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Transverse spin of a surface polariton
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We consider a p-polarized surface electromagnetic wave (a classical surface polariton) at the interface between
the vacuum and a metal or left-handed medium. We show that the evanescent electromagnetic waves forming
the surface polariton inevitably possess a backward spin energy flow, which, together with a superluminal
orbital energy flow, form the total Poynting vector. This spin energy flow generates a well-defined (but not
quantized) spin angular momentum of surface polaritons which is orthogonal to the propagation direction. The
spin of evanescent waves arises from the imaginary longitudinal component of the electric field which makes the
polarization effectively elliptical in the propagation plane. We also examine the connection between the spin and
chirality of evanescent modes.
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Introduction. The spin angular momentum (AM) of light
arises from the circular polarization of propagating electro-
magnetic waves and is directed along the wave momentum
[1]. It obviously vanishes for a linearly polarized wave.
Furthermore, the spin AM is known to be purely intrinsic,
i.e., independent of the coordinate origin [2–5]. At the same
time, propagating light can also possess orbital AM: It
originates from phase gradients and can have both intrinsic
and extrinsic parts [1–5]. The spin and orbital AM are
produced, respectively, by the local spin and orbital energy
flows (EFs) [4–9]. These are associated with vector and
scalar properties of the field and together constitute the
Poynting vector (momentum density). The separation of the
spin and orbital parts of the AM and Poynting vector is
unique, and both parts are separately observable—e.g., via
the motion of test particles [3,8,10–12] or the evolution
of instantaneous distributions of the wave field [13]. The
properties of the spin and orbital EFs in optical fields were
recently examined in detail [9], apart from those in evanescent
waves.

In this Rapid Communication we investigate the spin and
orbital properties of linearly polarized evanescent electromag-
netic waves by considering a p-polarized surface polariton at
the interface between the vacuum and a negative-permittivity
medium [14–17]. We demonstrate that, despite its linear polar-
ization, the evanescent wave inevitably carries nonzero spin EF
and spin AM, the latter being directed orthogonally to the wave
momentum. Moreover, the orbital EF is superluminal, whereas
the spin EF is backward, which together ensures subluminal
local energy transport in the forward direction. The spin of
the evanescent wave arises from the imaginary longitudinal
electric field, which generates a rotation of the electric-field
vector within the propagation plane. Furthermore, we examine
the relations between spin and chirality [18,19] for evanescent
waves.

Scalar and vector features of evanescent waves. We
consider a p-polarized surface-polariton plane wave at the
z = 0 interface between the vacuum (z > 0) and a medium
(z < 0) with real permittivity ε = εm < 0 and permeability
μ = μm. Assuming that the surface mode propagates along
the x axis, its unit-amplitude electric and magnetic complex

fields can be written as [14–16]

E+ =
(

ẑ − i
κ+

kp

x̂
)

f +, E− = ε−1
m

(
ẑ + i

κ−

kp

x̂
)

f −,

H+ = − k0

kp

ŷ f +, H− = − k0

kp

ŷ f −, (1)

where the “+” and “−” superscripts denote quantities
in the z > 0 and z < 0 half spaces, and f ± =
exp[ikpx ∓ κ±z − iω0t] are the scalar wave functions lo-
calized at the interface. Here ω0 is the frequency, k0 =
ω0/c, whereas the evanescent waves f ± are characterized
by complex wave vectors k± = kpx̂ ± iκ±ẑ, which satisfy
the dispersion relations k±2 = k2

p − κ±2 = εμk2
0 . Using the

proper boundary conditions at the interface, this yields the
surface-polariton parameters [14–16]

kp = k0

√
ε2
m − εmμm

ε2
m − 1

, κ+ = −ε−1
m κ− =

√
k2
p − k2

0 . (2)

We would like to emphasize two important features of the
solutions (1) and (2). First, the surface polariton propagates
along the x axis with the wave number kp > k0, and its phase
velocity is vph = c k0/kp < c. At the same time, the local
energy-transport velocity (which in free space becomes the
group velocity) can be determined using the relativistic relation
between the energy W and momentum p: p = vgW/c2. For
the scalar evanescent waves f ±, the x component of the
momentum and energy are proportional to kp and ω0, and we
arrive at the superluminal group velocity vgO = c kp/k0 > c.
(In contrast, for a plane wave in free space, propagating at
some angle with respect to the x axis, with kx < k0, we would
obtain vph = c k0/kx > c and vgO = c kx/k0 < c.) Thus, it
might seem that the apparent superluminal group velocity of
the scalar evanescent waves f ± contradicts relativity.

Second, consider the polarization of the surface polariton
(1). Although it can be regarded as a linearly polarized p mode
with the electric field lying in the propagation (x,z) plane,
we emphasize the imaginary character of the longitudinal x

component of the field. It arises from the transversality con-
dition E± · k± = 0 with imaginary k±

z = ±iκ±. This results
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FIG. 1. (Color online) Instantaneous distributions of the real
electric field E (r,t) and intensity I (r,t) for a surface polariton (1)
propagating along the surface of a metal (z < 0) with εm = −1.5
and μm = 1. The electric field in each point rotates anticlockwise
(clockwise) at z > 0 (z < 0), whereas the intensity wave crests move
with the phase velocity vph = c k0/kp < c.

in the ∓π/2 phase difference between the E±
x and E±

z field
components, i.e., in the rotation of the electric field in the
(x,z) plane. In other words, a p-polarized evanescent wave is,
in fact, elliptically polarized in the propagation plane.

Figure 1 shows the temporal evolution of the real electric
field E (r,t) = Re E (r,t) and instantaneous intensity I (r,t) =
|Re E (r,t)|2 + |Re H (r,t)|2 for the surface polariton (1). The
motion of the wave crests demonstrates subluminal phase
velocity vph, whereas the electric-field vector rotates in each
point anticlockwise (clockwise) at z > 0 (z < 0). A nice
interplay of these features is revealed below.

Spin and orbital energy flows. The time-averaged energy
density and local EF (the Poynting vector) of an electromag-
netic wave in an isotropic medium with real ε and μ are given
by [20]

W = g

2
[ε̃|E|2 + μ̃|H|2], P = cg Re[E∗ × H], (3)

where ε̃ = d (ωε) /dω > 0, μ̃ = d (ωμ) /dω > 0, and g =
(8π )−1 in Gaussian units. The EF determines the density of
the kinetic momentum of the field, p = P/c2. Generalizing
previous free-space results [4–9], the Poynting vector in
the medium can be divided into its spin and orbital parts,
P = PS + PO , as

PS = cg

4k0
Im[μ−1∇ × (E∗ × E) + ε−1∇ × (H∗ × H)], (4)

PO = cg

2k0
Im[μ−1E∗ · (∇)E + ε−1H∗ · (∇)H]. (5)

The orbital EF is essentially determined by the phase gradient
of the scalar wave function f , whereas the spin EF is
produced by the gradients of the polarization ellipticities
ϕE ≡ Im (E∗ × E) and ϕH ≡ Im (H∗ × H).

The separation (3)–(5) works well in a homogeneous
medium, but in the presence of inhomogeneities (e.g., inter-
faces), the spin and orbital EFs acquire nonzero divergences,
∇ · PS = −∇ · PO �= 0, which does not make physical sense.
Since ∇ · P = 0, one can modify the separation of the spin
and orbital EFs, P = P′

S + P′
O , such that ∇ · P′

S = ∇ · P′
O = 0

(cf. Ref. [5]). In this manner, we obtain P′
S = PS + �, P′

O =
PO − �, with

� = cg

4k0
[∇μ−1 × ϕE + ∇ε−1 × ϕH ]. (6)

This term describes a “spin-orbit interaction” which vanishes
in a homogeneous medium, but becomes important at inter-
faces.

Due to the above-mentioned polarization properties of the
p-polarized evanescent waves, the electric-field ellipticity does
not vanish for the surface polariton (1) and yields

ϕ+
E = −2

κ+

kp

e−2κ+zŷ, ϕ−
E = 2

κ−

ε2
mkp

e2κ−zŷ. (7)

Owing to the strong z gradient, this ellipticity results in a
nonzero spin EF (4). Substituting Eqs. (1), (2), and (7) into
Eqs. (4) and (5), we obtain

P+
S = −cgκ+2

k0kp

e−2κ+zx̂, P−
S = − cgκ−2

μmε2
mk0kp

e2κ−zx̂, (8)

P+
O = cgkp

k0
e−2κ+zx̂, P−

O = cgkp

μmε2
mk0

e2κ−zx̂. (9)

Accordingly, the total Poynting vector of the surface polariton
is [14–16]

P+ = cgk0

kp

e−2κ+zx̂, P− = cgk0

εmkp

e2κ−zx̂. (10)

Importantly, because of the discontinuity of μ−1ϕE at the
vacuum-medium interface, Eq. (7), strong counterpropagating
boundary spin and orbital EFs arise there. Taking into account
the “spin-orbit” correction (6), these boundary EFs are

δPS = −δPO = cgκ+

2k0kp

(
1 − 1

εmμm

)
δ(z). (11)

Thus, evanescent waves possess a backward spin EF (8),
PS ‖ −x̂, (in the medium it can be forward if μm < 0). This
spin EF is subtracted from the forward orbital EF (9) to give
the total energy current (10). Figure 2 shows the distributions
of the time-averaged field intensity and EFs (8)–(11) for
polaritons on the surface of (a) a metal and (b) a “perfect”
left-handed medium with εm = μm = −1 [21]. To understand
the importance of the spin EF, note that Eqs. (8)–(10) in the
vacuum can be written as P+

S = −c(κ+2
/k0kp)W+x̂, P+

O =
c(kp/k0)W+x̂, P+ = c(k0/kp)W+x̂, where W+ = ge−2κ+z is
the energy density (3). Using the relation P = pc2 = vgW ,
one can see that the orbital EF corresponds to the superlu-
minal group velocity, vgO = c kp/k0 > c, mentioned above,
while the backward spin EF reduces the total momentum
and the corresponding group velocity becomes subluminal:
vg = c k0/kp = vph < c. Hence, it is the backward spin EF
that ensures proper local energy transport in evanescent
electromagnetic fields.

Angular momenta and chirality. The spin and orbital parts
of the wave momentum p = P/c2 determine the spin and
orbital AM of the electromagnetic field [4–9]. Their spatial
densities are given by S = r × pS and L = r × pO , whereas
the integral (in our case, integrated over z) values can be written
as

〈S〉 = 〈r × pS〉 , 〈L〉 = 〈r × pO〉 . (12)
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FIG. 2. (Color online) Distributions of the time-averaged in-
tensity I = |E|2 + |H|2, spin (PS), orbital (PO ), and total (P) EFs
(8)–(11) for the surface polariton (1) propagating along the surface
of (a) a metal (εm = −1.5, μm = 1) and (b) a “perfect” left-handed
medium (εm = μm = −1). The boundary flows (11) are indicated
by dashed arrows. In the vacuum (z > 0), the backward spin EF
is subtracted from the forward superluminal orbital EF to provide
subluminal energy transport. In the metal, the spin EF dominates over
the orbital EF, which results in the backward energy transport [15].

The spin represents a purely intrinsic AM, while the orbital
AM consists of extrinsic and intrinsic parts [2,3,5]:

〈L〉ext = 〈r〉 × 〈pO〉 , 〈L〉int = 〈L〉 − 〈L〉ext , (13)

where 〈r〉 is the centroid of the beam.
To prove the intrinsic nature of the spin AM of surface

polaritons, we calculate the integral spin EF (8) and (11). Re-
markably, the positive boundary flow (11) precisely balances
the negative bulk flow (8) and 〈PS〉 ≡ ∫

PS dz = 0, akin to the
case of propagating waves [4,5]. Thus, although the spin EF is
crucial for the local energy transport, it does not transfer energy
globally. This ensures that 〈S〉ext = 〈r〉 × 〈pS〉 ≡ 0 [2–6]. At
the same time, the global energy transport is realized by the
orbital EF: 〈PO〉 = 〈P〉 = (cgk0/2κ+kp)[1 − ε−2

m ]x̂, and the
ratio 〈P〉/〈W 〉 yields the known group velocity of the surface
polariton [15,16].

The value of the AM is typically normalized by the integral
energy 〈W 〉 [1]. Since 〈W 〉 is strongly dependent on the
dispersion in the medium, we first calculate the spin and
orbital AM for the free-space evanescent field in the z > 0
half space. Using Eqs. (1)–(3) and (8)–(10), its energy is
〈W+〉 ≡ ∫

z>0 Wdz = g/2κ+, whereas the spin and orbital AM
(12) become

〈S+〉 = − κ+

2ω0kp

〈W+〉ŷ, 〈L+〉 = kp

2ω0κ+ 〈W+〉ŷ. (14)

Noteworthily, the same spin AM (in units of h̄ per particle) can
be obtained via calculating the normalized expectation value

of the quantum spin-1 operator Ŝ with the fields (1) [8]:

〈E+,H+| Ŝ |E+,H+〉
〈E+,H+ | E+,H+〉 = − κ+

2kp

ŷ. (15)

In the whole space, the AM yield

〈S〉 =
(

1 − 1

ε2
mμm

)
〈S+〉, 〈L〉 =

(
1 − 1

ε2
mμm

)
〈L+〉.

(16)

Thus, evanescent waves and surface polaritons possess well-
defined (but not quantized) spin and orbital AM directed
orthogonally to the propagation (x,z) plane.

The separation of the intrinsic and extrinsic parts of
the orbital AM is determined by the centroid of the field,
〈z〉 = 〈z W 〉 / 〈W 〉, which depends on the medium dispersion.
As an example we consider polaritons on the surface of a
“perfect” left-handed material with εm (ω0) = μm (ω0) = −1
[21]. In this case, κ+ = κ−, the boundary EFs (11) vanish, and
the EFs are mirror antisymmetric with respect to the z = 0
plane [Fig. 2(b)]. Choosing the model dispersions εm (ω) =
μm (ω) = 1 − 2ω0/ω, we have ε̃m (ω0) = μ̃m (ω0) = 1, and
the energy densities become mirror symmetric with respect
to the z = 0 plane. In this case 〈z〉 = 0, and purely intrinsic
spin and orbital AM (16) yield 〈S〉 = 2〈S+〉 and 〈L〉 = 2〈L+〉.

An intrinsic AM can be associated with a circulating EF,
i.e., a vortex [1,6,9]. One can see that the energy circulation
in the surface-polariton field is nonzero for any contour
encircling the origin (see Fig. 2). In such circumstances, the
vortex EF appears upon the longitudinal x localization of the
field, i.e., considering a surface-polariton wave packet [22].
As an example, we consider a realistic left-handed material
with plasma dispersions εm (ω) = 1 − ω2

ε/ω
2, and μm (ω) =

1 − ω2
μ/ω2. For this case, Fig. 3 shows a surface-polariton

wave packet calculated numerically using a narrow Gaussian
spectrum of solutions (1) centered around ω = ω0. It is clearly
seen that the spin and orbital EFs form countercirculating
vortices in the (x,z) plane. In this generic case, the orbital
AM (12) and (13) contains both intrinsic and extrinsic parts.

Finally, we explore an important connection between the
spin and chirality of the wave [18,19]. Akin to the energy
density W and energy flow P, one can characterize the chirality
of the electromagnetic field by the chirality density K and
chirality flow � which satisfy the continuity equation [18,19].
Generalizing the earlier free-space results to the case of a
homogeneous medium, these time-averaged quantities can be
written as

K = g Im(H∗ · E), � = cg

2
Im(μ−1E∗ × E + ε−1H∗ × H).

(17)

Substituting here the surface-polariton field (1), we immedi-
ately arrive at

K = 0, � = cg

2
μ−1ϕE �= 0. (18)

Thus, the chirality density vanishes since H∗ · E = 0, whereas
a nonzero chirality flow is determined by the ellipticity of the
field polarization, Eq. (7). To understand these results, note
that for the propagating fields, the integral chirality 〈K〉 is
intimately related to the averaged helicity of photons, whereas
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FIG. 3. (Color online) The same intensity and EF distributions as
in Fig. 2, but for a surface-polariton wave packet propagating along the
surface of a dispersive left-handed material with electric and magnetic
plasma frequencies ωε = √

3/2 ω0 and ωμ = 2 ω0, which correspond
to εm (ω0) = −0.5 and μm (ω0) = −3. The counterpropagating EFs
in the vacuum (z > 0) and the medium (z < 0) bring about the vortex
EFs in the localized wave-packet solutions. These solutions carry
spin, intrinsic orbital, and extrinsic orbital AM along the y axis.

the chirality momentum 〈�/c2〉 is proportional to the spin AM
〈S〉 [19]. In our case, the helicity vanishes identically because
the spin AM is orthogonal to the momentum, and 〈K〉 = 0. At
the same time, calculating the integral chirality momentum,
we find that it is indeed proportional to the spin AM:

〈�/c2〉 = 2k0 〈S〉 . (19)

Here we obtained an additional factor of 2 as compared to
the general result for propagating fields [19]. Noteworthily,
the connection between the chirality and helicity (rather than
spin) is quite fundamental. The main point is that chirality is a
parity-odd but time-even property [23]. Spin changes its sign
upon time inversion, while helicity does not.

Discussion. We have shown that evanescent waves in free
space and surface-polariton modes at the interface with a
negative-permittivity medium possess superluminal orbital
energy flow and nonzero backward spin energy flow. The latter
originates from the rotation of the electric field in the plane of
propagation, and it is necessary for proper energy transport.
The EFs generate well-defined spin and orbital angular
momenta which are orthogonal to the propagation direction of
the wave. The helicity and chirality density naturally vanish in
such a case. It is worth noticing that the previously considered
AM of propagating waves [1] and near-field vortices [24]

essentially require the superposition of multiple plane waves
which produce the necessary gradients. In sharp contrast, the
transverse spin and orbital AM already appear here for a single
surface-polariton plane wave (two evanescent waves) owing to
its natural confinement (inhomogeneity) across the interface.

Our results appeal to experimental tests revealing the
unusual transverse spin of surface-polariton evanescent waves.
Typically, spin AM manifests itself in interactions with probe
particles, and it is important to discuss the fundamentals of
such experiments.

The spin AM is usually observed in propagating optical
fields via the spinning motion of the absorbing or birefringent
test particles [3,10–12]. Any local perturbation of the field with
a nonzero ellipticity (e.g., a small region of the field exclusion
around the particle) immediately induces radial intensity
gradients and circulating spin EF [6]. This circulating EF spins
the particle in any point of the elliptically polarized field. In
the case of evanescent waves, the situation becomes more
complicated, because any local perturbation in the (x,z) plane
will drift along the x axis with velocity vg = vph = c k0/kp.
Still, the probing particle can experience a nonzero circulation
of the spin EF which will induce its spinning motion.

In addition to the spinning motion, test particles can move
linearly in the background EFs. Such an interaction crucially
depends on the physical properties of the particle. For instance,
Berry noticed [8] that the forces acting on small absorbing
and conducting particles are proportional to the orbital EF (8)
and the total Poynting vector (10), respectively. Hence, such
particles in the evanescent field will experience forces kp/k0

times higher and k0/kp times weaker than the analogous
force from a propagating plane wave without spin EF. Thus,
monitoring the linear motion of different particles, one could
observe the action of different EFs.

Finally, the vanishing of the chirality density implies that
the interaction of the surface-polariton plane waves with small
chiral particles (e.g., molecules) cannot distinguish between
right- and left-handed enantiomers. The verification of this
conclusion could also be an important confirmation of the
above theory.
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