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We study the confidence and backaction of state reconstruction based on a continuous weak measurement
and the quantum filter equation. As a physical example we use the traditional model of a double quantum dot
being continuously monitored by a quantum point contact. We examine the confidence of the estimate of a state
constructed from the measurement record, and the effect of backaction of that measurement on that state. Finally,
in the case of general measurements we show that using the relative entropy as a measure of confidence allows
us to define the lower bound on the confidence as a type of quantum discord.
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I. INTRODUCTION

Recently there has been a great deal of activity on the topic
of “weak” quantum measurements [1–7] in both mesoscopic
[8–10] and macroscopic systems [11–14]. In contrast to pro-
jective measurement, weak measurements perturb the system
only slightly, but in turn can provide only limited information.
According to the theory of open quantum systems, both the
evolution of the quantum state and its decoherence depend
on the system-apparatus coupling strength and the basis in
which the measurement system is measured. One of the
advantages of such a measurement is that, given a weak
continuous measurement record, one can reconstruct the
quantum system state during its evolution. One particularly
interesting approach, which we apply and investigate here, is
the “quantum filter equation” as pioneered in the quantum limit
by Belavkin [15] and others [16].

The quantum filter equation has been shown to be a power-
ful method for state reconstruction, and is fairly robust in terms
of the resolution needed in describing the measurement record.
For example, in recent work [17] it has been shown that the
continuous “analog” measurement record can be reduced to a
“one-bit record” and still the filter equation can efficiently pro-
duce an estimate (or purification) of the system state. Similarly
it has been shown that feedback control can be used to enhance
the speed of the state estimation [18–20], and that it can be fur-
ther optimized when combined with a kind of process tomogra-
phy [21]. However, successful application of the filter equation
requires accurate knowledge of the evolution, both coherent
and incoherent, that the monitored system undergoes [22].

Here we first investigate how this state-estimation method
can be used by considering both how confidently [23] an
estimated state deduced from the measurement record reflects
the actual state of the system, and how the effect of backaction
changes the state. Here the “actual state of the system” means
the system under the influence of the backaction [24–26] of
the measurement apparatus, not the initial prepared state.
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In other words, we quantify the confidence of the state-
estimation process independently from the overall fidelity
of the measurement. Thus, we focus on understanding the
state reconstructed using the filter equation, without actively
undoing the backaction or employing feedback. We separately
define the overall accuracy of the measurement with another
quantity or distance, which we term the “epitome.” Second,
we introduce an ensemble-averaged version of the filter
equation which enables a more efficient numerical method (in
theoretical treatments) with which to consider state estimation
via the filter equation. Third, in the final section we consider
the more general situation of an asymptotic positive operator-
valued measure (POVM), and show that in a limiting case the
confidence has a lower bound set by the quantum discord.

Quantities like the confidence have been commonly em-
ployed in investigating information gain with projective
and general measurements [27,28]. The behavior of these
quantities in the context of weak continuous measurement
has not been studied in great detail as of yet, although the
concepts of information gain and measurement disturbance
are well understood [29,30]. In addition, we point out that
our approach here is different from that used in some other
works. For example, here we are concerned primarily with the
optimal measurement of an unknown state by refining our state
of knowledge, whereas in some other approaches the goal is
primarily manipulating (or purifying) one’s state of knowledge
of a given quantum system, and the initial unknown quantum
state is unimportant [30].

The model we use here is based on the continuous
measurement of a double-quantum-dot (DQD) charge state
using a quantum point contact (QPC) [8,31–33]. In this
situation the tunneling barrier of the QPC is modulated by
the charge in the nearby DQD, and produces a continuous
measurement record which can be used in the filter equation.
However, the approach is quite general, and recent applications
have also arisen in circuit-QED systems [14,34].

This article is organized as follows: In Sec. II we provide a
general definition of the confidence, backaction, and epitome.
In Sec. III we introduce the model for weak measurement
of a DQD, and show the results given by the quantum filter
equation. In Sec. IV we speculate about a possible filter
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CUI, LAMBERT, OTA, LÜ, XIANG, YOU, AND NORI PHYSICAL REVIEW A 86, 052320 (2012)

equation based on ensemble-averaged measurements. Finally,
in Sec. V we show that using the relative entropy as a measure
of confidence allows us to define the lower bound on the
confidence as the quantum discord.

II. DEFINITION OF CONFIDENCE AND BACKACTION

Consider a quantum system S which interacts with a mea-
surement apparatusA. When implementing a general quantum
measurement M = {�i}, our knowledge of the system state is
based only on the measured apparatus output y(t). We denote
our estimate of the system state as ρE(t). The initial state of the
system is defined as ρs(0), and ρR(t) is defined as the evolution
of the initial state of the system in the measurement-induced
noise, i.e., what we can think of as the actual state of the system.
We define the ideal state of the system, i.e., its evolution if it
were not affected by the measurement apparatus at all, as ρI (t),
the entirely coherent evolution of ρs(0).

Definition. The quantum state estimation confidence is
defined as

C ≡ D[ρE,ρR], (1)

where D[·] is some appropriate distance measure. Generally
speaking, the smaller C is the more confident we are of the
estimated state, andC = 0 if and only if ρE = ρR , which means
that we are totally confident in the estimated state. Similarly
we define the backaction by

B ≡ D[ρI ,ρR], (2)

so that B = 0 implies no backaction. Finally, we define the
overall accuracy of the measurement with the epitome,

E ≡ D[ρI ,ρE], (3)

which naturally completes the triangle in Fig. 1. In the
treatment that follows of course we have full knowledge of
all these states at all times, and can thus in a theoretical sense
identify the optimal parameters that minimize these quantities.

There is some freedom in choosing an appropriate measure
for C, B, and E . Here we explicitly consider both the fidelity
and the relative entropy [35]. The fidelity is commonly used to
measure the effectiveness of the filter equation, and is defined
as

F = 1 − C = |(σ 1/2ρσ 1/2)1/2|2. (4)

We define the confidence as C = 1 − F in this case, to
match our definition of a distance measure, so that high
fidelity implies C = 0 (and the same with the other measures).
However, since the fidelity is a pseudodistance, this lacks some
characteristics of a true measure. In the case of the relative
entropy we define

C = S(ρR||ρE), B = S(ρI ||ρR), E = S(ρI ||ρE), (5)

where

S(σ ||ρ) = −Trσ ln ρ − S(σ ). (6)

The relative entropy can be seen as a distance measure,
although as it is asymmetric in σ ↔ ρ it is technically
not. In fact the ordering here is important; with the inverse
ordering the backaction B → ∞ as ρI is a pure state in this
example. Using the relative entropy allows us to make a more
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FIG. 1. (Color online) (a) Schematic of the components of
quantum state estimation using the filter equation. Here, ρs is the
system’s initial state, ρR(t) is the evolution of the initial state of the
system in the measurement-induced noises, ρE(t) is the estimation of
the system state, andD[ρE,ρR] is the estimation confidence. (b) shows
a diagrammatic representation of the confidence C and backaction B
as the distance between the various states. Note that when we use the
relative entropy as a distance measure these quantities are asymmetric
(as represented by the one-way arrows).

direct connection to a general POVM description of a weak
continuous measurement in the final section of this work.

III. CONTINUOUS WEAK MEASUREMENT OF A
DOUBLE QUANTUM DOT

We now present the specific details of the DQD and QPC
system (Fig. 2). A DQD consists of a dot L, connected to an
emitter, and a dot R, connected to a collector [31,36,37]. As
is typical, we assume that the DQD is in the strong Coulomb
regime such that only one electron is allowed in the whole
DQD. Here we assume that the DQD is prepared in a single
electron state, and then isolated from the emitter and collector

DQD         QPC

R ( )I tL

FIG. 2. (Color online) Schematic of a QPC used for measuring
the electron states and yielding backaction on the DQD.
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reservoirs via manipulation of gate voltages. The two single-
dot states are denoted by |L〉 and |R〉. The Hamiltonian of the
DQD can be written as

HDQD = �σx/2 + εσz, (7)

with σx = |L〉〈R| + |R〉〈L|, σz = |L〉〈L| − |R〉〈R|, ε the level
splitting between the two single-dot states, and � the coherent
tunneling amplitude between the two dots. The nearby QPC
has the Hamiltonian HQPC = ∑

k ε1ka
†
1ka1k + ∑

q ε2qa
†
2qa2q ,

and the interaction Hamiltonian HI = ∑
k,q(χ − χL|L〉〈L| −

χR|R〉〈R|)(a†
1ka2q + a

†
2qa1k), which is modulated by the elec-

tron states of the DQD. Here χ is the tunneling amplitude of
an isolated QPC, χL (χR) gives the variation in the tunneling
amplitude when the extra electron stays on the left (right) dot,
and a1k (a2q) denotes the electron annihilation operator for the
source (drain) of the QPC. Because the height of the tunneling
barrier in the QPC depends on the electron states of the DQD,
it is expected that the measured current of the QPC will vary
with the DQD states.

In this simple model, the current shot noise [38] of the
QPC acts as a noise source. In the low-temperature limit with
kBT � h̄ω, the noise spectral density takes the form [37–40]

JI (ω) = 4

RK

D(1 − D)
(eVQPC − h̄ω)

[1 − exp{−(eVQPC − h̄ω)/kBT }] ,
(8)

where Rk = h/e2 is the von Klitzing constant, D is the
transparency of a single channel in the QPC, and D is a function
of χ , χL, and χR [9,39–41]. To treat the measurement signal,
or current through the QPC, as a classical variable one must
assume that the QPC evolution is much faster than that of the
DQD, so that only the zero-frequency component is important;
this is effectively a Markovian limit in terms of treating the
QPC backaction on the DQD [8,24].

We also treat the QPC as a perfect detector. In this limit we
can define the measurement strength of the QPC as

κ = (
I )2

16J (0)
. (9)

Here, 
I = IL − IR , where IL = DLe2V/πh̄, IR =
DRe2V/πh̄, DL = D + 
D, DR = D − 
D, and 
D is the
change in the transmission of the QPC due to the charge state
of the DQD.

The evolution of the real state of the DQD ρR can be derived
using the Bayesian techniques of Korotkov and co-workers
[8–10] to give the selective stochastic master equation (SME)
in Ito form,

dρR = − i

h̄
[HDQD,ρR]dt + κD[σz] ρR dt

+
√

2κ H[σz]ρR dWR, (10)

where κ is defined above,

H[σz]ρR ≡ σzρR + ρRσ †
z − Tr(σzρR + ρRσ †

z )ρR, (11)

and the real Wiener process dWR satisfies E(dWR) = 0,

(dWR)2 = dt . In Eq. (10), the superoperator D is defined as

D[a]ρ = aρa† − 1
2 (a†aρ + ρa†a). (12)

Given that, in a general sense, the measurement operator is
y = √

2κh̄σz the measurement record increment at a time t is

dy(t)√
h̄

=
√

8κ
〈
σR

z (t)
〉
dt + dWR = 
I

〈
σR

z (t)
〉

√
2J (0)

dt + dWR.

(13)

Here 〈
σR

z (t)
〉 = Tr[σzρR(t)] (14)

is the instantaneous expectation value of σz at time t based on
the selectively evolved density matrix ρR(t).

This equation of motion also relies on the assumption that

|IL − IR| = |
I | � I0 = (IL + IR)/2, (15)

so that many electrons, N � (I0/
I )2 
 1, should pass
through the QPC before one can distinguish the quantum
state. This is the weakly responding or linear regime, and
the model as we have described it is entirely equivalent to the
formulation used by Korotkov and others [8–10]. Also, note
that for consistency with other works on the filter equation as
a state-estimation technique [17,22] we describe the noise as a
Wiener process, so that the width of the Gaussian distribution
[9,10] used to describe the weak measurement with a QPC is
absorbed into κ .

A. Quantum filter equation

To estimate the quantum state ρE from the measurement
output we employ the quantum filter equation method [17–20,
42,43]. The evolution of the estimated state ρE is described
by the following stochastic master equation, identical to the
“system” one, except that the measurement signal from the
system evolution, described above, determines the noise term:

dρE = − i

h̄
[HDQD,ρE]dt + κD[σz]ρEdt

+
√

2κH[σz]ρE

[
dy(t)√

h̄
− 
I√

2J (0)

〈
σE

z (t)
〉]

, (16)

The last term is analogous to the classical innovation
in control theory [42,43], i.e., the difference between the
actually measured current and the predicted current with the
estimated state. The state-estimation process involves setting
ρE(0) = 1/2, and evolving under the noise determined by
the measurement record from the “experiment,” or in this
theoretical work Eq. (10).

As demonstrated in Ref. [22], even a small error in the
Hamiltonian of the above equation can induce errors in the
estimate of the state provided by the quantum filter equation.
We expect the same to be true of the estimates of the noise
spectrum of the QPC. Here our goal is to study the efficiency
and robustness of quantum state estimation via the filter
equation, so like Ralph and Oxtoby [17] we choose the same
Hamiltonian and QPC properties in both Eq. (16) and Eq. (10).
We leave the problem of accurately estimating the Hamiltonian
and the noise properties of the measurement in a dynamic
way [22] for future work.

Finally, we combine the time evolution of these two
equations (10) and (16) to calculate the confidence of the
estimated state and backaction of the measurement using
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FIG. 3. (Color online) The top row of figures shows the ensemble-averaged behavior (over 2000 realizations) of (a) one minus the confidence
(blue) and one minus the backaction (red) defined in terms of the fidelity, (b) the occupation of the left “dot” or state for the system, Eq. (10)
(in red) and the estimator, Eq. (16), (in blue), and (c) the confidence (blue) and backaction (red) defined in terms of the relative entropy. In all
figures κ = 0.005�, and time is evolved for the equivalent of 15 Rabi oscillations of the bare quantum dot state. (b) shows more directly how
the estimator quickly oscillates in phase with the system state, but takes time to evolve to the same population magnitude. The small oscillations
seen in both backaction curves in (a) and (c) are typical for the definition of the backaction, and simply represent the “nodes” in the oscillation
curve of, e.g., PL, where the ρI and ρR states coincide. (d) and (e) show the same quantities as (a)–(c) except for just a single realization. The
estimator state still quickly approaches the system state, as is typical with the filter equation. The backaction changes in magnitude drastically
in both (d) and (f). There is no single-realization dephasing in (e) because we assume the QPC to be a perfect detector. This is in contrast to
recent work [14] on circuit QED where some information can remain hidden due to the finite lifetime of the measurement cavity. Note that, in
(a) and (d), we have plotted 1 − C and 1 − B, so that the fidelity result can be easily compared to other works investigating the effectiveness of
the filter equation using fidelity.

both the fidelity and the relative entropy, as described earlier.
In Fig. 3, we show numerical results for these quantities.
We will explicitly discuss the epitome in the next section.
We set ρR(0) = |L〉〈L|, ρE(0) = 1/2, and evolve using the
standard techniques for 150 000 time steps per Rabi oscillation.
The top row of figures shows the results averaged over
2000 realizations, while the bottom row shows just a single
realization. In these results we set h̄ = 1, ε = 0, � = 1, and
κ = 0.005�. Comparing to real parameters from [37,40],
one could choose a strong interdot coupling of the order
of � = 32 μeV, giving a time scale of 130 ps for the Rabi
oscillations we show in Fig. 3. This should be chosen carefully
however, to match the desired properties of the QPC time scales
(or whatever the measurement device happens to be).

When we acquire information from the measurement, it
of course induces significant backaction on the system itself.
Figure 3(a) shows the confidence and backaction in terms
of the fidelity, while Fig. 3(c) shows the same in terms of

the relative entropy. Both give reasonable descriptions of the
distance between the estimated state and system state, and for
weak measurement strength the confidence saturates before the
backaction does. Obviously then the trade-off is to measure on
a time scale where both the confidence is relatively high and
the backaction is low.

To gain more insight into what is actually happening
during the evolution of the filter equation, Figs. 3(b) and
3(e) show the population of the left state of the dot for
both the system and estimator. In the ensemble-averaged case
Fig. 3(b) backaction from the measurement dephases the state,
but the estimator matches the system state before coherent
information is totally lost. In a single realization, Fig. 3(e),
the system state does not dephase because the QPC acts as a
perfect detector. Compare this to the case of circuit QED where
the lifetime of the cavity can induce dephasing on certain time
scales [14,34]. The off-diagonal elements behave in a similar
fashion.
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IV. A FILTER EQUATION FOR ENSEMBLE
EXPECTATION VALUES

Solving for the ensemble-averaged results by collating
many single realizations is sometimes an arduous numerical
task, though it can be useful in the stochastic Schrödinger
form if one is modeling a system with a large Hilbert
space. In practice the system state density matrix ensemble
averaged over all measurement trajectories can be trivially
calculated by averaging Eq. (10) and noting that E[dWR] = 0.
This gives the expected Lindblad equation of motion which
induces the behavior we observe in the backaction. How
about the estimator state? Averaging Eq. (16) is nontrivial
as the individual trajectories determined by 〈σR

z (t)〉 are not
statistically independent of ρE(t).

Rather than attempt to do so we simply write down an
analogy to the quantum filter equation which depends on
ensemble-averaged quantities rather than individual trajecto-
ries. We now define ρE = E[ρE], 〈σR

z (t)〉 = E[〈σR
z (t)〉], and

〈σE
z (t)〉 = E[〈σE

z (t)〉]. Thus the term E[〈σR
z (t)〉] represents

the expectation value extracted from an ensemble-averaged
version of Eq. (10), i.e., the evolution of the real system
under the effect of dephasing. By comparison to the stochastic
filter equation we consider the following nonstochastic filter
equation:

dρE

dt
= − i

h̄
[HDQD,ρE] + κD[σz]ρE

+
√

2κH[σz]ρE

[

I√
2J (0)

{〈
σR

z (t)
〉 − 〈

σE
z (t)

〉}]
.

(17)

Solving this equation directly is computationally trivial. To
illustrate this we plot the confidence as a function of time
and measurement strength κ in Fig. 4. We can easily see
that as κ increases the confidence saturates quickly, but with
an associated strong backaction, as expected. Remarkably, if
we inspect the density matrix elements of the estimated state
generated by Eq. (17) to those generated by the ensemble
average over trajectories of Eq. (16) they coincide closely.
This is illustrated in Figs. 4(c) and 4(d). Curiously we are
unable to rigorously justify this correspondence, though one
can note that Eq. (17) represents a valid solution to Eq. (16)
for the trajectory determined by dWR = 0. We also point out
that the fictitious nonlinear force in the second line of Eq. (17)
is not physical, and the equation may not ensure positivity of
the density matrix ρE at an arbitrary time. Why this works so
well in reproducing results from the ensemble-averaged filter
equation, at least for this case of a single qubit measured in
the σz basis, is not clear, and represents a possible avenue of
future work.

Finally, in Fig. 5, we use this nonstochastic filter equation
to plot the epitome E = S(ρI ||ρE). We see that at some
intermediate time, depending on the measurement strength,
the epitome has an optimal minimum which coincides closely
to the crossing point of the confidence and backaction. Thus,
as one would expect, with continous weak measurements there
is an optimal time at which our estimated state is closest to the
original, unperturbed, ideal state. In practice this optimization
can also be discussed in terms of goal programming (shown
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FIG. 4. (Color online) Ensemble-averaged (a) confidence C and
(b) backaction B in terms of the relative entropy between system
and estimator states, as a function of the interaction time t and
measurement strength κ . Both figures are derived using the ensemble-
averaged equation of motion (17). (c) and (d) show a comparison
between the probability of occupation of the left dot PL(t) derived
from averaging Eq. (16) over many realizations (dashed blue lines)
and that given by solving Eq. (17).
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FIG. 5. (Color online) The epitome E = S(ρI ||ρE) as a function
of the interaction time t and measurement strength κ . This figure
is derived using the ensemble-averaged equation of motion (17).
The superimposed white squares indicate the line of crossing points
between the confidence and backaction of Fig. 4, and naturally the
line is close to the minimum in the epitome.

in the Appendix) [44]. Further methods to improve the
estimation, or minimize backaction, could include feedback
or other techniques from quantum control [45].

V. POVM AND THE DISCORD AS A BOUND
ON CONFIDENCE

In quantum theory one can describe any measurement
scenario as a positive operator-valued measure. For example,
weak measurement is sometimes discussed in terms of a
POVM on a combined system and measurement apparatus,
where the measurement apparatus itself is also considered to
be a quantum system. To gain a more fundamental perspective
on the confidence and backaction, as we have defined them
here, we consider an alternative measurement scheme of an
asymptotic POVM.

First, we retain our definition of the initial pure system-
apparatus state ρI (0) = ρs(0) ⊗ ρA(0). We then assume that
a measurement apparatus A is allowed to interact with the
system to produce the typically entangled and correlated
system-apparatus state ρs,A (we suppress any time argument
here for complete generality). We define the “real” state
of the system then as this combined state ρs,A. Finally,
we perform measurements on A associated with a POVM
{�A,†

j �A
j }, where

∑
j �

A,†
j �A

j = 1. Our estimate of the
combined system-apparatus state given by the measurement
is ρm = ∑

j �A
j ρR�

A,†
j . Again we define the confidence in

terms of the relative entropy, so C = S(ρs,A||ρm).
The relative-entropy-based confidence has an interesting

lower bound in the case when the POVM becomes a projective
valued measure. Writing

C = −Trρs,A ln
∑

j

�A
j ρs,A�

A,†
j − S(ρs,A), (18)

we can substitute �A
j = |j 〉〈j |, where |j 〉 is some distinguish-

able orthonormal basis describing the measurement apparatus.

Then the confidence becomes

C = −Tr
∑

j

|j 〉〈j |ρs,A ln
∑

j

|j 〉〈j |ρs,A|j 〉〈j | − S(ρs,A)

= −Tr
∑

j

|j 〉〈j |ρs,A|j 〉〈j | ln
∑

j

|j 〉〈j |ρs,A|j 〉〈j |

−S(ρs,A) = S(ρm) − S(ρs,A)

� min
|j〉

[S(ρm)] − S(ρs,A) = D, (19)

whereD is the quantum discord [35], when the authors assume
classicality in terms of only one subsystem. In their work
the discord has the meaning of the distance between a given
state and the closest (system-apparatus) separable state. In
other words, the lower bound on the confidence is the distance
between the real state and the closest separable state, as one
would expect with projective measurements.

In the case of a general POVM, one could argue that the
minimization of C over all possible POVMs is equivalent to a
generalization of the definition of Modi et al.’s discord [35].
Finally, we note that there is a correspondence between the
estimator state ρE we discussed in terms of the filter equation
and the partial trace TrA(ρm) over the state constructed from
asymptotic POVM measurements [and the same for the real
state ρR and TrA(ρs,A) evolved in the measurement noise in
the filter equation example].

VI. CONCLUSION

In many realistic quantum readout architectures the reliabil-
ity of the quantum measurement output is an important issue.
In this article we discussed how to measure the confidence and
the backaction of a state reconstructed from continuous weak
quantum measurement. As a typical example, we considered
a DQD measured by a nearby QPC. Based on the theory of
open quantum systems and the quantum filter equation method,
we briefly discussed the trade-off between measurement
confidence and measurement-induced backaction. We also
considered a possible filter equation for ensemble-averaged
results. We finished by discussing the case of a general POVM
and how the confidence (when defined as a relative entropy)
has a lower bound related to the quantum discord.
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APPENDIX: QUANTITATIVE CHARACTERIZATION OF
CONFIDENCE AND BACKACTION VIA GOAL

PROGRAMMING

The results in Sec. IV show a clear trade-off relation
between the confidence and the backaction in the parameter
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FIG. 6. (Color online) Density profile of the optimization func-
tion O in the goal programming model for several cases: (a) η1 =
η2 = 1 and 
C = 
B = 0.1; (b) η1 = η2 = 1 and 
C = 
B = 0.2;
(c) η1 = 1, η2 = 0.5, and 
C = 
B = 0.1; (d) η1 = 0.5, η2 = 1,

and 
C = 
B = 0.1.

space spanned by the interaction time t and the measurement
strength k. Let us examine this relation via a sophisticated
method, goal programming [44]. We formulate our problem
setting more specifically; we determine t and k such that
C � 
C and B � 
B for given (small) positive constants

C and 
B . The two parameters 
C and 
B are regarded
as, respectively, admissible confidence error and permissible
backaction. Thus, we can obtain a good measurement scenario
to increase the confidence (i.e., minimize C) while reducing
the backaction (i.e., minimizing B). Hereafter, the confidence
and the backaction are defined via the relative entropy, as seen
in Eq. (5).

Goal programming [44] provides an optimization method
to deal with two (or more than two) conflicting objectives
and it is widely used in mathematics, information theory,
and engineering. Instead of finding solutions which absolutely
minimize or maximize objective functions, the task of goal
programming is to find solutions that, if possible, satisfy a set
of goals, or otherwise violate the goals minimally. This makes
the approach more appealing to practical designers, compared
to other optimization methods (e.g., linear programming
models). Let us describe our measurement problem in terms
of goal programming:

Minimize O ≡ η1δ
+
1 + η2δ

+
2 ,

subject to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C(�x) − δ+
1 + δ−

1 = 
C,

B(�x) − δ+
2 + δ−

2 = 
B,

δ±
1 ,δ±

2 � 0,

�x = (t�/2π,k�) ∈ M.

(A1)

The weight factors η1 and η2 are given positive numbers,
and represent the relative priority of objectives. If η1 > η2,
the condition for the confidence is prior to the one for the
backaction, and vice versa. The condition for the confidence
(C � 
C) is reformulated by the relation C + δ+

1 − δ−
1 = 
C ,

with the deviations between the admissible error and the actual
value, δ+

1 and δ−
1 . When C > 
C (C � 
C), we set δ+

1 =
C − 
C and δ−

1 = 0 (δ+
1 = 0 and δ−

1 = 
C − C). Similarly, we
can set δ±

2 viaB − δ+
2 + δ−

2 = 
B . The setM = {t�/2π,k�}
is the family of measurement scenarios. The smaller O,
the better the performance of the measurement scenario.
The minimum value of O (O = 0) corresponds to the best
solution.

Figure 6 shows the contour profile of O for various
cases, based on the ensemble-averaged confidence C and
backaction B. The optimization function O is a function of
the measurement scenarios: the interaction time t�/2π and
measurement strength k�. The other parameters are the same
as in Figs. 4(a) and 4(b). In both Figs. 6(a) and 6(b), the
confidence and the backaction have equal importance (η1 =
η2 = 1). In Fig. 6(a) we examine the case that 
C = 0.1 and

B = 0.1. We find that the best solution (O = 0) appears in the
dark blue area. If we relax the restriction to 
C = 
B = 0.2,
we find that there are more solutions for the optimization
O = 0, as seen in Fig. 6(b). We also examine the cases when
the confidence has a different importance, or weight, than the
backaction, as seen in Figs. 6(c) and 6(d). The solution for
the case where the measurement confidence is more important
than the backaction (η1 = 1, η2 = 0.5) is given in Fig. 6(c).
The solution for the opposite situation (η1 = 0.5, η2 = 1) is
given in Fig. 6(d). In the above cases, we have considered
a double-criterion goal programming problem and we find
that it is convenient for discussing the trade-off relation
between measurement confidence and measurement-induced
backaction.
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CUI, LAMBERT, OTA, LÜ, XIANG, YOU, AND NORI PHYSICAL REVIEW A 86, 052320 (2012)

[4] S. Ashhab, J. Q. You, and F. Nori, Phys. Rev. A 79, 032317
(2009).

[5] S. Ashhab, J. Q. You, and F. Nori, New J. Phys. 11, 083017
(2009).

[6] S. Croke, E. Andersson, S. M. Barnett, C. R. Gilson, and
J. Jeffers, Phys. Rev. Lett. 96, 070401 (2006).

[7] V. R. Braginsky and F. Y. Khalili, Quantum Measurement
(Cambridge University Press, New York, 1992).

[8] A. N. Korotkov, Phys. Rev. B 60, 5737 (1999).
[9] A. N. Korotkov and D. V. Averin, Phys. Rev. B 64, 165310

(2001).
[10] A. N. Korotkov and A. N. Jordan, Phys. Rev. Lett. 97, 166805

(2006).
[11] I. Buluta, S. Ashhab, and F. Nori, Rep. Prog. Phys. 74, 104401

(2011).
[12] J. Q. You and F. Nori, Nature (London) 474, 589 (2011).
[13] J. Q. You and F. Nori, Phys. Today 58(11), 42 (2005).
[14] A. Frisk Kockum, L. Tornberg, and G. Johansson, Phys. Rev. A

85, 052318 (2012).
[15] V. P. Belavkin, Rep. Math. Phys. 43, A405 (1999).
[16] H. Carmichael, An Open Systems Approach to Quantum Optics

(Springer, New York, 1991).
[17] J. F. Ralph and N. P. Oxtoby, Phys. Rev. Lett. 107, 260503

(2011).
[18] A. C. Doherty, S. Habib, K. Jacobs, H. Mabuchi, and S. M. Tan,

Phys. Rev. A 62, 012105 (2000).
[19] B. A. Chase, A. J. Landahl, and J. M. Geremia, Phys. Rev. A 77,

032304 (2008).
[20] J. Zhang, Y-X. Liu, R-B. Wu, C-W. Li, and T-J. Tarn, Phys. Rev.

A 82, 022101 (2010).
[21] A. Silberfarb, P. S. Jessen, and I. H. Deutsch, Phys. Rev. Lett.

95, 030402 (2005).
[22] J. F. Ralph, K. Jacobs, and C. D. Hill, Phys. Rev. A 84, 052119

(2011).
[23] S. Croke, E. Andersson, S. M. Barnett, C. R. Gilson, and

J. Jeffers, Phys. Rev. Lett. 96, 070401 (2006).

[24] M. Ozawa, Ann. Phys. (Leipzig) 311, 350 (2004).
[25] F. Buscemi, M. Hayashi, and M. Horodecki, Phys. Rev. Lett.

100, 210504 (2008).
[26] S. Luo and N. Li, Phys. Rev. A 84, 052309 (2011).
[27] K. Banaszek, Phys. Rev. Lett. 86, 1366 (2001).
[28] C. A. Fuchs and A. Peres, Phys. Rev. A 53, 2038 (1996).
[29] A. C. Doherty, K. Jacobs, and G. Jungman, Phys. Rev. A 63,

062306 (2001).
[30] K. Jacobs, Phys. Rev. A 67, 030301(R) (2003).
[31] S. A. Gurvitz, Phys. Rev. B 56, 15215 (1997).
[32] J. R. Petta et al., Science 309, 2180 (2005).
[33] N. Lambert, C. Emary, Y. N. Chen, and F. Nori, Phys. Rev. Lett.

105, 176801 (2010).
[34] A. N. Korotkov, arXiv:1111.4016v1 (2011).
[35] K. Modi, T. Paterek, W. Son, V. Vedral, and M. Williamson,

Phys. Rev. Lett. 104, 080501 (2010).
[36] S. H. Ouyang, C. H. Lam, and J. Q. You, Phys. Rev. B 81, 075301

(2010).
[37] K. D. Petersson, J. R. Petta, H. Lu, and A. C. Gossard, Phys.

Rev. Lett. 105, 246804 (2010).
[38] R. Aguado and T. Brandes, Phys. Rev. Lett. 92, 206601

(2004).
[39] R. Aguado and L. P. Kouwenhoven, Phys. Rev. Lett. 84, 1986

(2000).
[40] S. Gustavsson, M. Studer, R. Leturcq, T. Ihn, K. Ensslin,

D. C. Driscoll, and A. C. Gossard, Phys. Rev. Lett. 99, 206804
(2007).

[41] G. B. Lesovik, Pis’ma v Zh. Eksp. Teor. Fiz. 49, 592 (1989)
[JETP Lett. 49, 592 (1989)].

[42] H. W. Bode and C. E. Shannon, Proc. IRE 38, 417 (1950).
[43] S. K. Mitter, Nonlinear Filtering of Diffusion Processes

(Springer, New York, 1982).
[44] M. J. Schniederjans, Goal Programming: Methodology and

Applications (Kluwer, Boston, 1995).
[45] Y. Watanabe, T. Sagawa, and M. Ueda, Phys. Rev. Lett. 104,

020401 (2010).

052320-8

http://dx.doi.org/10.1103/PhysRevA.79.032317
http://dx.doi.org/10.1103/PhysRevA.79.032317
http://dx.doi.org/10.1088/1367-2630/11/8/083017
http://dx.doi.org/10.1088/1367-2630/11/8/083017
http://dx.doi.org/10.1103/PhysRevLett.96.070401
http://dx.doi.org/10.1103/PhysRevB.60.5737
http://dx.doi.org/10.1103/PhysRevB.64.165310
http://dx.doi.org/10.1103/PhysRevB.64.165310
http://dx.doi.org/10.1103/PhysRevLett.97.166805
http://dx.doi.org/10.1103/PhysRevLett.97.166805
http://dx.doi.org/10.1088/0034-4885/74/10/104401
http://dx.doi.org/10.1088/0034-4885/74/10/104401
http://dx.doi.org/10.1038/nature10122
http://dx.doi.org/10.1063/1.2155757
http://dx.doi.org/10.1103/PhysRevA.85.052318
http://dx.doi.org/10.1103/PhysRevA.85.052318
http://dx.doi.org/10.1016/S0034-4877(00)86386-7
http://dx.doi.org/10.1103/PhysRevLett.107.260503
http://dx.doi.org/10.1103/PhysRevLett.107.260503
http://dx.doi.org/10.1103/PhysRevA.62.012105
http://dx.doi.org/10.1103/PhysRevA.77.032304
http://dx.doi.org/10.1103/PhysRevA.77.032304
http://dx.doi.org/10.1103/PhysRevA.82.022101
http://dx.doi.org/10.1103/PhysRevA.82.022101
http://dx.doi.org/10.1103/PhysRevLett.95.030402
http://dx.doi.org/10.1103/PhysRevLett.95.030402
http://dx.doi.org/10.1103/PhysRevA.84.052119
http://dx.doi.org/10.1103/PhysRevA.84.052119
http://dx.doi.org/10.1103/PhysRevLett.96.070401
http://dx.doi.org/10.1016/j.aop.2003.12.012
http://dx.doi.org/10.1103/PhysRevLett.100.210504
http://dx.doi.org/10.1103/PhysRevLett.100.210504
http://dx.doi.org/10.1103/PhysRevA.84.052309
http://dx.doi.org/10.1103/PhysRevLett.86.1366
http://dx.doi.org/10.1103/PhysRevA.53.2038
http://dx.doi.org/10.1103/PhysRevA.63.062306
http://dx.doi.org/10.1103/PhysRevA.63.062306
http://dx.doi.org/10.1103/PhysRevA.67.030301
http://dx.doi.org/10.1103/PhysRevB.56.15215
http://dx.doi.org/10.1126/science.1116955
http://dx.doi.org/10.1103/PhysRevLett.105.176801
http://dx.doi.org/10.1103/PhysRevLett.105.176801
http://arXiv.org/abs/1111.4016v1
http://dx.doi.org/10.1103/PhysRevLett.104.080501
http://dx.doi.org/10.1103/PhysRevB.81.075301
http://dx.doi.org/10.1103/PhysRevB.81.075301
http://dx.doi.org/10.1103/PhysRevLett.105.246804
http://dx.doi.org/10.1103/PhysRevLett.105.246804
http://dx.doi.org/10.1103/PhysRevLett.92.206601
http://dx.doi.org/10.1103/PhysRevLett.92.206601
http://dx.doi.org/10.1103/PhysRevLett.84.1986
http://dx.doi.org/10.1103/PhysRevLett.84.1986
http://dx.doi.org/10.1103/PhysRevLett.99.206804
http://dx.doi.org/10.1103/PhysRevLett.99.206804
http://dx.doi.org/10.1109/JRPROC.1950.231821
http://dx.doi.org/10.1103/PhysRevLett.104.020401
http://dx.doi.org/10.1103/PhysRevLett.104.020401



