT [solid
dark blue (black) line] and the average magnetic flux inside the HT
[dashed red (gray) line].

of vortex “shells” in mesoscopic superconducting disks with
strong pinning10).

The profile of the magnetic flux entering the HT APS as
a function of the distance from the center of the HT, i.e., the
radial distribution function (RDF), is shown in Figs. 3(e)–3(h).
The flux is accumulated in the vicinity of the sample boundary
for moderate applied magnetic fluxes, and it penetrates deep
inside the sample for larger fluxes. This scenario is in a sharp
contrast to the conventional flux penetration described by the
Bean model.

V. FLUX EXPULSION AND ACCUMULATION

Another interesting property of the HT APS is the asym-
metry of the sample boundary, i.e., inside and outside the HT.
Of course, trapped flux in usual samples with no pinning is
enhanced by the Bean-Livingston barrier.29 Adding pinning
sites near the edges (as in a HT APS) strongly enhances this
effect.

To simulate flux expulsion and accumulation, the initial
state is prepared by annealing the vortices inside the HT.
After reaching a stable vortex configuration inside the HT,
temperature is set to zero and vortices are allowed to move
freely, i.e., they can leave the “sample” if the vortex density
is sufficient. Magnetic flux accumulation in a HT APS and its
expulsion is illustrated in Fig. 4.
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FIG. 5. (Color online) Magnetization curves for the HT APS
with varying maximum pinning strength: fp/f0 = 1.2 (squares), 1
(circles), and 0.8 (open triangles).

We analyzed the critical values for entry and expulsion
of the magnetic flux and found that it is higher for the
flux expulsion. For example, for a HT array of narrow
pinning sites characterized by the maximum pinning force
fp/f0 = 2 and radius rp/λ = 0.3, the ratio of the critical
magnetic flux for flux expulsion to that of flux entry is
�out/�in ≈ 1.27. This enhanced asymmetry in flux entry and
expulsion might be useful for potential applications of HT APS
as a “capacitor”-type fluxonic device accumulating magnetic
flux.

We calculated the magnetization of the sample exploiting
the analogy between the vortices in the region outside the
HT (i.e., free of pinning) and external field. The integrated
difference between this field and the internal field30 across
the sample yields the magnetization M .23 In our calculations
of the magnetization for the ramp-up phase, the number of
vortices outside the HT was gradually increased from zero
to Nmax

v , then it was gradually decreased to zero for the
ramp-down phase. Note that in this manner only a part of the
magnetization loop can be calculated, i.e., for positive values
of the magnetic field since the field cannot be inverted using
this method.23 Additional vortices were injected, one by one,
at random positions at the boundaries of the simulation cell,
providing a homogeneous distribution of the external magnetic
field outside the sample.

The calculations were performed for different pinning
strengths. Typical magnetization curves are shown in Fig. 5.
First, the magnetization M increases linearly with the external
field. It is interesting that the low-field slope of M is
equal to 1, reflecting the fact that magnetic flux does not
penetrate the sample being shielded by the external boundary,
i.e., the sample displays perfect diamagnetism. After reaching
the maximum, M starts to decrease due to vortices entering

the sample. Note that this behavior of the magnetization
in a HT APS is similar to that of a superconductor in a
Meissner state. However, the magnetic flux is not “expelled”
from the sample by a screening supercurrent as in usual
superconductors in an external field. In a HT APS, the role
of the screening current is played by the vortices which are
pinned by the external row of pinning sites situated at the
HT boundary. These pinned vortices repel incoming vortices
and thus prevent the external flux from entering the sample.
For various values of the pinning strength, the decrease in
the magnetization, after reaching the maximum, can be either
smooth (curves for fp/f0 = 1.2 and 0.8 in Fig. 5) or sharp
(fp/f0 = 1), depending on the parameters of the HT APS.
Further exploiting the similarity to the magnetization of a
superconductor in an external magnetic field, one can notice
that this behavior resembles the magnetization in either type-II
or type-I superconductors, although the reason for this behavior
here can be due to commensurability effects.

The magnetization of the HT has a remarkable hysteresis
loop, as seen from the decreasing-field part of the magnetiza-
tion curves in Fig. 5.

VI. CONCLUSIONS

We demonstrated that arrays of pinning sites (APSs) placed
on vertices of hyperbolic tilings, or tessellations (HTs), can
efficiently trap flux of different densities, in contrast to periodic
APSs which are efficient for few specific matching flux values.
Vortex matter in this device can coexist in three different
phases, namely, in a liquid phase (near the center), in a viscous
liquid vortex phase (further from the center), and in a solid
phase (near the boundary). This could be considered as a vortex
analog of phases of matter inside some planets: a molten matter
at the core, a viscous fluid surrounding the core, and a solid
crust.

We analyzed the magnetic flux entry and exit from a HT
APS. For relatively low fluxes, the outer row of pinning sited
shields the interior of the sample, giving rise to a strongly
inhomogeneous magnetic flux penetration, in contrast to that
predicted by the conventional Bean model. The magnetization
of this device has a linear part (for low applied magnetic
fields) with the slope equal to one, which is indicative of a
perfect diamagnetism similar to that in a Meissner state of a
superconductor, although in a HT APS this occurs due to the
shielding effect of trapped vortices in the outer pinning ring.
Due to the asymmetry in flux entry and exit, the magnetization
of the HT APS displays a remarkable hysteresis.

Our predictions can be readily verified, e.g., in experiments
on magnetization measurements. In particular, such measure-
ments can be done using an array of HTs, to provide a suf-
ficiently strong magnetization to be detected in experiments.
Furthermore, our results for superconducting vortices can be
easily extended to other systems of interacting particles, e.g.,
colloids in a HT potential landscape created by lasers. Our
results are general since they do not depend on a specific
form of interparticle interaction but rather reflect the more
fundamental interplay between discrete periodic elastic media
and incommensurate hyperbolic tilings.
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