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We propose a quantum algorithm for finding eigenvalues of non-unitary matrices. We show how to construct,
through interactions in a quantum system and projective measurements, a non-Hermitian or non-unitary matrix
and obtain its eigenvalues and eigenvectors. This proposal combines ideas of frequent measurement, measured
quantum Fourier transform, and quantum state tomography. It provides a generalization of the conventional phase
estimation algorithm, which is limited to Hermitian or unitary matrices.
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I. INTRODUCTION

One of the most important tasks for a quantum computer
would be to efficiently obtain eigenvalues and eigenvectors
of high-dimensional matrices. It has been suggested [1]
that the quantum phase estimation algorithm (PEA) [2] can
be used to obtain eigenvalues of a Hermitian matrix or
Hamiltonian. For a quantum system with a Hamiltonian H ,
a phase factor, which encodes the information of eigenvalues
of H , is generated via unitary evolution U = exp(−iHτ ). By
evaluating the phase, we can obtain the eigenvalues of H . The
conventional PEA consists of four steps: preparing an initial
approximated eigenstate of the Hamiltonian H , implementing
unitary evolution operation, performing the inverse quantum
Fourier transform (QFT), and measuring binary digits of the
index qubits.

The PEA is at the heart of a variety of quantum algorithms,
including Shor’s factoring algorithm [3]. A number of appli-
cations of PEA have been developed, including generating
eigenstates associated with an operator [4], evaluating eigen-
values of differential operators [5], and it has been generalized
using adaptive measurement theory to achieve a quantum-
enhanced measurement precision at the Heisenberg limit [6].
The PEA with delays considering the effects of dynamical
phases has also been discussed [7]. The implementation of
an iterative quantum phase estimation algorithm with a single
ancillary qubit is suggested as a benchmark for multiqubit
implementations [8]. The PEA has also been applied in
quantum chemistry to obtain eigenenergies of molecular
systems [9,10]. This application has been demonstrated in
a recent experiment [11]. Moreover, several proposals have
been made to estimate the phase of a quantum circuit [12] and
the use of phase estimations for various algorithms [13,14],
including factoring and searching.

The conventional PEA is only designed for finding eigen-
values of either a Hermitian or a unitary matrix. In this
paper, we propose a measurement-based phase estimation
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algorithm (MPEA) to evaluate eigenvalues of non-Hermitian
matrices. This provides a potentially useful generalization
of the conventional PEA. Our proposal uses ideas from
conventional PEA, frequent measurement, and techniques
in one-qubit state tomography. This proposal can be used
to design quantum algorithms apart from those based on
the standard unitary circuit model. The proposed quantum
algorithm is designed for systems with large dimension,
when the corresponding classical algorithms for obtaining
the eigenvalues of the non-unitary matrices become so
expensive that it is impossible to implement on a classical
computer.

The structure of this work is as follows. In Sec. II we
introduce how to construct a non-Hermitian evolution matrix
for a quantum system. In Sec. III, we present the measurement-
based phase estimation algorithm, introducing two methods
for obtaining the complex eigenvalues of the non-Hermitian
evolution matrix. We give two examples for the application
of MPEA and discuss how to construct a Hamiltonian for
performing the controlled unitary operation in Sec. IV. In
Sec. V, we discuss the success probability of the algorithm
and the efficiency of constructing the non-Hermitian matrix.
We close with a conclusion section.

II. CONSTRUCTING NON-UNITARY MATRICES

Now we describe how to construct non-unitary matrices
on a quantum system. A bipartite system, composed of
subsystems A and B, evolves under the Hamiltonian

H = HA + HB + HAB, (1)

where HA(B) is the Hamiltonian of subsystem A(B) and HAB

is their interaction. We prepare the initial state of subsystem
A in its pure state |ϕA〉〈ϕA| and the initial state of subsystem
B in an arbitrary state ρB . Then at time t = 0, the state of the
system is ρ0 = |ϕA〉〈ϕA| ⊗ ρB . Let the system evolve under
the Hamiltonian H for a time interval τ ; if subsystem A is
subject to a projective measurement M = |ϕA〉〈ϕA| applied at
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time interval τ , this is equivalent to driving subsystem B with
an evolution matrix

VB(τ ) ≡ 〈ϕA| exp(−iHτ )|ϕA〉. (2)

This evolution matrix is in general neither unitary nor
Hermitian.

The Hamiltonian H of the whole quantum system can be
spanned as

H =
D∑

j=1

Ej |Ej 〉〈Ej |, (3)

with eigenenergies Ej , and the corresponding eigenvectors
|Ej 〉 can be spanned in terms of tensor products of basis vectors
{|ψA

k 〉} and {|ψB
r 〉} of Hilbert spaces of subsystems A and

B, which are of dimensions DA and DB , respectively, and
D = DADB . Using the bases for A and B, we have

|Ej 〉 =
DA∑
k=1

DB∑
r=1

f
j

kr

∣∣ψA
k

〉 ⊗ ∣∣ψB
r

〉
, (4)

and the evolution matrix on subsystem B, after the mea-
surement M performed on subsystem A at time interval τ ,
becomes

VB(τ ) = 〈ϕA|e−iHτ |ϕA〉 =
DB∑

r,s=1

Vrs

∣∣ψB
r

〉 〈
ψB

s

∣∣, (5)

where

Vrs =
D∑

j=1

e−iEj τ

DA∑
k,l=1

f
j

krf
j∗
ls cA

k cA∗
l , (6)

and

cA
k = 〈

ϕA
∣∣ψA

k

〉
. (7)

More generally, we can construct different evolution
matrices by performing measurements on subsystem A with
different time intervals and/or different measurement bases.
For example, by sequentially performing projective measure-
ments with time intervals τ1, τ2, τ3, an evolution matrix

VB(τ1,τ2,τ3) = VB(τ3)VB(τ2)VB(τ1) (8)

is constructed. We can also combine unitary evolution matrices
with the non-unitary transformations on subsystem B to
construct some desired evolution matrices.

III. MEASUREMENT-BASED QUANTUM PHASE
ESTIMATION ALGORITHM

For the bipartite system, set the initial state of the system
in a separable state

ρ0 = |ϕA〉〈ϕA| ⊗ ρB, (9)

and let the system evolve under the Hamiltonian in Eq. (1).
Then after performing m successful projective measurements
on subsystem A with time intervals τ , the evolution on the

Hilbert space of subsystem B is driven by [VB(τ )]m, and the
state of subsystem B evolves to [15]

ρ
(τ )
B (m) = [VB(τ )]mρB[V †

B(τ )]m

P (τ )(m)
, (10)

where

P (τ )(m) = TrB{[VB(τ )]mρB[V †
B(τ )]m} (11)

is the probability of finding subsystem A still in state |ϕA〉 after
each of the m measurements.

The evolution matrix VB(τ ) can be spanned as

VB(τ ) =
∑

k

λk|uk〉〈vk|, (12)

where |uk〉 and 〈vk| are the right and left eigenvectors of
VB(τ ) and λk is the corresponding eigenvalue [15] satisfying
0 � |λk| � 1. In the large m limit, the operator [VB(τ )]m is
dominated by a single term λm

max|umax〉〈vmax|, provided the
largest eigenvalue λmax is unique, discrete, and nondegenerate.
In the limit of large m and finite τ , ρ(τ )

B (m) tends to a pure state,
independent of the initial (mixed) state of subsystem B. The
final state of ρ

(τ )
B (m) is dominated by |umax〉, and this outcome

is found with probability [15]

P (τ )(m) −→ |λmax|2m〈umax|umax〉〈vmax|ρB |vmax〉. (13)

The state of subsystem B evolves to |umax〉 after performing
a number of operations of VB(τ ). Then we can evaluate λmax

by resolving the phase of the state. If we prepare the initial
state of subsystem B in a pure initial state that is close to an
eigenstate of the matrix VB(τ ), the state of the subsystem B
can evolve to other eigenstates of VB . Then we can also obtain
the corresponding eigenvalues of VB(τ ).

Based on the above analysis, we suggest a measurement-
based phase estimation algorithm for evaluation of the eigen-
values of the matrix VB(τ ). As in the circuit shown in Fig. 1(a)
, three quantum registers are prepared. From top to bottom: an
index register, a target register, and an interacting register. The
index register is a single qubit, which is used as control qubit
and to readout the final results for the eigenvalues; the target
register is used to represent the state ρB of subsystem B; and the
interacting register represents the state |ϕA〉 of subsystem A.

The initial state of the circuit is prepared in the state

|0〉〈0| ⊗ ρB ⊗ |ϕA〉〈ϕA|, (14)

with subsystem A in a pure state |ϕA〉〈ϕA| and subsystem
B in state ρB . The construction of the controlled evolution
matrix VB(τ ) on the target register is achieved by implementing
the controlled unitary (C-U) transformation for the whole
quantum system and successfully performing the projective
measurement M = |ϕA〉〈ϕA| on the interacting register with
time interval τ . Note here for the unitary transformation
U = exp(−iH t), we set t such that m projective measurements
are performed successfully on subsystem A at the time interval
τ , while the unitary transformation of the whole system evolves
for time period t . After performing m successful periodic
measurements on the interacting register with time intervals τ ,
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FIG. 1. Quantum circuit for measurement-based phase estimation
algorithm (MPEA) using quantum state tomograph (QST) approach.
(a) The circuit for the MPEA using QST. From top to bottom, an index
register, a target register, and an interacting register are prepared in
the states |0〉, ρB , and |ϕA〉, respectively. The index register is a single
qubit used as control qubit; the target register is used to represent the
state of subsystem B; and the interacting register is used to represent
the state of subsystem A, which interacts with B. (b) The circuit for
performing m projective measurements with period τ . In the circuit,
the unitary transformation U = exp(−iH t), and we set t such that m

projective measurements are performed successfully on subsystem A
separated by a time interval τ , while the unitary transformation of the
whole system evolves for time t .

as shown in Fig. 1(b), the state of the system is transformed to

1
2 {|0〉〈0| ⊗ ρB + |1〉〈1| ⊗ [VB(τ )]mρB[V †

B(τ )]m} ⊗ |ϕA〉〈ϕA|.
(15)

The dominant term of this is

1√
2

[|0〉 + (λmax)m|1〉]|umax〉|ϕA〉, (16)

and the state of the index qubit is dominated by

|ψind〉 = 1√
2

[|0〉 + (λmax)m|1〉]. (17)

In general, λmax is a complex number and can be written as

λmax = exp(iϕ) = exp[i(a + ib)]. (18)

We can obtain λmax by resolving the phase factor

ϕ = (a + ib). (19)

Two approaches can be used to resolve λmax: (i) using
single-qubit quantum state tomography (QST) [16], and
(ii) using the measured quantum Fourier transform (mQFT)
combined with projective measurements on a single qubit.
The details of these two approaches are given below.

A. Approach using single-qubit state tomography

Quantum state tomography can fully characterize the
quantum state of a particle or particles through a series of
measurements in different bases [16,17]. In the approach using
QST to resolve the eigenvalue of the matrix VB(τ ), we prepare
a large number of identical copies of the state on the index qubit
|ψind〉, as shown in Eq. (17), by running the MPEA circuit a

number of times. Then the value of λmax can be obtained by
determining the index qubit state.

The state of the index qubit in Eq. (17) can be written as

|ψind〉 = 1√
2
{|0〉 + exp[m(−b + ia)]|1〉}. (20)

In the QST approach, we perform a projective measurement
on the index qubit in the basis |1〉〈1| to obtain the probability
of finding the index qubit in state |1〉, thus obtaining the value
of b. With the knowledge of b, we then perform a π/2 rotation
around the x axis and a measurement in the basis of the
Pauli matrix σz on the index qubit, and we can obtain the
observable

〈ψind| exp

(
− i

π

4
σx

)
σz exp

(
i
π

4
σx

)
|ψind〉 (21)

and thus obtain the value of a.
The measurement errors of QST, from counting statistics,

obey the central limit theorem. To obtain more accurate results,
we have to prepare a larger ensemble of the single qubit
states.

B. Approach using measured quantum Fourier transform
combined with projective measurements

In the second approach, we use the techniques of measured
quantum Fourier transform and projective measurements to
resolve the eigenvalue of the matrix VB(τ ). The phases that
encode the eigenvalues of VB(τ ) are in general complex
numbers; the inverse QFT can be used to resolve the real
part a of the phase ϕ = (a + ib). The imaginary part b of the
phase factor, ϕ, can be obtained by performing single-qubit
projective measurements. The details of this method are
discussed below.

In order to resolve a up to n binary digits using the inverse
QFT, one has to construct a series of controlled evolution
matrices, C-VB(τ ), in successive binary powers, from (n − 1)
to 0. In the MPEA, this is done by implementing the C-U
operation on the whole system and performing a series of
2k periodic measurements separated by time intervals τ for
k = (n − 1), (n − 2), . . . ,0, respectively. The C-U operation
evolves for a time t , during which all the measurements are
performed successfully on the interacting register. Then we can
obtain a series of controlled transformation matrices in binary
powers, C-[VB(τ )]2k

, k = (n − 1), (n − 2), . . . , 0. In Fig. 2(c),
we show the circuit for the kth projective measurement with
period τ , W (k), where the measurement M = |ϕA〉〈ϕA| is
performed 2k times with period τ on the interacting register,
while the whole system evolves under the controlled unitary
operation U . The measurements on the interacting register are
sequentially performed W (n − 1),W (n − 2), . . . ,W (0). Then,
correspondingly, on the index qubit, we obtain single qubit
states as

1√
2

[|0〉 + (λmax)2(n−1) |1〉], 1√
2

[|0〉 + (λmax)2(n−2) |1〉], . . . ,
1√
2

(|0〉 + λmax|1〉). (22)
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FIG. 2. (Color online) Quantum circuit for a measurement-based
phase estimation algorithm (MPEA) using measured quantum Fourier
transformation. (a) The circuit for the MPEA. From top to bottom,
an index register, a target register, and an interacting register are
prepared in the states (|0〉 + |1〉)/√2, ρB , and |ϕA〉, respectively.
The index register is a single qubit used as control qubit and to
perform mQFT; the target register is used to represent the state of
subsystem B; the interacting register is used to represent the state
of subsystem A, which interacts with B. The circuit in the dotted
square in (a) is used for obtaining the nth binary digit of the real
part of the phase factor. (b) A sequence of circuits inside the dashed
squares is used to replace the circuit in the dashed square in (a),
in order to resolve from the (n − 1)th to the first binary digits of
the real part of the phase factor. Here, H is the Hadamard gate,
Qk is a single-qubit rotation as defined in Eq. (27), and Rk is a
single-qubit rotation in quantum Fourier transform. (c) The circuit
for the kth partial measurement W (k) with period τ . In the circuit,
for the unitary transformation U = exp(−iH t), we set t such that all
projective measurements are performed successfully on subsystem
A while the unitary transformation of the whole system evolves for
time t .

Afterward, we can retrieve n binary digits of the real part a of
the phase factor ϕ, of λmax, by performing a mQFT.

The mQFT technique implements a QFT using only a
single qubit [18,19]. It uses the fact that gates within the
Fourier transform are applied sequentially on qubits. This
modification of the QFT algorithm preserves the probabilities
of all measurements [19]. The procedure for obtaining the real
part of the phase factor of λmax by using mQFT is shown in
Fig. 2(a), where the circuit in the dotted square is replaced by
circuits in the dotted squares shown in Fig. 2(b), sequentially
obtaining n binary digits of a. The details of this procedure
are shown below.

The initial state of the MPEA circuit is prepared as in
Eq. (14). After performing the kth periodic measurements
W (k) on the interacting register, the dominant term of the
state of the system becomes

1√
2

(|0〉 + λ2k

max|1〉)|umax〉|ϕA〉. (23)

The state of the index qubit can be written as

|ψind〉 = 1√
2
{|0〉 + exp[i(a + ib)2k]|1〉}

= 1√
2

[|0〉 + exp(−b2k) exp(ia2k)|1〉]. (24)

In order to resolve the real part a of the phase factor, ϕ, we first
need to obtain the value of b, the imaginary part of the phase
factor. This can be achieved by using a single-qubit projective
measurement. One can prepare an ensemble of |ψind〉 and
perform projective measurements |1〉〈1|. The value of b can be
obtained through the probability for observing the index qubit
in state |1〉.

Let

rk = 1√
2

[1 + exp(−b2k+1)]1/2, (25)

and let us run MPEA again and perform a single-qubit
operation Qk on the index qubit such that the index qubit
is rotated to state

|ψ ′
ind〉 = rk

1√
2

[|0〉 + exp(ia2k)|1〉], (26)

where the single-qubit operation Qk is defined as

Qk = qk

[
1 + eb2k

e−ia2k (
1 − eb2k )

eia2k (
eb2k − 1

)
1 + eb2k

]
, (27)

where qk = 1/
√

2[1 + exp(b2k+1)]. Then we apply the mQFT
technique to resolve the real part a of the phase factor ϕ =
(a + ib). We therefore obtain the eigenvalue exp[i(a + ib)] of
the matrix VB(τ ).

In the MPEA, the nth binary digit of the phase factor is
retrieved first, and the partial measurement on the interacting
register is performed in sequence of 2n−1,2n−2 to 20 times.
This procedure provides high fidelity for the state of the target
register since each measurement drives the state of the target
register closer to |umax〉, the eigenstate of VB(τ ).

IV. EXAMPLES OF MEASUREMENT-BASED
PHASE ESTIMATION

A. Phase estimation for the Jaynes-Cummings Hamiltonian

Now we use a simple model to show how MPEA works. We
consider here a quantum system consisting of two subsystems
A and B, where B contains two noninteracting spin qubits, B1

and B2; and subsystem A is a photon. The whole system is
described by the Jaynes-Cummings Hamiltonian [20]

H = w0b
†b + w1

(
σ z

1 + σ z
2

) + J

2
[b(σ+

1 + σ+
2 )

+ b†(σ−
1 + σ−

2 )], (28)

where b (b†) is a bosonic annihilation (creation) operator of the
photons. Consider the case w0 = w1, and perform projective
measurements in the basis of a single photon state |ϕA〉 = |1〉.
Then we have

VB(τ ) = diag{1,e−2iw0τ [3 + 2 cos(
√

10τJ )]/5,

cos(
√

6τJ )e−iw0τ , cos(
√

2τJ )}, (29)
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FIG. 3. Survival probability P (m) (�) and fidelity F (m) (•) for
|ϕA〉 = |1〉 versus m, the number of successful measurement, for the
Jaynes-Cummings model.

in the ordered basis {|1,s〉,|1,t+〉,|1,t0〉,|1,t−〉}, where

|s〉 = 1√
2

(|01〉 − |10〉), |t+〉 = |11〉,
(30)

|t0〉 = 1√
2

(|01〉 + |10〉), |t−〉 = |00〉.

Let τ = 1/2 and w0 = w1 = J = 1; then we construct an
evolution matrix VB(τ ) as

VB(τ ) = diag{1,[3 + 2 cos(
√

10/2)]/5(e−i),

cos(
√

6/2)e−i/2, cos(
√

2/2)}. (31)

On the MPEA circuit, now let us prepare the target register
in a mixed state:

ρB = 1
4 (|s〉〈s| + |t+〉〈t+| + |t0〉〈t0| + |t−〉〈t−|), (32)

and the interacting register in state |ϕA〉 = |1〉. Then implement
the controlled Hamiltonian of Eq. (28) for a time t during
which the projective measurements on the interacting register
are performed successfully. After a series of projective
measurements, in the basis of |ϕA〉 = |1〉, on the interacting
register, the state of the target register evolves to a singlet
state |s〉, which corresponds to the largest eigenvalue of
VB(τ ). We resolve the corresponding phase as zero; thus its
eigenvalue is one. The survival probability, P (τ )(m), of the
state |ϕA〉 = |1〉 on the interacting register after m successful
measurements, and the fidelity, F (τ )(m), for the target register
to be in state |umax〉, are shown in Fig. 3. The fidelity F (τ )(m) is
defined as

F (τ )(m) = 〈umax|ρ(τ )
B (m)|umax〉

〈umax|umax〉 . (33)

Since F (τ )(m) is close to one, the success probability is
determined by P (τ )(m).

If we prepare the target register in a pure initial state that
is close to an eigenstate of the matrix VB , by applying MPEA,
the state of the target register can evolve to other eigenstates

of VB . Then we can also obtain the corresponding eigenvalues
of VB .

For example, applying MPEA to the above system and
preparing the target register in state |t+〉, by performing
projective measurements with |ϕA〉 = |1〉 on the interacting
register, the state of the target register would remain in the |t+〉
state. We can retrieve the real part of the phase factor of the cor-
responding eigenvalue up to an accuracy of 2, 8, and 16 binary
digits, respectively, and obtain the eigenvalues of the matri-
ces VB as exp[−0.5177 − i2π (0.25 ± 0.25)], exp[−0.5177 −
i2π (0.160 ± 0.008)], and exp[−0.5177 − i2π (0.159 18 ±
0.000 03)], assuming we have already obtained the imaginary
part of the eigenvalue of VB through projective measurements.
The true eigenvalue is exp(−0.5177 − i), which is quite close.

To implement a controlled unitary evolution on the MPEA
circuit, we set the control qubit as a single spin and label it as
subsystem C. Thus, the controlled Hamiltonian of the whole
system becomes

H̃ = 1

2

(
1 − σZ

C

)
H = 1

2

(
1 − σZ

C

){
w0b

†b + w1
(
σ z

1 + σ z
2

)
+ J

2
[b(σ+

1 + σ+
2 ) + b†(σ−

1 + σ−
2 )]

}
. (34)

This Hamiltonian contains three-body interactions and cannot
be implemented directly. One could decompose the three-
body interaction into two-body interactions [21,22] and
then implement the two-body interaction. In general, an
arbitrary unitary matrix U = exp(−iH t) can be decomposed
[23,24] into tensor products of unitary matrices of 4 × 4 and
2 × 2, which correspond to two- and single-qubit operations,
respectively, and can be implemented on a universal quantum
computer.

B. Phase estimation for the axial symmetry model

For another example, we consider the axial symmetry
model [20]. This is relevant for quantum information pro-
cessing in solid state [25–27] and atomic [28] systems. The
quantum system is composed of two subsystems A and B,
where B contains two noninteracting spins, and subsystem
Acontainsa single spin interacting with subsystem B. The
Hamiltonian for the whole system is [20]

H = J

2
[X(X1 + X2) + Y (Y1 + Y2)], (35)

where X and Y are the Pauli operators. By performing
projective measurements on subsystem A in the basis of
the σz eigenvector, then in the basis {|s〉,|t+〉,|t0〉,|t−〉}, we
obtain

VB(τ ) = diag[1,1, cos(
√

2τJ ), cos(
√

2τJ )], (36)

operating on subsystem B. If we prepare the initial state of the
target register in state |t0〉, then the fidelity of the target register
to be in state |t0〉 is 1 after performing a number of successful
measurements on the interacting register. For the case J = 2
and τ = 1, the corresponding eigenvalue is −0.951 363. The
success probability of the successful measurement on the
interacting register versus the number of measurements on
the interacting register is shown in Fig. 4. From that figure, we
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FIG. 4. Survival probability P (m) for |ϕA〉 = |1〉 versus m, the
number of successful measurements, by using the σz eigenstate as the
measurement basis for the axial symmetry model.

can see that even for ten successful measurements, we can still
have a success probability of 0.37.

V. DISCUSSION

On a quantum computer, a unitary matrix can be efficiently
represented; i.e., for a unitary matrix of dimension 2s , only
s qubits are needed to represent it on a quantum computer. In
this paper, we have tried to represent a non-unitary matrix
on a quantum system by performing periodic projective
measurements. Whether an arbitrary matrix can be constructed
using this technique still remains an open problem, and this
would be a subject for future study.

A. Implementation of the controlled
non-unitary transformation

In the conventional PEA, the phase factor is resolved
through a quantum Fourier transform. To resolve the binary
expansion of the phase, up to n binary digits, one has to
implement n controlled unitary transformations in successive
binary powers: C-U2n−1

, C-U2n−2
, . . . , C-U20

.
In the MPEA approach of using mQFT combined with

projective measurements to obtain the eigenvalues of VB , we
need to implement the controlled transformations in succes-
sive binary powers: C-V 2n−1

B (τ ), C-V 2n−2

B (τ ), . . . , C-V 20

B (τ ),
followed by the corresponding mQFT circuit as shown
in Fig. 2. The controlled transformations C-V 2n−1

B (τ ),
C-V 2n−2

B (τ ), . . . , C-V 20

B (τ ), are achieved by implementing
the controlled Hamiltonian on the whole system only once
and during a time t until the successful measurements
on the interacting register finish and performing measure-
ments W (n − 1),W (n − 2), . . . ,W (0), i.e., a series of periodic
measurements (each one separated by the time interval τ )
for 2n−1, 2n−2, . . . ,20 times on the interacting register,
respectively.

B. Success probability

The success probability of the MPEA is F (τ )(m)P (τ )(m),
where F (τ )(m) is the fidelity of the state on the target register
to be in the eigenstate of VB(τ ) after performing m successful
measurements and P (τ )(m) is the probability of performing
m successful measurements on the interacting register. Note
that P (τ )(m) depends on |λmax| and also on the initial guess
of the state on the target register as shown in Eq. (13). Since
F (τ )(m) is close to one as the number of successful measure-
ments m increases, the success probability is determined by
P (τ )(m).

It must be emphasized that the present quantum algorithm
is designed for systems with large DB (the dimension of
subsystem B), when the corresponding classical algorithms
for obtaining the eigenvalues of VB(τ ) become so expensive
that it is impossible to implement on a classical computer.
The efficiency of our algorithm does depend on P (τ )(m).
Note that the success probability of projective measurements
on the interacting register decreases exponentially in terms of
m when |λmax| < 1. This is not an essential obstacle because
this exponential decrease can be overcome by running the
algorithm for a number of times to prepare a large but fixed
number of copies of the index qubit state as shown in Eq. (20).
In the QST approach to obtain λmax, the measurement errors
of QST obey the central limit theorem. Accurate results can
be obtained by preparing a larger ensemble of the single-qubit
states. The tomographic estimation converges with statistical
error that decreases as N−1/2, where N is the number of copies
prepared in the QST and is not relevant to DB .

Also, in the approach of using single-qubit QST to obtain
the eigenvalues of VB(τ ), we prepare a number of copies of
the index qubit state as shown in Eq. (20). If we have a good
initial guess of the eigenstate of VB(τ ), then, as shown in the
second example, we can still obtain a high success probability
[F (τ )(m)P (τ )(m)] for the algorithm, and this does not require
a large m.

The other eigenvalues of VB can be obtained by setting the
initial state of the target register in a pure state. If the overlap
of the initial guess of the eigenstate with the real eigenstate is
not exponentially small and m is a fixed number, the success
probability, F (τ )(m)P (τ )(m), for preparing a index qubit state
as shown in Eq. (20) is not exponentially small. Then each
copy of the index qubit state can be prepared in a polynomial
number of trials.

C. Efficiency for projective measurements

Another issue that needs to be addressed is the efficiency
for implementing the projective measurement M = |ϕA〉〈ϕA|,
which is linked to the efficiency of constructing the non-unitary
matrix VB(τ ), therefore connected to the efficiency of the
algorithm. Since the measurement M is a non-unitary process,
it cannot be implemented deterministically. Also, a number of
projective measurements are required in MPEA, and thus the
overall efficiency of the algorithm might be affected. To deal
with this problem, we can design a scheme such that subsystem
A can have a simple structure, containing either a single qubit
or a few qubits, by controlling the interaction between the
subsystems. Then the implementation of the measurement on
subsystem A will be simple. The measurement performed on
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A does not depend on the qubit number nB of the subsystem
B, on which the matrix VB is constructed. Therefore, the
measurement on A can avoid the exponential scaling with
respect to the size of subsystem B. Note that the corresponding
classical algorithms scale as 2nB .

VI. CONCLUSION

We have presented a measurement-based quantum phase
estimation algorithm to obtain the eigenvalues and the cor-
responding eigenvectors of non-unitary matrices. In MPEA,
we implement the unitary transformation of the whole sys-
tem only once; the non-unitary matrix is constructed as
the evolution matrix on the target register. By performing
periodic projective measurements on the interacting register,
the state of the target register is driven automatically to a
pure state of the transformation matrix. Using single-qubit
state tomography and mQFT combined with single-qubit pro-
jective measurements, we can obtain the complex eigenvalues

of the non-unitary matrix. The success probability of the
algorithm and the efficiency of constructing the matrix VB(τ )
have been discussed. This algorithm can be used to study
open quantum systems and in developing other new quantum
algorithms.
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