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a b s t r a c t

This paper starts with a brief review of the topic of strong and weak pre- and post-selected
(PPS) quantum measurements, as well as weak values, and afterwards presents original
work. In particular, we develop a nonperturbative theory of weak PPS measurements
of an arbitrary system with an arbitrary meter, for arbitrary initial states of the system
and the meter. New and simple analytical formulas are obtained for the average and the
distribution of the meter pointer variable. These formulas hold to all orders in the weak
value. In the case of a mixed preselected state, in addition to the standard weak value, an
associatedweak value is required to describeweak PPSmeasurements. In the linear regime,
the theory provides the generalized Aharonov–Albert–Vaidman formula. Moreover, we
reveal two new regimes of weak PPSmeasurements: the strongly-nonlinear regime and the
inverted region (the regime with a very large weak value), where the system-dependent
contribution to the pointer deflection decreaseswith increasing themeasurement strength.
The optimal conditions for weak PPSmeasurements are obtained in the strongly-nonlinear
regime, where the magnitude of the average pointer deflection is equal or close to the
maximum. This maximum is independent of the measurement strength, being typically of
the order of the pointer uncertainty. In the optimal regime, the small parameter of the
theory is comparable to the overlap of the pre- and post-selected states. We show that
the amplification coefficient in the weak PPS measurements is generally a product of two
qualitatively different factors. The effects of the free system and meter Hamiltonians are
discussed. We also estimate the size of the ensemble required for a measurement and
identify optimal and efficient meters for weakmeasurements. Exact solutions are obtained
for a certain class of the measured observables. These solutions are used for numerical
calculations, the results of which agree with the theory. Moreover, the theory is extended
to allow for a completely general post-selection measurement. We also discuss time-
symmetry properties of PPS measurements of any strength and the relation between PPS
and standard (not post-selected) measurements.

© 2012 Elsevier B.V. All rights reserved.

Contents

1. Introduction.......................................................................................................................................................................................... 45
2. Measurements with and without post-selection, weak values ........................................................................................................ 46

2.1. Measurement in quantum mechanics.................................................................................................................................... 46
2.2. Standard (preselected only) quantum measurements of variable strength ........................................................................ 49

2.2.1. Von-Neumann-like measurement scheme ............................................................................................................. 49
2.2.2. Canonically conjugate meter variables ................................................................................................................... 50
2.2.3. Non-ideal and weak standard measurements ........................................................................................................ 51

∗ Corresponding author at: Advance Science Institute, RIKEN, Wako-shi, Saitama 351-0198, Japan.
E-mail address: kofmana@gmail.com (A.G. Kofman).

0370-1573/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.physrep.2012.07.001

http://dx.doi.org/10.1016/j.physrep.2012.07.001
http://www.elsevier.com/locate/physrep
http://www.elsevier.com/locate/physrep
mailto:kofmana@gmail.com
http://dx.doi.org/10.1016/j.physrep.2012.07.001


44 A.G. Kofman et al. / Physics Reports 520 (2012) 43–133

2.3. Pre- and post-selected measurements ................................................................................................................................... 51
2.3.1. General considerations............................................................................................................................................. 51
2.3.2. Strong (ideal) PPS measurements............................................................................................................................ 52
2.3.3. Contextuality of strong PPS measurements............................................................................................................ 53
2.3.4. Model for PPS measurements of arbitrary strength ............................................................................................... 54

2.4. Weak PPS measurements ........................................................................................................................................................ 55
2.4.1. Simple approach ....................................................................................................................................................... 55
2.4.2. The pointer distribution ........................................................................................................................................... 56

2.5. Discussion of weak values....................................................................................................................................................... 58
2.5.1. Interpretation of weak values in terms of probabilities......................................................................................... 58
2.5.2. Sufficient conditions for usual weak values............................................................................................................ 59
2.5.3. Quantum interference in PPS measurements ......................................................................................................... 60
2.5.4. Sum rule for weak values ......................................................................................................................................... 60

2.6. Experimental realizations of weak PPS measurements ........................................................................................................ 61
2.7. Applications of weak PPS measurements .............................................................................................................................. 63
2.8. General theory of weak PPS measurements .......................................................................................................................... 65

3. Theory of standard measurements of arbitrary strength .................................................................................................................. 66
3.1. General formulas for standard measurements ...................................................................................................................... 66
3.2. Weak standard measurements ............................................................................................................................................... 67
3.3. Optimal and efficient meters for weak standard measurements ......................................................................................... 67

4. Theory of pre- and post-selected measurements of arbitrary strength ........................................................................................... 68
4.1. General formulas for PPS measurements ............................................................................................................................... 68
4.2. Gauge invariance of PPS measurements ................................................................................................................................ 69

4.2.1. System transformations ........................................................................................................................................... 69
4.2.2. Meter transformations ............................................................................................................................................. 70

5. Effects of the system and meter Hamiltonians on quantum measurements ................................................................................... 70
5.1. Effects of the Hamiltonians on pre- and post-selected measurements ............................................................................... 70
5.2. Effects of the Hamiltonians on standard measurements ...................................................................................................... 71
5.3. Special cases for the meter Hamiltonian................................................................................................................................ 71

6. Nonlinear theory of weak pre- and post-selected measurements ................................................................................................... 72
6.1. Expansions in the coupling parameter................................................................................................................................... 72
6.2. Validity conditions for weak PPS measurements .................................................................................................................. 73
6.3. Quantifying the strength of a measurement.......................................................................................................................... 74
6.4. General nonlinear formula for the average pointer deflection............................................................................................. 74
6.5. Regimes of weak PPS measurements ..................................................................................................................................... 74

6.5.1. Linear response ......................................................................................................................................................... 75
6.5.2. Inverted region (the limit of very large weak values) ............................................................................................ 76
6.5.3. Intermediate (strongly-nonlinear) regime.............................................................................................................. 77

6.6. Estimation of the average pointer deflection......................................................................................................................... 77
6.6.1. Linear response ......................................................................................................................................................... 77
6.6.2. Strongly-nonlinear regime....................................................................................................................................... 78
6.6.3. Inverted region ......................................................................................................................................................... 79

6.7. Amplification in weak PPS measurements............................................................................................................................. 80
6.7.1. Proper amplification due to a large weak value ..................................................................................................... 80
6.7.2. Proper amplification in the inverted region ........................................................................................................... 81
6.7.3. Enhancement due to correlation between the meter variables ............................................................................ 81
6.7.4. Discussion ................................................................................................................................................................. 82

6.8. Measuring weak values and coupling strengths.................................................................................................................... 82
6.8.1. Measuring the coupling strength γ ......................................................................................................................... 82
6.8.2. Measuring weak values: one unknown parameter ................................................................................................ 83
6.8.3. Tomography of weak values .................................................................................................................................... 83
6.8.4. Tomography of weak values: linear regime............................................................................................................ 83
6.8.5. Tomography of weak values: nonlinear regime ..................................................................................................... 84

6.9. Peculiar case: large average input variable, |F̄ | ≫ 1F ......................................................................................................... 84
6.10. The minimum size of the ensemble, the signal-to-noise ratio, and efficient meters.......................................................... 86

6.10.1. General formulas ...................................................................................................................................................... 87
6.10.2. The linear response. Efficient and optimal meters ................................................................................................. 87
6.10.3. The strongly-nonlinear regime ................................................................................................................................ 88
6.10.4. Inverted region ......................................................................................................................................................... 88
6.10.5. Comparison of weak measurements with and without post-selection ................................................................ 89

7. Mixed preselected state....................................................................................................................................................................... 89
7.1. The general nonlinear formula ............................................................................................................................................... 89
7.2. Validity conditions for weak PPS measurements .................................................................................................................. 90
7.3. Discussion................................................................................................................................................................................. 91
7.4. Measurement regimes............................................................................................................................................................. 91
7.5. Peculiar case: large average input variable, |F̄ | ≫ 1F ......................................................................................................... 92



A.G. Kofman et al. / Physics Reports 520 (2012) 43–133 45

7.6. The minimum size of the measurement ensemble ............................................................................................................... 92
8. Examples of meters.............................................................................................................................................................................. 93

8.1. Non-standard meters .............................................................................................................................................................. 93
8.1.1. Meters with coinciding input and output variables, R = F ................................................................................... 93
8.1.2. Meters with zero pointer uncertainty,1R = 0 ...................................................................................................... 94

8.2. Continuous-variable meters.................................................................................................................................................... 94
8.2.1. Canonically conjugate variables .............................................................................................................................. 94
8.2.2. Invariance with respect to a meter gauge transformation .................................................................................... 96
8.2.3. Measuring physical parameters............................................................................................................................... 96
8.2.4. Effects of the meter Hamiltonian............................................................................................................................. 98

8.3. Two-level meter....................................................................................................................................................................... 100
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1. Introduction

The issue of measurement is of fundamental significance in quantum mechanics (see, e.g., Refs. [1–7]). Recent develop-
ments in fabricating ever smaller nano-devices as well as in quantum information processing (see, e.g., Refs. [8–17]) have
made it more important to understand quantum measurement.

Over the past several decades, there has been significant progress in the study of general quantummeasurements, which
differ from projective (ideal) measurements described in textbooks on quantum mechanics. In particular, in recent years,
there has been increasing interest in quantum measurements with pre- and post-selection as well as in weak or, more
generally, non-ideal measurements.

One of the most striking developments in the studies of such measurements was the discovery that measurements that
are both weak and pre- and post-selected provide the so called weak value of the measured observable [18]. Weak values
possess unusual properties. In particular, a weak value can be complex, and its real part can be far outside the range of
the eigenvalues of the observable. The unusual properties of weak values initially gave rise to controversy [19,20], and the
physical meaning and significance of weak values is not understood completely until now. In spite of this, weak values
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proved to be very useful in various fields of physics, including fundamentals of quantum mechanics and high-precision
metrology.

This paper starts with a brief review in Section 2 and afterwards presents many original contributions. Note, however,
that this distinction between the review and non-review parts is not absolute, since we have included in Section 2 some
original results in order to make the text more self-contained, while in other sections we discuss previous work in order
to put our results into appropriate perspective. Most of this paper is original work, which sometimes is explicitly linked
to previous theoretical and experimental work. Many special cases are considered in some detail, because the study done
here is systematic and quite general, spanning many specific cases—some of which have been studied before, while most
are new.

The present paper is organized as follows. In Section 2, we provide a brief review of quantummeasurements of arbitrary
strength, with and without post-selection, the emphasis being on weak pre- and post-selected (PPS) measurements and
weak values. The subsequent sections are devoted to extensions of the theory introduced in Section 2, with the emphasis
on developing a nonperturbative theory of weak PPS measurements in a very general but simple form. In particular, in
Section 3 we provide a general theory of standard (i.e., not post-selected) measurements of arbitrary strength and discuss
in detail weak standardmeasurements. In Section 4 we provide a general theory of PPSmeasurements of arbitrary strength.
In Section 5 effects of the free system and meter Hamiltonians are discussed. In Section 6 we develop a nonperturbative
theory of weak pre- and post-selected measurements for the case of a pure preselected state. In Section 7 the results of
Section 6 are extended to the case of a mixed preselected state. In Section 8 we specialize our general formulas for several
types of meters, including continuous-variable and two-level meters. In Section 9 we discuss the distribution of the pointer
values for various types of meters. In Section 10 we consider in detail weak values and weak PPS measurements for a
qubit system. In Section 11 we obtain exact solutions for PPS measurements of arbitrary strength in the case when the
measured quantity has two, possibly degenerate, eigenvalues with equal magnitudes and opposite signs; meters of various
types are considered. In Section 12 we provide numerical calculations and discussions; in particular, our general simple
formulas for weak PPS measurements are shown to approximate the exact solutions very well. In Section 13 we show that
the recent experiments [21,22] are described by two limits of the same formula, obtained in this paper. In Section 14 we
consider an extension of the theory to the case of a general post-selection measurement described by an arbitrary POVM;
we also obtain conditions underwhich PPSmeasurements of any strength are equivalent to standard (i.e., not post-selected)
measurements and discuss time-symmetry properties of PPS measurements. Concluding remarks are given in Section 15.
The four Appendices supplement the main text and provide some details of the calculations.

Some important symbols used in this paper, with their description and the places where they are defined, are listed in
Tables 1 and 2. The general formulas for different regimes of weak PPS measurements obtained in the present paper are
listed in Table 3. Moreover, a number of the main results of the present paper are briefly summarized in Section 2.8.

2. Measurements with and without post-selection, weak values

In this section, we provide a brief review ofmeasurements of arbitrary strength, with andwithout post-selection, some of
the results of this section being original. In particular, we discuss in detail strong PPSmeasurements; however, the emphasis
here is on weak PPS measurements and weak values.

2.1. Measurement in quantum mechanics

The mathematical apparatus of quantum mechanics and its (Copenhagen) interpretation were created about eighty
years ago, and since then they were confirmed in a countless number of experiments in various areas of physics. In
spite of this, a complete understanding of quantum mechanics has not been achieved yet. From time to time, there occur
revelations of phenomenawhich illuminate fromanunexpected side thenonclassical nature of quantummechanics and thus
deepen our understanding of this discipline. Examples include experiments on Bell-inequality violations [23–28], which
show the impossibility of local hidden-variable theories, and the emerging fields of quantum computation and quantum
communication [8], where tasks which are believed to be impossible or very difficult to perform in the realm of the classical
world were shown to be solvable. Weak values of physical quantities [18] are another example of nonclassical phenomena
with unexpected results, as discussed below.

In quantummechanics, each physical quantity A is described by a Hermitian operator Â in the Hilbert space of a quantum
system S. Ideal (or projective or strong) measurements of a system S are described by the projection postulate. Let the
operator Â have discrete, nondegenerate eigenvalues ai and the corresponding eigenvectors |ai⟩, and let the system S be in
the state ρ. Then the projection postulate states that a measurement of A yields the value ai with probability

Pi = ⟨ai|ρ|ai⟩ (2.1)

and that due to this measurement the state of the system becomes |ai⟩ (the so called wave-function collapse). Such
measurements are ‘‘complete’’, in the sense that no subsequent measurement can provide any information on the original
state of the system, since the states of the system before and after the measurement are not correlated.
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Table 1
The list of important symbols used in this paper, their description, and the places where they are defined. Part 1—Latin
letters.

Symbol Description Defined in:

A Physical quantity for the system S Section 2.1
Â Operator for A Section 2.1
Aw Weak value of A Eqs. (2.36), (2.60), (14.17)
A(1,1)w Associated weak value of A Eqs. (7.5), (14.19)
A (Proper) amplification coefficient for the linear and strongly-nonlinear

regimes
Section 6.7.1

AT Total amplification coefficient for the linear and strongly-nonlinear
regimes

Eq. (6.90)

A′ (Proper) amplification coefficient for the inverted region Eq. (6.83)
A′

T Total amplification coefficient for the inverted region Eq. (6.91)
b The parameter characterizing the quadratic phase After Eq. (2.51)
E POVM operator corresponding to the post-selection Section 2.3.2
E Enhancement factor Eq. (6.87)
F Input meter variable After Eq. (2.8)
F̂ Operator for F After Eq. (2.8)
Fc ‘‘Centered’’ variable F After Eq. (6.9)
IM Identity operator for the meterM After Eq. (4.6)
IS Identity operator for the system S After Eq. (2.3)
N0 Minimum ensemble size Sections 3.2, 6.10
Ō Average of the operator O over the initial state of the system or meter Footnote 3
p Meter momentum Section 2.2.2
q Meter coordinate Section 2.2.2
R Pointer (or output) meter variable After Eq. (2.11)
R̂ Operator for R Footnote 1
Rc ‘‘Centered’’ variable R Before Eq. (4.10)
R̄f Average pointer value for a standard measurement Eq. (3.1)
R̄s Average pointer value for a PPS measurement Section 2.3.4
R Signal-to-noise ratio for quantum noise Eq. (6.119)
U Unitary transformation due to the system–meter coupling Eq. (2.10)

Table 2
The list of the important symbols used in this paper, their description, and the places where they are defined.
Part 2—Greek and Latin letters.

Symbol Description Defined in:

γ Strength of the system–meter coupling Eq. (2.11)
1O Uncertainty of the observable O Footnote 3
1Rmax Shift of the maximum of the pointer distribution due to measurement Section2.4.2
ζ (p) Phase of the meter state in the momentum space Eq. (8.12)
θ Argument of the weak value Eq. (6.21)
θ0 Argument of RcF Eq. (6.21)
µ Small parameter for weak PPS measurements Eq. (6.11)
µ0 Measurement strength Eq. (6.15)
µ1 Strength of the unitary transformation due to F̄ Eq. (6.16)
ξ(q) Phase of the meter state in the coordinate space Eq. (8.12)
Πφ Projector on the state |φ⟩ Eq. (2.22)
ρ Preselected (possibly mixed) state of the system Section2.2.1
ρM Initial (possibly mixed) state of the meter Section2.2.1
σFR Covariance for the meter variables F and R Eq. (6.22)
Φs(R) Pointer distribution after a PPS measurement Section2.3.4
|φ⟩ Post-selected state of the system Section2.3.1
|ψ⟩ Pure preselected state of the system Section2.2.1
|ψM⟩ Pure initial state of the meter Section2.2.1

When the operator Âhas degenerate eigenvalues, the projection postulate should be generalized as follows [29]. A general
Hermitian operator Â with discrete eigenvalues has the spectral decomposition

Â =


i

aiΠi, (2.2)

where ai ≠ aj for i ≠ j, andΠi is the projection operator on the subspace of eigenstates with eigenvalue ai. The set of allΠi
is the projection-valued measure associated with the measurement of A, with the projectorsΠi possessing the properties

ΠiΠj = Πi δij,


j

Πj = IS, (2.3)
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Table 3
General formulas for the average pointer deflection in different regimes of weak PPS measurements.

Case Preselected state Formula Validity condition

General nonlinear formula Pure (6.18) or (6.19) (6.11)
Mixed (7.3) or (7.4) (7.16)

Linear-response (AAV) regime Arbitrary (6.20) (6.32)

Strongly-nonlinear regime Pure (6.18) or (6.19) (6.41)
Mixed (7.3) or (7.4) (7.24)

Inverse region Pure (6.34) (6.33) and (6.11)
Mixed (7.23) (7.22) and (7.16)

Resonance for |F̄ | ≫ 1F Pure (6.100) (6.98) and (6.99)
Mixed (7.26) (6.98) and (6.99)

where δij is the Kronecker symbol and IS is the identity operator for the system. A projective measurement of the quantity A
yields an eigenvalue ai with probability

Pi = Tr (Πi ρ), (2.4)

leaving the system in the state

ρi =
Πi ρΠi

Tr (Πi ρ)
. (2.5)

Eq. (2.5) implies that for a degenerate ai, the state ρi may depend on ρ and thus is unknown; hence a subsequent
measurement may extract additional information about the initial state of the system. Thus, measurements of observables
with degenerate eigenvalues are generally incomplete.

A peculiar feature of quantummechanics is that a measurement changes the state of the measured system [cf. Eq. (2.5)].
As a result, consecutivemeasurements of a quantum system result in an evolution of the system, which is basically different
from the unitary evolution due to the Hamiltonian. Themeasurement-induced evolution is a purely quantum phenomenon.
This evolution is generally random.

Thus, quantum measurements can play, at least, two fundamentally different roles. One role is proper measurements,
i.e., obtaining information on the values of physical observables. The other role is generating an evolution of the quantum
system. An example of the second role is the possibility to transforman arbitrary state of a quantum system to any other state
with a probability arbitrarily close to one bymeans of a sufficiently large number of projectivemeasurements [1]. Generally,
the evolution of a quantum system is generated both by the Hamiltonian and by measurements. Examples of evolution
driven simultaneously by theHamiltonian and frequentmeasurements are the quantumZeno and anti-Zeno effects [30–42].

The situations where measurements play both roles simultaneously are especially interesting. One example is the
conditional evolution due to post-selected measurements. In this case the information provided by the measurements is
used to choose only a subset of realizations of the measurement-induced random evolution. Post-selection has recently
grown in importance as a tool in fields such as quantum information, e.g., for linear optics quantum computation [43],
where it is used to implement quantum gates. Another example where measurements play both roles is one-way quantum
computing [44–50], where a series of measurements is employed to achieve the required evolution, each measurement
being chosen on the basis of the information provided by the previousmeasurements. As an additional example, wemention
the problem of preparing an arbitrary state of a quantum system by a restricted set of measurements [51,52].

In recent decades, there have appeared generalizations of the projection postulate to non-ideal and weak
measurements [8,53–55]. In particular, when the state of the system after the measurement is not important, the
measurement in the most general case is described by a positive operator valued measure (POVM) {Ek}, where Ek are
Hermitian operators with nonnegative eigenvalues satisfying the relation

k

Ek = IS. (2.6)

The operator Ek determines the probability of the kth measurement outcome by

Pk = Tr (Ek ρ). (2.7)

Note that the above generalizations do not change the postulates of quantum mechanics. Namely, the most general
measurement is equivalent to a projective measurement of a composite system consisting of the system S and an auxiliary
system [8,53,56]. Experimental realizations of generalmeasurements have been considered, see, e.g., Ref. [57] and references
therein.

General measurements are incomplete, in the sense that the state after the measurement depends on the state before
the measurement. The measurement-induced change of the state (measurement backaction) is commensurate with the
measurement strength [58], so that weak measurements change the state weakly. Recently, significant attention has been
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given to the subject of multiple and continuous weak measurements, and many interesting topics were touched upon, such
as measurement-induced decoherence, interplay of the unitary evolution and measurement backaction, quantum feedback
control, entanglement amplification, etc. [59–74].

Pre- andpost-selected (PPS)measurements,which are of primary interest here,were introduced byAharonov, Bergmann,
and Lebowitz (ABL) [75] in an attempt to achieve a better understanding of the role ofmeasurements in quantummechanics.
PPS measurements are performed on ensembles of quantum systems chosen (pre- and post-selected) in the given initial
and final states. In particular, PPS measurements and the closely related two-wave-functions formalism were applied
for an analysis of time-symmetry properties of measurement-induced evolution [76–79]. In Ref. [75], only strong PPS
measurements were considered.

As an important extension of the ABL theory [75], Aharonov, Albert, and Vaidman (AAV) [18] introduced the concept of
weak PPS measurements. Such measurements of an observable A produce the so called weak value Aw , which has unusual
properties. In particular, generally a weak value is a complex number, and its magnitude is unbounded, so that Re Aw can be
far outside the range of eigenvalues of the operator Â. Unusual (or strange) weak values, i.e., weak values that are complex
or outside the spectrum of Âwere observed in a number of experiments [21,80–102].

It has been shown that, at least in some cases, unusualweak values cannot be explained classically. In particular, as shown
in Ref. [103], a negativeweak value of the energy of an oscillator contradicts all classicalmodels; Johansen and Luis [103] also
proposed a method for measuring such a value in a coherent state of the radiation field. Furthermore, as shown byWilliams
and Jordan [104], there is a one-to-one correlation between achieving real unusual weak values Aw for a projection of a spin
1/2 (i.e., Aw such that |Aw| > 1/2) and violating the Leggett–Garg inequality for a two-level system (a qubit) [105–110],
i.e., violating one or both of the assumptions required for classicality:macrorealism and a noninvasive detector. This relation
between weak values and the Leggett–Garg inequality violations was verified experimentally in Ref. [97].

The unusual properties of weak values initially gave rise to controversy over their meaning and significance [19,20].
However, subsequent research hasmade significant progress in elucidating the interpretation of weak values and indicating
a variety of situationswhere they provide interesting physical insights [76,86,89,91,92,101,111,112]. Moreover, irrespective
of the interpretation of unusual weak values, they have proved useful in such diverse physical areas as quantum paradoxes,
high-precision metrology, and superluminal propagation.

In recent years, there has been a fast growing interest inweak values. Theywere discussed extensively [103,111,113–146]
and reviewed in Refs. [76–79]. (After this work was completed, two recent reviews on quantum measurements and weak
values have appeared [147,148].) Weak values were measured in a number of experiments [21,80–102], primarily in the
field of optics, though one of the early experiments was in NMR [81]. There are recent proposals for the observation of
weak values using electrons in solids [104,149,150] and photons and atoms [141]. The experiments performed included
applications to metrology [21,80,90,93–95,99,100], optical communications [84,85], and Hardy’s paradox [91,92].

In the rest of Section 2 we review PPS measurements, whereas in subsequent sections we elaborate on different aspects
of the theory of PPSmeasurements, the emphasis being on developing a nonperturbative theory of weak PPSmeasurements.

2.2. Standard (preselected only) quantum measurements of variable strength

Here the term ‘‘standard quantum measurement’’ or ‘‘standard measurement’’ refers to measurement of a physical
quantity A without post-selection. Standard quantum measurements may be ideal (i.e., projective or strong) or non-ideal,
with an arbitrary measurement strength (e.g., standard measurements can be weak). Standard quantum measurements of
arbitrary strength are discussed here with the help of the von-Neumann-like measurement scheme.

2.2.1. Von-Neumann-like measurement scheme
Quantummeasurements are usually performed in the laboratory by bringing the system under study into an interaction

with themeasuring apparatus (themeter) and thenmeasuring themeter. VonNeumann developed amodelwhich describes
how the above process produces projective measurements [1]. Many studies of quantum measurements are based on the
von Neumann measurement model or its generalizations.

Consider the von-Neumann-like measurement scheme, which is a direct extension of the original von Neumann
measurement model [1]. In this scheme, the quantum system S and the measurement apparatus M (meter) are coupled
by the interaction described by the Hamiltonian

H = g(t) Â ⊗ F̂ , (2.8)

where g(t) is the instantaneous coupling rate, which differs from zero in the interval (ti, tf), Â is the operator representing
the measured quantity A, and F̂ is the operator1corresponding to the ‘‘input’’ meter variable F .

1 Generally, we denote a Hermitian operator and the corresponding physical quantity by the same symbol, the exception being only the notation for the
operators Â, F̂ and R̂ of the quantities A, F , and R.
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Fig. 1. Schematic diagram for standard quantum measurements of arbitrary strength. The system S becomes correlated with the meter M by the unitary
transformation U in Eq. (2.10). Then a projective measurement of the meter pointer variable R is performed. The double line carries classical information.
Initially (at t = 0), the system state is ρ and the meter state is ρM , and they are uncorrelated.

We assume that initially (at t = 0 ≤ ti) the system and the meter are uncorrelated, being in the pure states |ψ⟩ and
|ψM⟩, respectively (the case of arbitrary system and meter states, ρ and ρM, is discussed in Section 3). Then for t ≥ tf the
state of the system and the meter becomes correlated,

|ψf ⟩ = U |ψ⟩|ψM⟩, (2.9)

by the unitary transformation

U = exp(−iγ Â ⊗ F̂), (2.10)

where γ is the coupling strength,

γ =

 tf

ti
g(t) dt (2.11)

(we use measurement units in which h̄ = 1). Finally, a measurement of the ‘‘output’’ meter observable R (the ‘‘pointer
variable’’) at tM ≥ tf provides information about the system. This process is depicted schematically in Fig. 1. (In Figs. 1
and 3 the standard quantum-circuit notation [8] is used: single and double lines carry quantum and classical information,
respectively.) Here we make the common assumption that the free Hamiltonians of the system and meter can be neglected
[1,18]; the effects of the free Hamiltonians of the system and the meter are discussed in Sections 5 and 8.2.4.

2.2.2. Canonically conjugate meter variables
The problem becomes drastically simplified when the meter is a continuous-variable system, e.g., a free linearly moving

particle, whereas F and R are canonically conjugate variables. We also make the customary assumption that the free
Hamiltonian of themeter can be neglected,which implies that the particlemass is very large. As in the original vonNeumann
model [1], we assume that F is the momentum p and R is the coordinate q,

F = p, R = q. (2.12)

To simplify the problem even more, we assume here that Â has discrete and nondegenerate eigenvalues. Then, expanding
|ψ⟩ in the basis of the eigenvectors of Â, |ψ⟩ =


j αj|aj⟩, Eq. (2.9) yields

|ψf (q)⟩ = exp(−iγ Â ⊗ p)


j

αj |aj⟩ψM(q)

=


j

αj exp(−iγ ajp) ψM(q) |aj⟩

=


j

αj ψM(q − γ aj) |aj⟩, (2.13)

where |ψf (q)⟩ = ⟨q|ψf ⟩, and ψM(q) = ⟨q|ψM⟩. A projective measurement of q at t ≥ tf results,2 to a very good approxima-
tion, in a projective measurement of A, when different wave packets ψM(p − γ aj) practically do not overlap in Eq. (2.13).
This is realized when the coupling is sufficiently strong,

|γ |(δa) ≫ 1q, (2.14)

where δa is the minimal distance between different aj’s and1q is the uncertainty3of q at t = 0.

2 Since q is a continuous variable, projective measurement of q always has a finite error. For our purposes, this error should be much less than |γ |(δa).
3 The average of an arbitrary operator O in a state ρ0 is given by Ō = Tr (Oρ0) (in particular, for a pure state |Ψ ⟩, Ō = ⟨Ψ |O|Ψ ⟩), whereas the uncertainty

of an observable O is given by the square root of the variance,1O = (O2 − Ō2)1/2 .
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Fig. 2. A schematic diagram of pre- and post-selected quantum measurements. It involves the pre-selection of the identical systems from an ensemble
in the initial state |ψ⟩, measurement of a variable A (the thin arrow) for each system, and the post-selection by means of a projective measurement of a
variable B and selecting the systems in a final state |φ⟩.

2.2.3. Non-ideal and weak standard measurements
When the coupling is not sufficiently strong, i.e., when Eq. (2.14) is not satisfied, a measurement is non-ideal (partial).

However, for any γ one can still measure the average (expectation value) of A over the initial state |ψ⟩,

Ā = ⟨ψ |Â|ψ⟩, (2.15)

since Eq. (2.13) implies that [18]

q̄f − q̄ = γ Ā, (2.16)

where q̄ and q̄f are the averages of q at t = 0 and t ≥ tf, respectively.
A standard measurement with a small coupling strength γ is called a weak standard measurement or simply a weak

measurement.
Note that a weak measurement of one system provides almost no information, since the average pointer deflection

(2.16) is much less than the pointer uncertainty. Therefore, to obtain Ā, one must perform measurements on each member
of a sufficiently large ensemble of systems prepared (preselected) in the same state and then average the results of the
measurements. Themeasurement error decreaseswhen increasing the size of the ensemble and thus can bemade arbitrarily
small. The way of extracting the expectation value Ā in weak measurements differs conceptually from that in projective
measurements. Indeed, projective measurements provide probabilities Pi of the eigenvalues ai of an observable A, and Ā is
obtained from the standard definition of the expectation value by the formula

Ā =


i

aiPi. (2.17)

In contrast, in weak measurements Ā is extracted by Eq. (2.16) directly, without measuring each Pi individually.
In the general case, when the input and output meter variables F and R are not canonically conjugate to each other,

Eq. (2.16) does not hold for arbitrary γ . However, for a sufficiently small coupling strength, when the linear response holds,
the average deflection of the pointer R is generally proportional to Ā, i.e., weak standardmeasurements are still possible (see
Section 3 for further details).

2.3. Pre- and post-selected measurements

2.3.1. General considerations
In classical mechanics, one can completely determine the motion of an isolated system for all future and past times,

if its Hamiltonian and state at some moment are known. In contrast, in quantum mechanics, only a fraction of the
observables can be completely determined in a given state of a system, whereas other observables cannot be determined, as
demonstrated explicitly by the Heisenberg uncertainty principle. This makes the evolution of the system non-deterministic,
i.e., probabilistic.

In the usual approach, the (random) behavior of a quantum system is studied assuming the knowledge of the state at
some initial time t0. As an extension of the usual approach, ABL [75] asked the question: How does the description of a
quantum system in the interval (t0, tS) change, when not only the initial state at time t0 but also the final state at time tS are
known, so that one has more complete information on the system than in the usual approach?

To answer this question, ABL [75] devised pre- and post-selectedmeasurements described as follows (see Fig. 2). Consider
an ensemble of quantum systems prepared initially (preselected) in the same state |ψ⟩. Each member of the ensemble is
subjected to ameasurement of the quantity A, whichmay be strong orweak (the thin arrowbefore A in Fig. 2). Then, at a later
moment, a final projective measurement of a variable B with a discrete, nondegenerate spectrum is performed, which, in
view of the projection postulate (Section 2.1), leaves the system in one of the orthogonal states |φ⟩, |φ′

⟩, . . . . The ensemble
of the system can be broken into subensembles with different final (post-selected) states |φ⟩, |φ′

⟩, . . .; such a subensemble
is called a pre- and post-selected ensemble. The statistical distribution of the results of the measurement of A for a given
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subensemble depends on the subensemble and is different from the statistical distribution over the whole ensemble. Thus,
the possible results of the measurement of A depend both on the initial and the final states of the system. Ameasurement in
a pre- and post-selected ensemble is called a pre- and post-selected measurement. Above we considered one measurement
in a pre- and post-selected ensemble, but there may be two or more such measurements of some observables A, A′, . . .
[75,77]. Note that, though the terms ‘‘pre-selection’’ and ‘‘post-selection’’ are very similar, they denote conceptually different
physical processes: preparation of the initial state and conditioning of the measured statistics on the acquired information,
respectively; see also the discussion in Section 14.4.

Until now we discussed pure PPS ensembles, i.e., ensembles with pure initial and final states. More generally, we will
consider alsomixed PPS ensembles, where the pre-selection is incomplete, i.e., the initial state ρ is mixed. In addition to the
aforementioned preselected and PPS ensembles, there is also a third type of ensemble—post-selected only ensembles [76],
i.e., ensembles of systems with a pure final state |φ⟩ and the completely mixed initial state

ρc.m. =
IS
d
, (2.18)

where d is the dimension of the Hilbert space of the system. Post-selected ensembles are the limiting case ρ → ρc.m. of
mixed PPS ensembles.

Another important generalization of PPS ensembles is for the case where the post-selection measurement is performed
by a general measurement described by an arbitrary POVM; then the PPS ensemble includes the systems with a certain
measurement outcome. Such a measurement is generally incomplete, i.e., it does not specify a single post-selection state
independent of the state of the system before the post-selection.

This generalization allows one to connect PPS and preselected ensembles. Namely, when B is a multiple of the unity
operator, the measurement of B does not provide any new information which could be used for the post-selection, and a
PPS ensemble becomes a preselected (only) ensemble. As a result, in this case PPS measurements of an arbitrary strength
coincide with standard measurements. For the cases of strong and weak measurements with a pure preselected state, this
was formally proved in Ref. [76] (see also Section 2.3.2), whereas for the general case of measurements of arbitrary strength
with an arbitrary preselected state this will be proved in Section 14.2.

PPS measurements have unusual properties, some of which hold only for strong or weak PPS measurements, whereas
others hold irrespective of the strength of measurements. These properties are discussed below. Here we mention only one
of them: in a pure PPS ensemble, any observablewith an eigenstate |ψ⟩ or |φ⟩has a definite value, equal to the corresponding
eigenvalue [151]. Thismeans that PPSmeasurements of any strengthwill always yield the above value of such an observable.
As a consequence, when |φ⟩ ≠ |ψ⟩, there are, at least, two non-commuting observables with no common eigenstates
(e.g., components of spin 1/2), which have definite values in a PPS ensemble. This is in sharp contrast with the conventional
case of systems preselected only in a state |ψ⟩, for which solely the observables with the common eigenstate |ψ⟩ have
definite values.

2.3.2. Strong (ideal) PPS measurements
Let us discuss PPS measurements in more detail. Consider first strong (ideal) PPS measurements.
Let an ensemble of quantum systems be prepared (preselected) in a (pure or mixed) state ρ. According to the projection

postulate (Section 2.1), a projective measurement of an observable A with discrete eigenvalues provides an eigenvalue ai
with probability Pi (2.4) and leaves the system in the state ρi (2.5). In the most general case, the final measurement is
characterized by a POVM (see Section 2.3.1), and the PPS ensemble includes systems with a certain measurement outcome
which is characterized by a POVM operator E and occurs with probability Tr (Eρi) [cf. Eq. (2.7)]. The joint probability to
measure the eigenvalue ai of A and to observe the outcome corresponding to E is the product of the respective probabilities,

PiE = Pi Tr (Eρi) = Tr (EΠi ρΠi). (2.19)

As follows from Eq. (2.19) and Bayes’ theorem, the probability that a projective measurement of A yields the value ai,
provided the system is post-selected by means of E, is

Pi|E =
PiE
j
PjE

=
Tr (EΠi ρΠi)
j
Tr (EΠj ρΠj)

. (2.20)

This equation is an extension of the ABL formula [75,77] to general E and ρ. It is obvious from the first equality in Eq. (2.20)
that the probability distribution Pi|E is normalized to one,

i

Pi|E = 1. (2.21)

When E is the unity operator, strong PPS measurements become strong standard (not post-selected) measurements, and
correspondingly, as canbe easily checked, Eq. (2.20) reduces to Eq. (2.4) (compare thediscussion in the last but oneparagraph
of Section 2.3.1).
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Henceforth (with the exception of Section 14), we will assume that the post-selection measurement is a projection on
a nondegenerate, discrete eigenvalue of a variable B. Such a post-selection measurement is complete in the sense that it
specifies a single post-selection state |φ⟩. In this case,

E = Πφ ≡ |φ⟩⟨φ|, (2.22)

and Eq. (2.20) becomes the probability that a projective measurement of A yields the value ai, provided the system is post-
selected in the state |φ⟩,

Pi|φ =
⟨φ|Πi ρΠi|φ⟩
j

⟨φ|Πj ρΠj|φ⟩
. (2.23)

Consider now special cases. For a nondegenerate eigenvalue ai, one hasΠi = |ai⟩⟨ai|, and Eq. (2.23) becomes

Pi|φ =
|⟨φ|ai⟩|2 ⟨ai|ρ|ai⟩
j

|⟨φ|aj⟩|2 ⟨ai|ρ|ai⟩
. (2.24)

For a pure initial state ρ = |ψ⟩⟨ψ |, Eq. (2.23) becomes

Pi|φ =
|⟨φ|Πi|ψ⟩|

2
j

|⟨φ|Πj|ψ⟩|2
. (2.25)

Finally, in the case of a pure preselected state |ψ⟩ and a nondegenerate ai, Eq. (2.25) yields the result

Pi|φ =
|⟨φ|ai⟩ ⟨ai|ψ⟩|

2
j

|⟨φ|aj⟩ ⟨aj|ψ⟩|2
. (2.26)

Eqs. (2.25) and (2.26) were obtained in Refs. [151] and [75], respectively. In particular, Eq. (2.26) is the ABL formula for the
case of the vanishing system Hamiltonian, whereas Eqs. (2.20) and (2.23)–(2.25) are extensions of the ABL formula.

When |ψ⟩ or |φ⟩ coincides with an eigenstate |ai′⟩ of the observable A, Eq. (2.26) yields Pi|φ = δii′ , i.e., the eigenvalue ai′
is observed with the probability one. This proves the unusual property, discussed in the last paragraph of Section 2.3.1, for
the case of strong PPS measurements.

In the case when the pre- and post-selected states are pure, strong PPS measurements are invariant under time
reversal [75–77], which is seen from the fact that the ABL formulas (2.25) and (2.26) are symmetric with respect to an
exchange of the initial and final states. Moreover, the idea was suggested that quantummechanics is time-symmetric in PPS
ensembles (at least, when the pre- and post-selected states are pure), and the corresponding two-state vector formalism
was developed [75–79]. For the present, this approach is not generally accepted; for recent discussions of time-symmetric
quantum mechanics see Refs. [152,153].

Note, however, that generally PPS measurements are not symmetric with respect to an exchange of the initial and final
states. In Section 14.4 we will obtain a general time-symmetry relation, which holds for PPS measurements of arbitrary
strength, with arbitrary (possibly mixed) preselected states and arbitrary non-ideal post-selection measurements.

In the limit of a completely mixed initial state, ρ → ρc.m. [see Eq. (2.18)], Eq. (2.23) provides the following probabilities
of measurement outcomes for an ensemble post-selected only in the state |φ⟩,

Pi|φ = ⟨φ|Πi|φ⟩. (2.27)

This formula coincides with the result (2.4) with ρ = |φ⟩⟨φ|. Thus, the probability distribution of the outcomes of a mea-
surement performed at time t, t0 < t < tS, in a post-selected ensemble is identical to that for the system preselected in the
state |φ⟩ [76]. A similar property holds also for weak PPS measurements (see paragraph g in Section 2.5.2).

2.3.3. Contextuality of strong PPS measurements
A peculiar property of strong PPS measurements is their contextuality. Namely, for systems with the Hilbert-space

dimension d ≥ 3, the probabilities given in Eqs. (2.20) and (2.23)–(2.26) are context-dependent, i.e., the probability of
an outcome of a strong PPS measurement depends not only on the projector associated with that outcome but on the entire
projection-valued measure associated with the measurement [151,154]. For a two-level system (qubit), the probabilities of
strong PPS measurements are not contextual, since any of the projectors Πi in Eq. (2.2) determines the other one by the
completeness relation [the second equality in Eq. (2.3)] and thus determines the entire projection-valued measure.

The contextuality of strong PPS measurements is illustrated by the three-box problem [151]. Consider a particle which
can be located in one of three boxes. The state of the particle when it is in box i is denoted by |i⟩. At time t0 the particle is
prepared in the state

|ψ⟩ =
1

√
3
(|1⟩ + |2⟩ + |3⟩), (2.28)
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Fig. 3. Schematic diagram of a model for pre- and post-selected quantum measurements. This approach differs from the von Neumann scheme in Fig. 1
in that the measurement of the pointer variable R is conditioned (‘‘post-selected’’) on the measurement of the system S in a state |φ⟩.

and at a later time tS the particle is found in the state

|φ⟩ =
1

√
3
(|1⟩ + |2⟩ − |3⟩). (2.29)

We assume that in the time interval [t0, tS] the Hamiltonian is zero. Opening box i at time t, t0 < t < tS, corresponds to
measuring the projection operator

Πi = |i⟩⟨i|. (2.30)

Now Eq. (2.25) involves two operators,Πi and

Π̃i =


j≠i

|j⟩⟨j|. (2.31)

Hence, one obtains from Eq. (2.25) that the probability to find the particle in box 1, without opening the other boxes, is

prob (Π1 = 1) =
|⟨φ|1⟩⟨1|ψ⟩|

2

|⟨φ|1⟩⟨1|ψ⟩|2 + |⟨φ|2⟩⟨2|ψ⟩ + ⟨φ|3⟩⟨3|ψ⟩|2
=

(1/3)2

(1/3)2 + (1/3 − 1/3)2
= 1. (2.32)

Similarly,

prob (Π2 = 1) = 1 (2.33)

and prob (Π3 = 1) = 1/5. Thus, we obtain a paradoxical result that on opening any of boxes 1 and 2 one is certain to find
the particle in the opened box. The results (2.32) and (2.33) were verified experimentally [86].

For comparison, consider opening the three boxes simultaneously, which corresponds to measuring a nondegenerate
observable with the eigenstates |1⟩, |2⟩, and |3⟩. Now the probability to find the particle in box i is given by Eq. (2.25),
where the projection-valued measure is (Π1,Π2,Π3) [Eq. (2.30)], or, equivalently, by Eq. (2.26), yielding

P1|φ = P2|φ = P3|φ =
1
3
. (2.34)

The probabilities in Eqs. (2.32) and (2.33) differ from, respectively, the probabilities P1|φ and P2|φ in Eq. (2.34). This shows
explicitly the contextuality of strong PPS measurements.

2.3.4. Model for PPS measurements of arbitrary strength
Non-ideal PPS measurements can be discussed by analogy with non-ideal standard measurements (Section 2.2) [18],

with the help of a suitably generalized von Neumann model, as follows (see Fig. 3). Let us consider an ensemble of pairs
consisting of a system and a meter in the pure states |ψ⟩ and |ψM⟩, respectively (extensions to the cases of arbitrary states
ρ and/or ρM are given in Sections 4–7). For each system–meter pair the coupling (2.8) is turned on in the interval (ti, tf);
then a PPS ensemble is formed by performing a projective measurement of a variable B for each system at tS > tf and
selecting for further consideration only the systems which are in the eigenstate |φ⟩ of B. A PPS measurement is completed
after measuring the pointer observable R of the meters at tM > tf and performing the statistical analysis of results in the PPS
ensemble, with the goal, e,g., to obtain the average pointer value R̄s or the distribution of the pointer valuesΦs(R).

Note that the meters can be measured both after (tM > tS) and before (tM < tS) the post-selection. The only difference
is that for tM > tS it is sufficient to measure only the meters corresponding to the PPS ensemble, whereas for tM < tS all
meters in the initial ensemble should be measured, but in the statistical analysis after the post-selection (at t > tS) only the
meters corresponding to the PPS ensemble should be included.
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2.4. Weak PPS measurements

2.4.1. Simple approach
Let us now consider weak PPS measurements. Here we describe the simple approach [18,113,114], which has been used

in most studies on weak values; a more general approach is discussed in the following sections. As in Sections 2.2.2 and
2.2.3, we consider the coupling (2.8) with F = p (the case F = q is not essentially different, as discussed in Section 2.4.2).
Using Eqs. (2.9) and (2.10), we obtain that when tM > tS, the unnormalized meter state after the post-selection but before
the measurement of the meter is (tS < t < tM)

⟨φ|ψf (p)⟩ = ⟨φ| exp(−iγ Â ⊗ p)|ψ⟩ψM(p)

≈ ⟨φ|1 − iγ Â ⊗ p |ψ⟩ψM(p)
= ⟨φ|ψ⟩(1 − iγ Awp) ψM(p)

≈ ⟨φ|ψ⟩ exp(−iγ Awp) ψM(p). (2.35)

Here |ψf (p)⟩ = ⟨p|ψf ⟩, ψM(p) = ⟨p|ψM⟩, and Aw is called the weak value of A [18],

Aw =
Aφψ

⟨φ|ψ⟩
, (2.36)

where Aφψ = ⟨φ|Â|ψ⟩. The approximations in Eq. (2.35) hold up to first order in γ .
Traditionally, in the present approach [18,113,114] the meter wavefunction is taken as a real Gaussian in both p and

q spaces, which implies that the averages p̄ and q̄ vanish. Here we make a slight generalization, assuming that ψM(p) is a
complex Gaussian with a phase linear in p,

ψM(p) = Zp exp

−
(p − p̄)2

4(1p)2
− iq̄p


, (2.37)

where Zp = (
√
2π/1p)1/2, and p̄ and 1p are, respectively, the average and the uncertainty of p at t = 0. The Fourier

transform of Eq. (2.37) yields a Gaussian wavefunction ψM(q)with a phase linear in q,

ψM(q) = Zq exp

−
(q − q̄)2

4(1q)2
+ ip̄q


, (2.38)

where Zq = (
√
2π1q)−1/2 and the uncertainty 1q = (21p)−1. The latter equality implies that in the Gaussian state

[Eq. (2.37) and/or (2.38)], the Heisenberg uncertainty relation is saturated,

1q1p = 1/2. (2.39)

This fact is advantageous for weak measurements, as discussed below (see, e.g., Section 3.3).
Inserting Eq. (2.37) into Eq. (2.35) yields a Gaussian wavefunction which differs from the initial wavefunction (2.37) only

by the changes q̄ → q̄s and p̄ → p̄s, where the shifts in the averages q̄ and p̄ are determined by

q̄s − q̄ = γ Re Aw, (2.40)

p̄s − p̄ = 2γ (1p)2 Im Aw. (2.41)

The quantities q̄s and p̄s are the post-selected averages of q and p. Thus, weak PPS measurements of the averages of p and
q provide the real and imaginary parts of the weak value, respectively. Note that the magnitudes of the average pointer
deflections |q̄s − q̄| and |p̄s − p̄| in Eqs. (2.40) and (2.41) are much less than the respective statistical dispersions of the
measurement results1q and1p, and therefore performingweak PPSmeasurements requires averaging of themeasurement
results obtained formany identical systems prepared in the same initial state. Eq. (2.40) looks very similar to the result (2.16)
of weak standard measurements. However, in contrast to standard measurements (Section 2.2), now not only q but also p
contains information about the system, as shown by Eq. (2.41).

Eqs. (2.40) and (2.41) show that weak PPS measurements in the linear-response (or AAV) regime provide the weak value
Aw of the quantity A. The physical significance of the weak value arises from the fact that in the linear-response regime the
backaction of measurements on the system is very small, and therefore the weak value provides, in a sense, information on
the unperturbed system.

The weak value in Eq. (2.36) has unusual properties, which drastically distinguish it from the expectation value of a
variable (2.15) resulting from a standard measurement. The weak value diverges when the overlap |⟨φ|ψ⟩| tends to zero.
For instance, the weak value of a component of spin 1/2 can be equal to 100 [18]. Moreover, the weak value can be complex.
Later we will discuss weak values in further detail.
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The results Eqs. (2.40) and (2.41) were obtained4 by AAV [18] for real Gaussian functions ψM(p) and ψM(q), i.e., for
p̄ = q̄ = 0. As shown above, Eqs. (2.40) and (2.41) also hold for Gaussians with a linear phase. Jozsa [124] considered the
case of an arbitrary meter wavefunction and showed that generally there is an additional term, proportional to Im Aw , on
the right-hand side of Eq. (2.40), whereas Eq. (2.41) remains valid in the general case.

Hosten and Kwiat [90] showed experimentally that the term proportional to Im Aw may arise in Eq. (2.40) due to the
free meter Hamiltonian; they utilized this term to achieve strong amplification in a measurement of a weak optical effect
(for details see Section 8.2.4). Below we show that in the most general case, i.e., for arbitrary meter variables F and R,
the term proportional to Im Aw arises in the linear-response regime whenever there is correlation between F and R (see
Section 6.5.1 for more details), the presence of a nonzerometer Hamiltonian being only one of the possible ways to generate
this correlation (see Section 8.2). Furthermore, belowwe show that a correlation between p and q ariseswhenever the phase
of the wavefunction ψM(p) or ψM(q) is nonlinear in p or q, respectively (see Section 8.2, cf. also Section 2.4.2).

In addition to the average pointer variable, one can measure also the distribution of the pointer variable. In the present
case the measured distributions of q and p are Gaussian; they are given by the squares of the moduli of the functions (2.38)
and (2.37), respectively, with the changes q̄ → q̄s and p̄ → p̄s. Thus, a weak PPS measurement results in a displacement
of the Gaussian distributions in the coordinate and momentum spaces, without changes in their shapes and widths. In
particular, the maxima of the probability distributions of q and p are shifted by, respectively,

1qmax = γ Re Aw, (2.42)

1pmax = 2γ (1p)2 Im Aw. (2.43)

Note, however, that generally weak PPS measurements change the shape of the pointer distribution, as discussed below.
The conditions for the validity of Eqs. (2.40) and (2.41)were obtained in Ref. [113] for the special case q̄ = p̄ = 0. Namely,

the first and second approximations in Eq. (2.35) hold, respectively, for

|γ |

 (An)φψ

Aφψ

1/(n−1)

1p ≪ 1 (n = 2, 3, . . .) (2.44)

and

|γ Aw|1p ≪ 1. (2.45)

The results (2.40)–(2.43), as well as their generalizations mentioned above, hold up to first order in γ , i.e., in the linear-
response regime. The linear response is important, since in this regime the measurement backaction is minimal, and hence
onemay expect to reveal in this regime such properties of the system that cannot be probed by strongmeasurements, which
strongly perturb the system state. Therefore the linear response is themost well studied regime of weak PPSmeasurements.

In the linear-response regime, the weak value is bounded by the condition (2.45). Correspondingly, for any given γ , the
condition (2.45) is always violated for a sufficiently large weak value or, equivalently, for sufficiently small overlap ⟨φ|ψ⟩.
In this case, linear-response results are not applicable, even though the condition (2.44) holds and hence PPSmeasurements
are weak. It would be of interest to extend the theory of weak PPS measurements beyond limits of the linear response. A
simple and general theory of weak PPSmeasurements, which is correct to all orders in γ Aw , will be developed and discussed
in Section 6 and henceforth.

In the remainder of this section we will continue to review PPS measurements in the linear-response regime.

2.4.2. The pointer distribution
In addition to the average value of the pointer variable R, it is of interest to consider the probability distribution of the

pointer values, since it is measured directly in experiments. For simplicity, we assume that the initial pointer distribution
Φ(R) has a bell-like shape (e.g., Lorentzian or Gaussian).

Here we consider situations where the pointer distributionΦs(R), resulting from a weak PPS measurement in the linear-
response regime, has the following property, which is advantageous for experimental realizations:

(i) Φs(R) is displaced with respect to the initial distribution Φ(R) = |ψM(R)|2 without a change of the shape of the
distribution (at least, for the central part of the distribution; the tails of the distribution can be deformedby themeasurement
even in the linear-response regime, see Section 9.2 for details). This property is equivalent to the following relation,

Φs(R) = Φ(R + R̄ − R̄s). (2.46)

Property (i) implies the following property:
(ii) The shift of the maximum of the distribution1Rmax equals the average pointer deflection,

1Rmax = R̄s − R̄. (2.47)

4 Actually Eqs. (2.40) and (2.41) differ somewhat from the AAV results [18] in that here the roles of p and q are exchanged in comparison to Ref. [18], as
in some optical experiments [80,90]. The original AAV results are given below by Eqs. (2.58) and (2.59).
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Note, however, that property (ii) does not necessarily imply property (i) and Eq. (2.46). [The general case, where properties
(i) and (ii) may not hold, is discussed in Section 9.2.]

In particular, property (i) and hence Eqs. (2.46) and (2.47) hold in the following cases.
a. Real weak value. Let Aw be real, whereas the meter variables are canonically conjugate, e.g., F = p and R = q. Then

from Eq. (2.35) rewritten in the coordinate representation we obtain that

⟨φ|ψf (q)⟩ ≈ ⟨φ|ψ⟩ exp(−iγ Awp) ψM(q)

= ⟨φ|ψ⟩ψM(q − γ Aw). (2.48)

Thus, when Aw is real, an arbitrary coordinate distribution is shifted, due to a weak measurement, by the value [90,124]

q̄s − q̄ = γ Aw. (2.49)

In particular, if the coordinate distribution is bell-like, we have

1qmax = q̄s − q̄ = γ Aw. (2.50)

b. Conjugate-variable meter in a general complex Gaussian state. Consider a meter with canonically conjugate meter
variables, e.g., F = p and R = q. We assume that the meter is in a general complex Gaussian state.

The most general form of a complex Gaussian state is given by

ψM(p) = Zp exp

−
(1 + ib)(p − p̄)2

4(1p)2
− iq̄p


. (2.51)

Here b is a real parameter characterizing the quadratic phase—the phase of the state (2.51) is a quadratic function of p, with
the quadratic term proportional to the parameter b.

In coordinate space, a general Gaussian state has a similar form,

ψM(q) = Zq exp

(ib − 1)(q − q̄)2

4(1q)2
+ ip̄q


, (2.52)

where1q is determined from the equality

1p1q =

√
1 + b2

2
. (2.53)

This equation has themeaning of the generalized uncertainty relationwith the equals sign [cf. Eq. (8.26) below]. In Eq. (2.52),
similarly to Eq. (2.51), the phase is a quadratic function of q, with the quadratic term proportional to b.

Inserting Eq. (2.51) into Eq. (2.35) yields a wavefunction of the same form as Eq. (2.51) with the only difference that p̄ is
shifted by the value (2.43), whereas q̄ is shifted by the value

1qmax = q̄s − q̄ = γ (Re Aw + b Im Aw). (2.54)

In other words, a weak PPS measurement shifts the Gaussian distributions of p and q, |ψM(p)|2 and |ψM(q)|2, without a
change of the form, by the values (2.43) and (2.54), respectively.

The case of a Gaussian state with a zero or linear phase considered in Section 2.4.1 [see Eq. (2.42)] follows from the
present case for b = 0. The term proportional to Im Aw in Eq. (2.54) arises due to the nonlinear (quadratic) phase.

It is often stated [76,78,90] that the imaginary part of the weak value does not affect the probability distribution of the
meter coordinate, and Im Aw can be observed only in the distribution of the meter momentum. Eq. (2.54) shows that this
statement is not exact, since Im Aw enters the shift of the coordinate distribution for a general Gaussian wavefunction. The
same holds for a general (non-Gaussian) meter state, as discussed in Section 9.2.

c.Meter with R = F and a Gaussian distribution of F . Consider a meter with R = F . Similarly to Eq. (2.35), one obtains that

⟨φ|ψf (F)⟩ ≈ ⟨φ|ψ⟩ exp(−iγ AwF) ψM(F). (2.55)

Let F be a continuous variable with a Gaussian initial distribution Φ(F) = |ψM(F)|2. Then the distribution of F after the
measurement, given, up to a normalization factor, by the squared modulus of Eq. (2.55), is also a Gaussian, which differs
fromΦ(F) only by a shift of the center equal to

1Fmax = F̄s − F̄ = 2γ (1F)2 Im Aw. (2.56)

Eq. (2.56) was proved in Section 2.4.1 [see Eq. (2.43)] for the special case, when F = p and ψM(p) is a Gaussian state whose
phase is constant or linear in p. Here Eq. (2.56) is shown to be valid for statesψM(F)with aGaussianmodulus and an arbitrary
phase. This result will be extended to the case of a mixed meter state ρM in Section 9.2.1.

In the above formulas for weak PPS measurements we assumed that F = p [except for Eq. (2.56)]. It is easy to show that
for F = q, the above formulas for q̄s, p̄s,1qmax, and1pmax change according to the rule

p ↔ q, Re Aw → −Re Aw. (2.57)
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For example, Eqs. (2.40) and (2.41) become [18]

p̄s − p̄ = −γ Re Aw, (2.58)

q̄s − q̄ = 2γ (1q)2 Im Aw. (2.59)

Note that Eqs. (2.41) and (2.59) are special cases of the second equality (2.56).
It is worthmentioning thatmeters described in paragraphs b and c arewell suited forweak PPSmeasurements, as argued

below (see, e.g., Sections 6.6.1 and 6.10.2).

2.5. Discussion of weak values

2.5.1. Interpretation of weak values in terms of probabilities
Until now, we have assumed that the preselected state in a weak PPS measurement is pure. It is of interest to extend the

theory to a mixed preselected state. In the case of a mixed preselected state ρ, the definition of the weak value becomes
[120,150] (see Section 7 for the derivation)

Aw =
(Aρ)φφ
ρφφ

, (2.60)

where ρφφ = ⟨φ|ρ|φ⟩. For a qubit with a mixed preselected state, weak values are always finite (see Section 10 for more
details). However, for d-level systemswith d ≥ 3, weak values can be unbounded evenwith amixed preselected state, when
ρ has one or more zero eigenvalues. In this case, the weak value diverges, when the pre- and post-selected states approach
orthogonal subspaces [130]. Below the definition of the weak value will be further extended to the case of a general post-
selection measurement (see Section 14).

The results (2.36) and (2.60) for weak values are surprising in the sense that onemight expect, by analogy with the result
(2.16)–(2.17) of weak standard measurements, that a weak PPS measurement yields the average of A obtained in a strong
PPS measurement,

As =


i

ai Pi|φ, (2.61)

where Pi|φ are given by Eq. (2.24) or (2.26). Eq. (2.61) is a ‘‘usual value’’ of A, i.e., a real number within the range of the eigen-
values of A, and hence it generally significantly differs from the weak value. Even so, as shown below, there are situations
where the weak value coincides with Eq. (2.61).

It is possible to obtain an expression for the weak value similar to Eq. (2.61). Indeed, inserting Eq. (2.2) into Eq. (2.60)
yields the weak value in a useful form

Aw =


i

ai (Πi)w, (2.62)

where (Πi)w is the weak value ofΠi,

(Πi)w =
⟨φ|Πi ρ|φ⟩

⟨φ|ρ|φ⟩
. (2.63)

Eq. (2.62) implies that, in contrast to the results of strong PPS measurements, weak values do not depend on the mea-
surement context, just as the standard (preselected only) measurements. Indeed, due to the fact that Aw is linear in A, the
contributions to Aw from different projectors in Eq. (2.62) are independent of each other.

The quantity (Πi)w in Eq. (2.63) can be called theweak probability corresponding to the eigenvalue ai [86]. Summing both
sides of Eq. (2.63) over i and using the second equality in Eq. (2.3), we obtain that theweak probabilities are normalized [86],

i

(Πi)w = 1. (2.64)

Theweak probability distribution {(Πi)w} is generally nonclassical, in the sense that someweak probabilitiesmay be greater
than one or negative or even complex; such weak probabilities are unusual weak values of the projectors Πi. Nonclassical
discrete [86,91,92] and continuous [89] probability distributions were measured experimentally. However, whenever all
(Πi)w are positive or equal to zero, the normalization (2.64) ensures that the set {(Πi)w} is a classical probability distribution,
and hence Aw is a usual value [136].

Eqs. (2.62) and (2.64) imply that the weak value Aw is the average of the observable A over a nonclassical probability
distribution which can assume negative and complex values. It is often stated [101,134] that the weak value should be
understood as the mean value of the observable A when weakly measured between the pre- and post-selected states.
However, we stress that, in view of Eq. (2.62), the ‘‘mean value’’ here is not a usual (classical) mean value, since it is taken
over a nonclassical probability distribution.
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An additional insight into weak values is provided by the fact that the weak probability (Πi)w in Eq. (2.62) can be
interpreted as a (nonclassical) conditional probability of themeasurement result ai given that the subsequentmeasurement
result corresponds to the state |φ⟩ [116]. Indeed, the weak probability (2.63) can be recast in the form of Bayes’ theorem

(Πi)w ≡ P̃i|φ =
P̃iφ
Pφ

=
Tr (ΠφΠi ρ)

Tr (Πφ ρ)
, (2.65)

whereΠφ is given in Eq. (2.22).
The quantity

P̃iφ = Tr (ΠφΠi ρ) (2.66)

in Eq. (2.65) is known as the Kirkwood distribution [155,156]. It may be interpreted as the joint probability that two
(generally non-commuting) observables have the values corresponding to the eigenstates |ai⟩ and |φ⟩. Indeed, recall that
ideal quantum measurements yield an eigenvalue of an observable with the probability given by the average of the
corresponding projection operator [see Eq. (2.4)]. The quantity P̃iφ , being the average of a product of projection operators,
is a direct generalization of this probability and can be considered as the joint probability. Generally, P̃iφ is a nonclassical
probability, i.e., P̃iφ may be negative or even complex, since the operatorΠφΠi is not Hermitian unlessΠφ andΠi commute
with each other.

2.5.2. Sufficient conditions for usual weak values
The most interesting situations occur when the weak value is unusual. It is not easy to provide necessary and sufficient

conditions for unusual weak values. However, it is easy to list some situations where weak values are usual, i.e., real and
within the range of the eigenvalues of A.

In particular, when the preselected state is pure, weak values are usual in the following cases a-d:
a. In the case |φ⟩ = |ψ⟩, Eq. (2.36) yields

Aw = Aψψ = Ā. (2.67)

Now Aw is equal to the result Ā of a weak standard measurement (see Section 2.2.3). The reason for this is seen from the
fact that in the present case, whenmeasurements are sufficiently weak, the post-selection probability equals approximately
|⟨φ|ψ⟩|

2
= |⟨ψ |ψ⟩|

2
= 1, i.e., the post-selected ensemble almost coincides with the total ensemble. Hence, now there is

practically no difference between weak PPS measurements and weak standard measurements.
b. When |ψ⟩ is an eigenstate of Âwith eigenvalue ai, then

Aw = ai. (2.68)

c. When |φ⟩ is an eigenstate of Âwith eigenvalue ai, then Eq. (2.68) holds.
Note that for a pure PPS ensemble, statements b and c prove the unusual property, discussed in the last paragraph of

Section 2.3.1, for the case of weak measurements.
d.When, in a purePPS ensemble, a strongmeasurement yields a particular eigenvalue aj of a variableAwith certainty, then

Aw = aj [76,151]. Indeed, then Pi|φ = δij in Eq. (2.25), i.e., for i ≠ j, ⟨φ|Πi|ψ⟩ = 0; hence due to Eq. (2.36) (Πi)w = 0 (i ≠ j).
The latter result implies, in view of Eq. (2.64), that (Πi)w = δij, and hence Eq. (2.62) yields Aw = aj.

Moreover, for amixed preselected state weak values are usual in case c and also in the following cases e–g:
e. When |φ⟩ is an eigenstate of ρ with a nonzero eigenvalue λ, then Eq. (2.60) yields

Aw =
Aφφλ
λ

= Aφφ . (2.69)

The present situation is an extension of case a.
f. When Â commutes with ρ,

[Â, ρ] = 0, (2.70)

then Aw is given by Eq. (2.61). Indeed, taking into account that Eq. (2.70) implies [Πi, ρ] = 0 and using the properties of the
projection-valued measure in Eq. (2.3), we obtain that the weak probability in Eq. (2.63) equals the probability Pi|φ in Eq.
(2.23) and hence Eq. (2.62) coincides with Eq. (2.61). The present situation is an extension of case b.

g. When the initial state is completely mixed, Eq. (2.18), i.e., the measurement is made on a post-selected only ensemble,
then Eq. (2.60) yields

Aw = Aφφ . (2.71)

The present situation is a special case of paragraph f. The result (2.71) is the same as for a weak standard measurement
on an ensemble preselected only in the state |φ⟩. A similar property holds also for strong measurements in post-selected
only ensembles (see Section 2.3.2). The above two results are special cases of the time-symmetry relation, which states
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that measurements of any strength in an ensemble post-selected only in state |φ⟩ give the same results as in an ensemble
preselected only in the same state (see the proof in Section 14.2).

The usual weak values obtained in the above cases b– d and f– g (but not in a, e) coincide with As in Eq. (2.61). In cases b,
c, f, and g the reason for this is that in these casesΠφ = |φ⟩⟨φ| or ρ commutes with Â. As shown in Section 14.2, this implies
that PPSmeasurements of any strength are formally equivalent to standardmeasurements with a suitable preselected state.
As a result, in these cases Aw = As [see Eq. (14.11)].

The requirement that all the above sufficient conditions for usual weak values should be violated provides a necessary
(but not sufficient) condition for unusual weak values. A thorough discussion of the conditions needed to obtain unusual
weak values in a qubit is given in Section 10.

2.5.3. Quantum interference in PPS measurements
In order to understand the reason why the weak value generally sharply differs from Eq. (2.61), it is useful to compare

the meter states for standard and PPS measurements just before the measurement of the pointer. Eq. (2.13) implies that
in standard measurements, there is no interference between the wave packets ψM(q − γ aj), since they are multiplied by
mutually orthogonal vectors |aj⟩. In contrast, for PPS measurements we obtain from Eq. (2.13) that for tS < t < tM the
unnormalized meter wavefunction is

⟨φ|ψf (q)⟩ =


j

αj ⟨φ|aj⟩ψM(q − γ aj), (2.72)

i.e., the post-selection creates interference between the wave packets ψM(q − γ aj).
In the case of a large γ , different wave packets in Eq. (2.72) do not overlap, and interference is practically absent in a

measurement of q; therefore, a strong PPS measurement results in a projective measurement of ai with probability

Pi|φ = c|αi ⟨φ|ai⟩|2 = c|⟨φ|ai⟩ ⟨ai|ψ⟩|
2. (2.73)

Here c is a numerical factor, which can be obtained from the normalization condition


i Pi|φ = 1 [cf. Eq. (2.21)]. As a result,
Eq. (2.73) yields the ABL formula (2.26). In particular, this shows explicitly that the model of PPS measurements introduced
in Section 2.3.4 contains strong PPS measurements as a special case.

In the opposite limit of a small γ , i.e., for a weak PPS measurement, different wave packets significantly overlap, and
interference strongly affects the measurement results. Quantum interference is especially strong (and destructive), when
the pre- and post-selected states, |ψ⟩ and |φ⟩, are almost orthogonal. This strong interference effect explains the striking
difference between the weak value and Eq. (2.61).

Thus, it is the interference in the meter state that leads to unusual weak values. Let us discuss the physical origin of
this interference. As mentioned above, after correlating the system and the meter, there is no interference in the meter
state, as implied by (2.13). The reason for this is that different wave packets ψM(q − γ aj) are ‘‘tagged’’ by the mutually
orthogonal system states |ai⟩ and hence can be completely distinguished by measuring the observable A, even though they
can significantly overlap each other. In contrast, a measurement of system S with post-selection transforms the state of the
system and the meter into a product state, thus eliminating any correlation between the system and the meter. Now, unless
the meter is measured, an observer even in principle cannot obtain information in which wave packet the meter is located,
which results in interference between different wave packets in Eq. (2.72).

2.5.4. Sum rule for weak values
To provide a further insight into how complex and/or very largeweak values and amplification result frompost-selection,

we mention an interesting property of weak values, which can be called the ‘‘sum rule’’.
The result of a weak standard measurement [cf. Eq. (2.16)] is the expectation value of the linear-response results of

weak PPS measurements [cf. Eq. (2.40) or (2.54)] corresponding to all subensembles resulting from the post-selection
measurement of the quantity B (cf. Fig. 2). The weights in the above expectation value are provided by the probabilities
of different outcomes of the measurement of B, given in the linear-response approximation by PB

i = |⟨φi|ψ⟩|
2, where |φi⟩

are the eigenvectors of B. As a result, we obtain that Ā is an expectation value of the weak values corresponding to different
subensembles. This can be shown also by writing

Ā = ⟨ψ |Â|ψ⟩ =


i

⟨ψ |φi⟩⟨φi|Â|ψ⟩ =


i

|⟨φi|ψ⟩|
2 ⟨φi|Â|ψ⟩

⟨φi|ψ⟩
, (2.74)

which yields the sum rule [136]
i

PB
i Awi = Ā, (2.75)

where

PB
i = |⟨φi|ψ⟩|

2, Awi =
⟨φi|Â|ψ⟩

⟨φi|ψ⟩
. (2.76)
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Eq. (2.75) shows explicitly that, though weak values can be complex and very large, their average over all subensembles is
a usual value of A. In the special case B = A, the sum rule (2.75) reduces to Eq. (2.17). The sum rule (2.75) is equivalent to
the following two equalities,

i

PB
i Re Awi = Ā,


i

PB
i Im Awi = 0. (2.77)

The first equality here was obtained in Ref. [121].
The magnitudes of the contributions from different subensembles in the sums in Eq. (2.74) have the same upper bound,

|⟨ψ |φi⟩⟨φi|A|ψ⟩| ≤ |⟨φi|A|ψ⟩| ≤ ∥A∥, where ∥A∥ is the norm of Â given by the maximum of the magnitudes of the eigen-
values of Â (here ∥A∥ is assumed to be finite). In contrast, the weak values given by the fractions in the last sum in Eq. (2.74)
diverge when the overlap |⟨φi|ψ⟩| tends to zero. As a result, generally in subensembles where |⟨φi|ψ⟩| is small, the pointer
deflection, and correspondingly the signal-to-noise ratio (SNR) characterizing quantum noise, are strongly amplified. How-
ever, since this amplification is achieved in a relatively small number of measurements proportional to |⟨φi|ψ⟩|

2, the SNR
with respect to quantum noise in weak PPSmeasurements is of the same order as in standardmeasurements [90] (for details
see Sections 6.7.1 and 6.10.5). Still, this amplification is very useful since it increases the SNRwith respect to technical noise.

It is easy to see that the sum rules (2.75) and (2.77) hold also for a mixed initial state, as one should expect. In this case,
in Eqs. (2.75) and (2.77) we have Ā = Tr (Âρ) and [cf. Eqs. (2.4) and (2.60)]

PB
i = ⟨φi|ρ|φi⟩, Awi =

⟨φi|Âρ|φi⟩

⟨φi|ρ|φi⟩
. (2.78)

2.6. Experimental realizations of weak PPS measurements

The general scheme for performing PPS measurements was described in Section 2.3.4. Note that the choice of systems
suitable for use as a meter is much broader for weak (standard and PPS) measurements than for strong measurements.
Indeed, to perform a projective measurement of a variable A with nA unequal eigenvalues, one requires the meter to be a
dM-level systemwith dM ≥ nA. This is necessary for correlating nA eigenstates of Â corresponding to the unequal eigenvalues
with nA orthogonalmeter states [cf. Eq. (2.13)], in order to obtain from themeasurement themaximum information allowed
by the projection postulate. In contrast, weak standard and PPS measurements provide such parameters as Ā and Aw ,
respectively, which contain much less information than ideal measurements. In consequence, for weak standard and PPS
measurements of any systemone can use any other system as ameter, including a two-level system (a qubit), see Section 8.3.
Moreover, the choice of meters is broader for weak PPSmeasurements than for weak standardmeasurements. For example,
meters with R = F are not suitable for weak standard measurements (see below Sections 3.1 and 4.1) but are suitable for
weak PPS measurements [cf. Eqs. (2.41) and (2.56)].

Below we overview the experimental studies on weak PPS measurements.
In their seminal paper [18], AAV proposed to perform weak PPS measurements using a Stern–Gerlach setup, where

the shift of the transverse momentum of the particle, translated into a spatial shift, yields the outcome of the spin-1/2
measurement. The meter now is a particle performing one-dimensional free motion, the input and output variables being

F = q, R = p. (2.79)

Post-selection of the spin state in a certain direction can be performed by another (now strong) Stern–Gerlach coupling
which splits the particle beam. The analysis of the required beam provides the result of the weak PPS measurement. The
meters associated with the two measurements should be implemented by two independent systems (here two transverse
translational degrees of freedom). This is achieved by arranging the spatial shifts due to the two Stern–Gerlach devices to
be orthogonal to each other.

An optical analog of the above Stern–Gerlach experiment was proposed in Ref. [113] and realized in Ref. [80], which is
the first experimental study of weak values. In this experiment, the system of interest is the optical polarization rather than
the spin of a spin-1/2 particle. The polarization of a light beam is weakly coupled to a transverse degree of freedom of the
beam by a birefringent plate, whereas the pre- and post-selection are performed by polarization filters. In this setup, the
meter variables are given by Eq. (2.12) rather than5 Eq. (2.79). Moreover, in Ref. [80] Â is the projector on a state with a
linear polarization, and γ is the birefringence-induced separation. Figure 2(b) in Ref. [80] and Eq. (2.49) imply that Ritchie
et al. [80] obtained a real unusual weak value Aw ≈ 20, which is very far outside the range of the eigenvalues (0, 1).

Knight and Vaidman [115] proposed a slightly different optical realization of the AAV experiment, which uses a
birefringent prism instead of a plate; as a result, the meter variables are given now by Eq. (2.79). This experiment was
performed in Ref. [83], where results similar to those in Ref. [80] were obtained.

5 We remind that the results of weak PPS measurements with the meter variables (2.12) are very similar to the results with the meter variables (2.79),
as follows from the discussion in the last paragraph of Section 2.4.2.
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Fig. 4. (Color online). Schematic diagram of the experiment, reported in Ref. [90], for performing a weak PPS measurement of photon polarization.
Source: The figure is reprinted from Ref. [78].

Fig. 4 depicts a typical scheme of a weak PPS measurement [90]. In this experiment, the system S is the photon
polarization, whereas the meter is a transverse degree of freedom of the photon, the meter variables F and R being given
by Eq. (2.12). In Fig. 4, the pre- and post-selection are performed by the polarizers, which are almost crossed, whereas the
prism in between provides a coupling of the system and the meter due to the spin Hall effect of light [157–160]. The initial
wave packet along the meter coordinate is shown on the left in Fig. 4. After passing through the prism, the wave packet
becomes a superposition of two slightly shifted wave packets with mutually orthogonal polarizations [cf. Eq. (2.13)]. The
post-selection produces a strong destructive interference of thewave packets [cf. Eq. (2.72)], resulting in awave packet with
a significantly reduced intensity but with a strongly enhanced shift.

In the case studied in Ref. [90], the above simple picture is complicated somewhat by the presence of a nonzero meter
Hamiltonian (see the discussion of the Hamiltonian effects in Section 8.2.4). Using weak PPS measurements, Hosten and
Kwiat [90] succeeded to detect the prism-induced wave-packet shift of 1 angstrom and thus to measure the very weak
coupling produced by the spin Hall effect of light. This experiment resolved long-standing controversies concerning the
polarization-dependent transverse shifts of light beams [157,158,161,162] and confirmed theoretical predictions by Bliokh
and Bliokh [158,163]. A classical interpretation of this experiment was derived in Ref. [164]. Further extensions of the weak-
measurement approach to the optical spin Hall effect shifts, including employment of both real and imaginary weak values,
were discussed in [165–167].

Until now, a large body of experimentalwork onweak PPSmeasurements has beenmade [21,80–102], and a great variety
of physical systems, couplings, and experimental setups have been used. Most of the experiments were performed in optics,
except for one [81], which was done in NMR. Those optical experiments that use low-intensity light allowing for detection
of single photons are evidently non-classical [81,87,88,91,92,97,98,101,102], whereas other experiments, which use intense
optical beams [21,80,82–86,89,90,93–96,99,100], admit both classical and quantum interpretations.

A linear classical optical experiment can always be interpretedquantum-mechanically, in termsof single photons. Indeed,
photons in laser beams are prepared in a coherent state and behave independently in linear optical systems; hence the
intensity measurements one performs are guaranteed to be the same for coherent states as for single-photon states [168].

Irrespective of the interpretation adopted, the ‘‘weak-value approach’’ for designing experiments is not conventional
in classical physics and thus can lead to new results for classical systems. For example, the enhanced shift of the light-
beam distribution in the coordinate or momentum space by passage through a (post-selection) filter is essentially a new
classical interference effect [83,115]. Furthermore, recently weak PPS measurements were applied in new classical optical
interferometric techniques for beam-deflection [94,99,100], phase [22], and frequency [95] measurements.

Note that the theory in Ref. [22] is purely classical (though the earlier version [169] of the paper contains a brief
discussion in terms of the weak value). In Section 13 we provide a quantum interpretation of the experiment in Ref. [22];
this interpretation is based on the nonlinear theory of weak PPS measurements, which is developed below.

The systems for which weak values were measured involved spin 1/2 [81], photon polarization [80,82–85,87,88,90,
96–98], photon which-path states in a Sagnac [21,93–95] and a three-rail Mach–Zehnder [86] interferometers, a transverse
translational degree of freedomof the photon [89,101,102], andwhich-path states of two photons in a pair ofMach–Zehnder
interferometers [91,92].
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The meters used in the experiments included, in particular, (a) systems with continuous variables F and R: a trans-
verse [21,80,83,86,89,90,93–96] and the longitudinal [85] translational degrees of freedom of the photon, (b) a qubit: spin
1/2 [81], photon polarization [87,97,101,102], andwhich-path states in aMach–Zehnder interferometer [82,98], and (c) two
qubits: the positions of two photons on the two sides of a beam splitter [88] in the Hong–Ou–Mandel interferometer [170]
and the polarizations of the two photons [91,92].

The coupling between the system and the meter was created, in particular, by a tilted birefringent plate [80,96], a
birefringent prism [83], retarders (a Soleil-Babinet compensator [82], a birefringent optical fiber [85], and birefringent [88,
101] and half-wave [98] plates), a tilted glass plate [86,89], a tilted mirror [21,93,94], a glass prism [95], the spin Hall effect
of light [90], a nondeterministic photon-entangling circuit [87,97], a polarization rotator [91,92,102], and an Ising-type spin
coupling [81].

In the above experiments, the system and the meter were prepared in pure states, except for Ref. [96], where effects of
a mixed meter state were studied.

As discussed above, in the present paper we adopt a conventional approach to weak PPS measurements, based on
an extension of the von Neumann model (see Fig. 3). For completeness, we mention that there exist also somewhat
different approaches to weak values, which do not involve explicitly the von Neumann model and employ instead such
theoretical tools as POVM andmeasurement operators [68,104,118], negative probabilities [103,171], and contextual values
of observables [112]. In particular, weak values for continuous measurements in quantum optics [118] and solid-state
systems [104]were considered, and an experiment on cavity quantumelectrodynamics [172]was interpreted [118] in terms
of weak values. A more detailed discussion of these approaches is out of the scope of the present paper.

2.7. Applications of weak PPS measurements

Weak PPS measurements possess a number of unique features, which make possible a host of important applications.
Such measurements can play, at least, two different roles.

First, weak PPS measurements can be employed with the aim of obtaining a weak value of an observable. The fact that a
weak PPS measurement disturbs the system only slightly in the interval between the pre- and post-selection allows one to
obtain information about the undisturbed behavior of the system in that interval. Therefore, weak values have been used to
shed new light on a great variety of quantum phenomena, especially those related to fundamentals of quantummechanics.
An example of such phenomena are quantum paradoxes discussed below.

Second, weak PPS measurements can produce strong amplification of the pointer deflection [18], owing to the fact that
the weak value can become arbitrarily large when the overlap of the initial an final states ⟨φ|ψ⟩ is sufficiently small, cf.
Eq. (2.40). Correspondingly, in its second role, aweak PPSmeasurement acts as a peculiar amplification scheme, rather than a
‘‘proper’’measurement of an observable. This amplification is one of themost important features ofweak PPSmeasurements,
since it can be exploited for different uses, e.g., to produce superluminal and slow light propagation [76,84,85,88,114,116].
Moreover, the amplification can yield experimental sensitivity beyond the detector resolution and thus can be used for
measuring weak physical effects responsible for the coupling between the system and the meter, as well as for precision
measurements of other parameters characterizing the system and the meter.

Furthermore, theweak value can be a complex number, which has important consequences for weak PPSmeasurements.
It is interesting that a complex weak value is always unusual, irrespective of its magnitude, whereas a real weak value
becomes unusual only when it is outside the spectrum of the observable. The terms proportional to Im Aw entering
Eqs. (2.41) and (2.54) have no analogs in standard measurements. As a result, in particular, the class of meters which can
be used for weak PPS measurements is broader than the class of meters appropriate for weak standard measurements. For
instance, meters with commuting F and R (and, in particular, with F = R) cannot be used for standard measurements, but
they can be used forweak PPSmeasurements [cf. Eqs. (2.41) and (2.56)]; this point is discussed inmore details in subsequent
sections. Moreover, the terms involving Im Aw are proportional to a factor characterizing the classical correlation between F
and R. This correlation provides an independent source of enhancement in addition to the amplification due toAwmentioned
above [90], as discussed in detail in subsequent sections.

Experiments on weak PPS measurements have involved various interesting applications, all of them being related to
unusual weak values. In particular, such measurements were used to elucidate quantum retrodiction (i.e., ‘‘prediction’’
about the past) paradoxes with pre- and post-selection, such as the three-box problem [151] and Hardy’s paradox [173].
Such problems show vividly that in quantummechanics it is difficult to answer the question what is the value of a physical
quantity in the middle of a time evolution, especially for a PPS ensemble. Weak PPS measurements are very well suited to
answer such questions by two reasons. First, strongmeasurements utterly change the time evolution, and hence their results
are loosely related to the evolution in question, whereas weak measurements almost do not affect the evolution. Second,
weak values are context-independent, in contrast to the results of strong PPS measurements, as mentioned after Eq. (2.63).

Consider, for instance, the three-box problem [151]. One can ask the question, in which box the particle is located in
between the pre- and post-selection. Strong PPS measurements, being contextual, do not provide an unambiguous answer
to this question [cf. Eqs. (2.32)–(2.34)]. In contrast, in weak PPS measurements, which are not context dependent, the
‘‘weak probability’’ (Πi)w (withΠi = |i⟩⟨i|) is determined uniquely for each state |i⟩. In particular, consider the above case,
when the pre- and post-selected states are Eqs. (2.28) and (2.29), respectively. In view of paragraph d in Section 2.5.2 and
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Fig. 5. (Color online). Schematic diagram of Hardy’s gedanken experiment. The setup consists of a pair of overlapping Mach–Zehnder interferometers
(MZI). In each MZI, there is an arm, overlapping with the other MZI, and a non-overlapping arm. If the arms have the right lengths, in the absence of the
other particle, the electron (positron) entering the MZI, as shown in the figure, can only emerge towards the detector C− (C+). When both particles enter
the setup simultaneously, the presence of one of them in an overlapping armdisturbs themotion of the other particle—the same effect as in interaction-free
measurements; as a result, the latter particle may trigger the corresponding detector D+ or D− . Assuming the existence of ‘‘realistic trajectories’’ leads to
Hardy’s paradox, as follows. Quantum mechanics predicts a nonzero probability of simultaneous triggering D+ and D− . One should infer that in this case
both electron and positron have gone through the overlapping arms. However, this is impossible due to the fact that, when traveling along the overlapping
arms, electron and positron should meet in the annihilation area and destroy each other. The figure is reprinted from Ref. [174].

Eqs. (2.32) and (2.33), we obtain that

(Π1)w = (Π2)w = 1. (2.80)

Moreover, Eq. (2.80) and the normalization condition (2.64), which becomes now (Π1)w + (Π2)w + (Π3)w = 1, yield

(Π3)w = −1. (2.81)

Thus, the outcomes (2.80) of weak PPS measurements are consistent with the paradoxical results (2.32) and (2.33), rather
than with Eq. (2.34). The outcome (2.81) for box 3 is no less paradoxical, since it is a negative weak probability and hence
an unusual weak value. The results (2.80) and (2.81) were verified experimentally in Ref. [86].

Hardy’s paradox is a contradiction between classical reasoning and the outcome of measurements on an electron and a
positron in a pair of overlapping Mach–Zehnder interferometers (MZI) [173]. It is a variation on the concept of interaction-
free measurements [175]. The scheme of Hardy’s gedanken experiment and a description of Hardy’s paradox are given in
Fig. 5. In the case of interest, when the detectors D+ and D− are triggered simultaneously, the joint probabilities of different
paths taken by the two particles in the interferometers can be obtained with the help of weak PPS measurements [176].
Namely, let Pijw denote the weak probability that the positron and electron go through the arms i and j, respectively. Here
i, j = O,N, where O (N) corresponds to the overlapping (non-overlapping) arm of the respective MZI. Then the theory
predicts that [176]

POOw = 0, PONw = PNOw = 1, PNNw = −1. (2.82)

Here the values of the three latter probabilities are paradoxical. As in the three-box problem, two of these probabilities equal
one, whereas the third probability is negative. Eq. (2.82) was verified in experiments on photons performed in Refs. [91,92].

An important feature of the experiments [91,92] on Hardy’s paradox is that there the authors performed joint weak
measurements, i.e., obtained weak values of two-particle variables, which are products of one-particle variables. These
measurements were performed by two different methods: by calculating the correlations between the pointer variables for
the two photons [91] and by using an entangled state of the two qubits (the photon polarizations) comprising themeter [92].
There is also a proposal of performing a joint weak PPS measurement of two qubits with a one-qubit meter, using trapped
ions [130]. Weak PPS measurements of multiparticle observables can have important applications in the future, e.g., for the
probing and characterization of one-way quantum computing, which involves pre- and post-selected multiparticle states,
such as cluster states [44–49].

Furthermore, the weak-value approach was employed to elucidate the complementarity between wave and particle
behavior in Young’s double-slit experiment [89]. The measured weak value of the momentum-transfer distribution took
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both positive and negative values. As a result, this distribution was shown to be compatible with two conflicting claims
concerning the complementarity [177,178]. Recently, weak PPS measurements were applied to obtain information on the
wavefunction of a quantumparticle [101,102]. In particular, the proposal in Ref. [111]was realized in Ref. [101], whereweak
PPS measurements were used to obtain average trajectories of single photons in a double-slit interferometer. In Ref. [102],
the transverse spatial wavefunction of a single photon was directly measured with the help of weak PPS measurements.
Lundeen et al. [102] also showed how their technique can be extended for directly measuring the quantum state of an
arbitrary quantum system.

The shift of the pointer distribution due to weak PPS measurements (see Sections 2.4.1, 2.4.2 and 9.2) in the cases when
the weak value is unusual can result in both superluminal propagation and slow light, as was demonstrated experimentally
in Refs. [84,85,88]; see also discussions in [76,114,116]. Applications of weak values to optical communications were
discussed in Refs. [84,85,119]. Moreover, weak values are closely related [116] to the method of measuring the tunneling
time, which involves the so called ‘‘Larmor time’’ (a recent review on the tunneling time and superluminality can be found
in Ref. [179]).

As mentioned above, one of the most important applications of weak PPS measurements is strong amplification of the
measurement result in comparison to standard measurements. In particular, this amplification allows one to measure very
small values of the coupling strength γ and thus to obtain information on weak effects responsible for the system–meter
coupling, as, e.g., small differences in the indices of refraction [80,82,83,85,88,96], the spin Hall effect of light [90], a mirror
tilt [21,93,94,99,100], and an Ising-type spin coupling [81]. In Ref. [95] an amplification factor of 80 was achieved in optical
frequency measurements; the method developed there can be used in high-resolution relative frequencymetrology and for
laser locking.

In the early studies, complexweak values attractedmuch less attention than realweak values. In particular, until recently,
weak PPSmeasurementswere performedonlywith realweak values. However, in recent years the situation began to change.
Jozsa [124] revealed theoretically a term proportional to Im Aw in the coordinate deflection. Moreover, recently a number
of experiments using imaginary weak values were performed [21,90,93–95,99,100]. In such experiments, the amplification
is enhanced in comparison to experiments with real weak values. Namely, in experiments with imaginary weak values,
the total amplification coefficient is a product of the (proper) amplification coefficient due to a large weak value and the
enhancement factor due to correlation between the meter variables F and R (see the discussion in Sections 6.7 and 8.2).
The total amplification does not increase the SNR due to the quantum noise, but can strongly reduce the effects of technical
errors [90] (see Section 6.10).

Using imaginary weak values, very precise measurements were made. For example, Hosten and Kwiat [90] detected
a light-beam displacement of 1 angstrom by amplifying it by a factor of 104, whereas Dixon et al. [21] measured a
mirror-actuator travel of ∼10 fm and the mirror angular deflection of 400 frad. Turner et al. [99] adjusted the scheme of
Ref. [21] for the use in torsion balance experiments in gravity research; they demonstrated picoradian accuracy of deflection
measurements. Hogan et al. [100] included a folded optical lever into the scheme of Ref. [21] and achieved a record angle
sensitivity of 1.3 prad/

√
Hz; their scheme is potentially applicable for gravitationalwave detection. Brunner and Simon [134]

showed that in measuring small longitudinal phase shifts, the use of imaginary weak values has the potential to outperform
standard interferometry by several orders of magnitude, whereas standard interferometry greatly outperforms weak PPS
measurements involving real weak values; see also the discussion in Ref. [143].

Unfortunately, for a given value of the coupling strength γ , the amplification cannot bemade arbitrarily strong, since the
linear-response results, such as Eqs. (2.40), (2.41), and (2.54), fail when |γ Aw| becomes sufficiently large [cf. the condition
(2.45)]. It would be of interest to develop a theory of weak PPS measurements which holds to all orders in γ Aw , since such a
theory would allow one to performmeasurements under optimal conditions, where themagnitude of the pointer deflection
is close to the maximum value. Such a theory is developed in subsequent sections.

2.8. General theory of weak PPS measurements

In Section 3 and henceforth we consider PPS and standard measurements of arbitrary strength. The emphasis is made
on developing a general theory of weak PPS measurements (see especially Section 6 and henceforth). The present theory of
weak PPS measurements extends the existing theory in several respects. In particular,

(i) we derive results valid for any value of γ Aw ,
(ii) we obtain formulas for arbitrarymeter variables F and R,
(iii) we consider arbitrary, pure and mixed, initial states of the system and the meter,
(iv) we discuss both the average and the distribution of the pointer variable R.

Our main results include the following:

(1) We derive a simple and general formula for the average value of themeter pointer deflection, which holds for all orders
in the weak value and for arbitrary system and meter.

(2) We reveal that there are three qualitatively different regimes of weak PPS measurements. In addition to the AAV
linear-response regime, there exist also the inverted region (the limit of very large weak values) and the intermediate,
strongly-nonlinear regime.
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(3) The optical experiment reported in Ref. [22] is interpreted quantum-mechanically as a weak PPS measurement in the
inverted region.

(4) The optimal conditions for weak PPS measurements are obtained in the strongly-nonlinear regime, since then the
pointer deflection is maximized, and correspondingly the ensemble size is minimized.

(5) The maximal pointer deflection is independent of the coupling strength γ , being typically of the order of the initial
uncertainty of the pointer R.

(6) We propose procedures for measuring the coupling strength γ and the weak value Aw in the nonlinear regime.
(7) The amplification due to weak PPS measurements is generally a product of the proper amplification, which increases

the quantum SNR in post-selected systems, and the enhancement which does not change the quantum SNR.
(8) The measurement enhancement arises due to the correlation between the meter variables F and R. Moreover, we find

that generally the canonically conjugate variables q and p are correlated whenever the phase of the state in the p or q
representation is nonlinear in the corresponding variable.

(9) In the case of a mixed preselected state, in addition to Aw , an associated weak value A(1,1)w is required to describe weak
PPS measurements.

(10) Beyond the linear response, weak PPSmeasurements significantly depend on the average value F̄ of themeter variable
F . In particular, the optimal regime is significantly different for |F̄ | . 1F and |F̄ | ≫ 1F , the amplification being
proportional to F̄ for F̄ ≫ 1F .

(11) We identifiedmeterswhich are optimal or just efficient forweak standard andweak PPSmeasurements. Allmeters that
are efficient for weak standard measurements are also efficient for weak PPS measurements; however, the converse is
not true.

(12) For continuous-variable meters, we obtain the shift of the maximum of the pointer distribution for a broad class of
initial states of the meter, and not only for a real Gaussian state, as was done previously.

The general formulas for different regimes ofweak PPSmeasurements, obtained in the present paper, are listed in Table 3.
Approaches to weak PPS measurements beyond the linear response, resembling some aspects of the present

nonperturbative theory, were developed for the special case of a continuous-variable meter in Refs. [133,141,142].

3. Theory of standard measurements of arbitrary strength

Here we provide a general theory of standard measurements of arbitrary strength. Moreover, weak standard measure-
ments are considered in detail.

3.1. General formulas for standard measurements

Before we consider PPS measurements, let us discuss weak measurements without post-selection. Here we extend the
results of Section 2.2 to the case of any meter observables F and R and of any, generally mixed, initial states of the system
and the meter. As mentioned above, such measurements are performed using the standard (von-Neumann-like) scheme of
quantummeasurements (see Fig. 1). We assume that the coupling of the system and the meter is given by the Hamiltonian
(2.8), whereas we neglect the free Hamiltonians of the system and the meter. We also assume a general product initial
condition: at t = 0 the state of the systemand themeter isρ⊗ρM, where the systemandmeter statesρ andρM, respectively,
can be pure or mixed. The average value of a meter observable R (the ‘‘pointer’’) at any time t ≥ tf is given by

R̄f = Tr [(IS ⊗ R̂)U(ρ ⊗ ρM)UĎ
], (3.1)

where R̂ is the Hermitian operator representing the observable R, U is given by Eq. (2.10), and IS is the identity operator for
the system.

It can be seen from Eq. (3.1) that, irrespective of the measurement strength γ , R̄f in Eq. (3.1) equals the initial value
R̄ = Tr (R̂ρM), i.e., a measurement on the system cannot be performed, whenever

[F̂ , R̂] = 0 or [F̂ , ρM] = 0. (3.2)

Indeed, the first equality in Eq. (3.2) implies that [(IS ⊗ R̂),U] = 0, so that Eq. (3.1) yields

R̄f = Tr [U(IS ⊗ R̂)(ρ ⊗ ρM)UĎ
] = Tr [(IS ⊗ R̂)(ρ ⊗ ρM)UĎU] = Tr [(IS ⊗ R̂)(ρ ⊗ ρM)] = Tr ρ Tr (R̂ρM) = R̄. (3.3)

Moreover, let us show that R̄f = R̄ also in the case when the second equality in Eq. (3.2) holds. Now the meter initial state is
either an eigenstate of F̂ or,more generally,ρM =


F λF |F⟩⟨F |. Here |F⟩ is an eigenstate of F̂ corresponding to the eigenvalue

F , so that F̂ |F⟩ = F |F⟩. Then Eq. (3.1) yields

R̄f =


F

λF Tr [(IS ⊗ R̂)U(ρ ⊗ |F⟩⟨F |)UĎ
] =


F

λF Tr (ŨρŨĎ) Tr (R̂|F⟩⟨F |)

=


F

λF Tr (R̂|F⟩⟨F |) = Tr (R̂ρM) = R̄. (3.4)
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Herewe took into account that nowEq. (2.10) yieldsU = Ũ⊗IM with Ũ = exp(−iγ F Â), whereas Tr (ŨρŨĎ) = Tr (ρŨĎŨ) =

Tr ρ = 1. Eq. (3.2) is equivalent to the statement that a necessary condition for standard measurements to be possible is

[F̂ , R̂] ≠ 0 and [F̂ , ρM] ≠ 0. (3.5)

3.2. Weak standard measurements

Eq. (3.1) can be expanded in powers of γ , using the familiar expansion

UĎCU = C + iγ [D, C] +
i2γ 2

2!
[D, [D, C]] + · · · (3.6)

with D = Â ⊗ F̂ and C = IS ⊗ R̂. As a result, we obtain that the average pointer deflection is given by

R̄f − R̄ = iγ Ā [F , R] +
i2γ 2 A2

2!
[F , [F , R]] + . . . , (3.7)

where Ā = Tr (Âρ), R̄ = Tr (R̂ρM), [R, F ] = Tr ([R̂, F̂ ]ρM), etc.
For weak coupling, i.e., a small γ , we can retain in Eq. (3.7) only the terms up to the first order in γ , yielding

R̄f − R̄ = γ Ā Im [R, F ]. (3.8)

Eq. (3.8) is an extension of the AAV result (2.16) for weak standard measurements to an arbitrary pair of meter variables R
and F and arbitrary initial states of the system and the meter. For canonically conjugate meter variables, [R̂, F̂ ] is a constant,
and the higher-order terms neglected in Eq. (3.8) vanish, as follows from Eq. (3.7), i.e., Eq. (3.8) is exact. An example of
this case is provided by Eq. (2.16). However, generally the higher-order terms do not vanish, and Eq. (3.8) holds only for
sufficiently weak measurements.

Eq. (3.8) implies that a weak standard measurement can be performed if and only if

[R, F ] ≠ 0. (3.9)

This necessary and sufficient condition can be shown to bemore restrictive than the necessary condition (3.5), as one should
expect.

3.3. Optimal and efficient meters for weak standard measurements

Let us estimate the magnitude of the average pointer deflection in Eq. (3.8). According to the Heisenberg–Robertson
uncertainty relation [180],

1F 1R ≥ |[R, F ]|/2, (3.10)

where1R and1F are the uncertainties of R and F in the state ρM, so that Eq. (3.8) implies

|R̄f − R̄| ≤ 2|γ Ā|1F 1R. (3.11)

As follows from Eq. (3.11), the upper bound for the magnitude of the average pointer deflection for given |γ Ā|,1F , and
1R is

|R̄f − R̄|max = 2|γ Ā|1F 1R. (3.12)

This upper bound is achieved when |[R, F ]| is maximum for given 1F and 1R, that is, when the Heisenberg–Robertson
uncertainty relation in Eq. (3.10) becomes an equality,

|[R, F ]| = 21F 1R. (3.13)

Meters satisfying the condition (3.13) are optimal for weak standard measurements. The class of such meters includes, in
particular, meters where F and R are canonically conjugate and the state is a Gaussian, which is real or has a linear phase
[cf. Eqs. (2.37)–(2.39)]. A qubit meter can be also optimal for weak standard measurements, as shown in Section 8.3.

More generally, we say thatmeters are efficient for weak standardmeasurements, when the variables F and R and the initial
state ρM are chosen such that both sides of the Heisenberg–Robertson uncertainty relation (3.10) are of the same order,

|[R, F ]| ∼ 1F 1R. (3.14)

Such meters provide a pointer deflection whose magnitude is of the order of the upper bound,

|R̄f − R̄| ∼ |γ Ā|1F 1R. (3.15)
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Moreover, we determine theminimum sizeN0 of the ensemble required for weakmeasurements without post-selection.
For this purpose, we require that the squared shift of the maximum of the distribution of the sum of N0 pointer values be
equal to the variance of this distribution, [N0(R̄f − R̄)]2 = N01R2, yielding

N0 =


1R

R̄f − R̄

2

(3.16)

or, in view of Eqs. (3.8) and (3.10),

N0 =


1R

γ Ā|[R, F ]|

2

. (3.17)

The Heisenberg–Robertson uncertainty relation (3.10) sets the lower bound on N0 in Eq. (3.17) for given |γ Ā| and1F ,

N0 ≥ (2γ Ā1F)−2. (3.18)

The lower bound for the ensemble size in Eq. (3.18),

N0 = (2γ Ā1F)−2, (3.19)

is achieved for meters optimal for weak standard measurements [i.e., meters satisfying Eq. (3.13)], as one would expect.
More generally, for efficient meters, Eq. (3.14), the ensemble size is of the order of the lower bound,

N0 ∼ (γ Ā1F)−2. (3.20)

4. Theory of pre- and post-selected measurements of arbitrary strength

In this section we provide a general theory of PPS measurements, which holds for an arbitrary measurement strength.
We consider PPS ensembles with a single pure post-selected state. An extension of this theory to the case of a general post-
selection measurement is given in Section 14.

4.1. General formulas for PPS measurements

Asdiscussed in Section 2.3.4, the pre- andpost-selected (conditional) average R̄s is obtained in experiments by performing
ameasurement of the pointer variable R for eachmember of an ensemble of systems prepared (preselected) in the same state
ρ and then averaging only the results for the systems obtained (post-selected) in the state |φ⟩ after a projectivemeasurement
at t ≥ tf. Fig. 3 shows a schematic diagram illustrating pre- and post-selected quantum measurements.

The joint probability that after a measurement the system is in the state |φ⟩ and the meter is in an eigenstate |R⟩ of the
operator R̂ is

PφR = Tr [(Πφ ⊗ΠR)ρf ]. (4.1)

Here

Πφ = |φ⟩⟨φ|, ΠR = |R⟩⟨R|, (4.2)

ρf = U(ρ ⊗ ρM)UĎ, (4.3)

where ρM is the initial state of the meter. By Bayes’ theorem, the probability to obtain the state |R⟩ provided the system is
in the state |φ⟩ is given by

PR|φ =
PφR

Pφ

=
Tr [(Πφ ⊗ΠR)ρf ]

⟨Πφ⟩f
≡ Φs(R), (4.4)

where Pφ = ⟨Πφ⟩f is the probability to find the system in the state |φ⟩ at t ≥ tf,

Pφ =


R

PφR = Tr [(Πφ ⊗ IM)ρf ] ≡ ⟨Πφ⟩f . (4.5)

Here in the second equality we used the completeness relation for the meter,
R

ΠR = IM, (4.6)

where IM is the identity operator for the meter. The average value of the pointer variable R at t ≥ tf conditioned (post-
selected) on the measurement of the system in the state |φ⟩ is given by

R̄s =


R

RPR|φ, (4.7)
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where R is the eigenvalue of the Hermitian operator R̂ corresponding to the eigenstate |R⟩. Finally, inserting Eq. (4.4) into
Eq. (4.7) yields that R̄s is given by the normalized cross-correlation function

R̄s =
⟨ΠφR⟩f
⟨Πφ⟩f

, (4.8)

where the cross-correlation function ⟨ΠφR⟩f is an average at t ≥ tf,

⟨ΠφR⟩f = Tr [(Πφ ⊗ R̂)ρf ]. (4.9)
For definiteness, we assumed above that the variable R has a discrete spectrum; when the spectrum of R is continuous,
the sums in Eqs. (4.5)–(4.7) should be replaced by integrals over R. Note that R̄s is real, since it is an average of a physical
observable; mathematically, this follows from Eq. (4.8), taking into account that R̂ is Hermitian.

The quantity of direct physical interest is the average pointer deflection (R̄s − R̄) rather than the average pointer value
R̄s itself. On substituting R̂ → R̂c = R̂− R̄, where the operator R̂c corresponds to the ‘‘centered’’ quantity Rc = R− R̄, i.e., the
fluctuating part of R, Eq. (4.8) yields the following expression for the pointer deflection,

R̄s − R̄ =
⟨ΠφRc⟩f

⟨Πφ⟩f
. (4.10)

Eqs. (4.8) and (4.10) are the starting point for the present theory of PPSmeasurements. These equations are very similar, but
one of them can be more convenient than the other for a specific application.

A necessary condition for a PPS measurement to yield a nonvanishing pointer deflection is
1F ≠ 0. (4.11)

Indeed, the states ρM with 1F = 0 are eigenvectors of F̂ or mixtures of eigenvectors of F̂ with the same eigenvalue F̄ . For
such cases F̂ρM = ρMF̂ = F̄ρM, and Eqs. (4.8)–(4.9) yield the zero pointer deflection, R̄s − R̄ = 0, i.e., PPS measurements are
impossible.

In contrast to standard measurements, PPS measurements are generally possible even when the condition (3.2) holds.
Hereafter, meters with [R, F ] ≠ 0 are called ‘‘standard’’, since such meters are suitable for weak standard measurements
[cf. Eq. (3.8)]. Correspondingly, we call meters with [R, F ] = 0 ‘‘non-standard’’. Examples of non-standardmeters aremeters
with commuting F̂ and R̂orwith1R = 0. As shownbelow, forweak PPSmeasurements, non-standardmeters provide almost
the same information as standard ones.

It may look paradoxical that meters with commuting F̂ and R̂ are suitable for PPS measurements. Indeed, in this case
R̂ commutes with the coupling Hamiltonian (2.8) and hence is a constant of motion. As a result, R̄f = R̄, and standard
measurements are impossible [cf. the first equality in Eq. (3.2)]. However, the post-selection makes the average pointer
value proportional to the correlation function ⟨ΠφR⟩f [see Eq. (4.8)], which generally does change under evolution with the
Hamiltonian (2.8), for any F , unless |φ⟩ is an eigenstate of Â.

4.2. Gauge invariance of PPS measurements

Herewe discuss useful invariance properties of PPSmeasurements (with arbitrarymeasurement strength) under unitary
‘‘gauge’’ transformations of the system and the meter.

4.2.1. System transformations
Eq. (4.10) shows that R̄s − R̄ is independent of R̄. In contrast, R̄s − R̄ generally depends on F̄ . However, it is easy to see

that R̄s in Eqs. (4.8) and (4.10) is invariant under a ‘‘gauge’’ transformation

F̂ → F̂ ′
= F̂ − F0, (4.12)

where F0 is a real number, if simultaneously the pre- and post-selected states undergo unitary transformations,

ρ → exp(−iγ ′F0Â) ρ exp(iγ ′F0Â), (4.13)

|φ⟩ → |φ′
⟩ = exp(iγ ′′F0Â) |φ⟩, (4.14)

where γ ′ and γ ′′ are real numbers satisfying γ ′
+ γ ′′

= γ . Note that one can choose γ ′
= γ (or γ ′′

= γ ) and γ ′′
= 0

(γ ′
= 0), leaving thus |φ⟩ (or ρ) without a change. In particular, for γ ′

= γ and γ ′′
= 0 the transformation (4.13)–(4.14)

reduces to the change of the initial state,

ρ → exp(−iγ F0Â) ρ exp(iγ F0Â). (4.15)
The transformation (4.12)–(4.14) allows one to change F̄ according to

F̄ → F̄ ′
= F̄ − F0, (4.16)

where F0 is an arbitrary real number.
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4.2.2. Meter transformations
Consider the invariance of the average pointer deflection under a ‘‘gauge’’ transformation of the meter. It is easy to see

that Eq. (4.10) yields that in PPS measurements of arbitrary strength the pointer deflection is invariant,

R̄s − R̄ = R̃s − R̃, (4.17)

under the following class of transformations of the meter initial state and the pointer variable,

ρM → ŨM ρM ŨĎ
M, R̂ →

ˆ̃R = ŨĎ
M R̂ ŨM + C, (4.18)

where ŨM is a unitary operator commuting with F̂ and C is a real constant. When C = 0, then not only R̄s − R̄ but also R̄s and
R̄ individually are invariant under the change (4.18).

For example, if F = p and R = q, one can use in Eq. (4.18) operators of the form

ŨM = exp[−iζ0(p)], (4.19)

where ζ0(p) is an arbitrary real function of p. The operator (4.19) changes the phase of the meter initial state in the
momentum representation. In this case, Eq. (4.18) implies the following change of the pointer,

q → R̃ = q + ζ ′

0(p)+ C, (4.20)

where the prime denotes the differentiation with respect to p.

5. Effects of the system and meter Hamiltonians on quantummeasurements

In the previous sections, we have neglected the system and the meter Hamiltonians, HS and HM. Let us now discuss the
effects of these Hamiltonians on PPS and standard measurements. The results in this section hold for PPS and standard
measurements of arbitrary strength.

We take into account the possibility that the Hamiltonians during the time of the system–meter interaction may differ
from the Hamiltonians after the interaction, so that HS(t) = HS1 and HM(t) = HM1 for 0 < t < tf, whereas HS(t) = HS2 and
HM(t) = HM2 for t > tf. These assumptions include, in particular, the case of time-independent Hamiltonians,

HS1 = HS2 ≡ HS, (5.1)
HM1 = HM2 ≡ HM, (5.2)

A measurement scheme with Hi1 ≠ Hi2 (i = S,M)was discussed in Ref. [149].
When HS1 and/or HM1 is nonzero, the correlation of the system and the meter is performed by means of the Hamiltonian

(2.8) transformed into the interaction picture. In this paper, we consider only the cases when the coupling Hamiltonian (2.8)
is the same in the Schrödinger and interaction pictures. This holdswhenHS andHM commutewith the coupling Hamiltonian
(2.8), so that in the interval (0, tf), HS(t) = HS1 [HM(t) = HM1] commutes with Â (F̂ ) or vanishes,

[HS1, Â] = 0, [HM1, F̂ ] = 0. (5.3)

However, for t > tf, the Hamiltonians HS(t) = HS2 and HM(t) = HM2 can be arbitrary.
The first relation in Eq. (5.3) ensures that the measured observable is A and not some other quantity; measurements

satisfying this relation are often called quantum nondemolition measurements [3]. The second relation in Eq. (5.3) is
assumed for convenience; when it is violated, the input meter variable can deviate from F and depend on time, which
complicates calculations.

Instead of assuming the conditions (5.3), one can require that the coupling is instantaneous (impulsive),

tf − ti → 0. (5.4)

Then the effects of the Hamiltonians HS1 and HM1 are negligibly small.
Without loss of generality, we will assume below that

ti = 0. (5.5)

This means that the ‘‘initial’’ states ρ and ρM are the states of the system and meter immediately before the coupling
Hamiltonian in Eq. (2.8) is switched on.

5.1. Effects of the Hamiltonians on pre- and post-selected measurements

First, consider PPS measurements. Assume that the post-selection is made at tS > tf and the measurement of the meter
is performed at tM > tf. Then the effects of the system and meter Hamiltonians are taken into account by the change
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U → (US ⊗ UM)U (5.6)

in the general formulas for PPS measurements in Section 4.1, especially in Eqs. (4.3), (4.5), and (4.8)–(4.10). In Eq. (5.6), we
use the notation

US = exp[−iHS2(tS − tf)] exp[−iHS1tf], (5.7a)
UM = exp[−iHM2(tM − tf)] exp[−iHM1tf]. (5.7b)

Instead of changing U , one can equivalently make the following replacements. A nonzero system Hamiltonian can be
accounted for by changing the initial and final states of the system,

ρ → US1 ρ UĎ
S1, |φ⟩ → UĎ

S2|φ⟩, (5.8a)

whereas a nonzero meter Hamiltonian can be accounted for by changing the meter state and the pointer variable,

ρM → UM1 ρM UĎ
M1, R̂ → UĎ

M2R̂ UM2. (5.8b)

The unitary operators US1, US2, UM1, and UM2 in Eqs. (5.8) are not unique. They only should be such that US1 (UM1) commutes
with Â (F̂ ) and

US2US1 = US, UM2UM1 = UM. (5.9)

Thus, there is a freedom in selecting US1, US2, UM1, and UM2, which is a convenient feature facilitating considerations of the
Hamiltonian effects.

5.2. Effects of the Hamiltonians on standard measurements

For standard measurements, it is easy to see that the system Hamiltonian does not affect the measurement result in
the general formula (3.1), at least, in the case of quantum nondemolition measurements [the first relation in Eq. (5.3)]. The
effects of the meter Hamiltonian are taken into account by the change

U → (IS ⊗ UM)U (5.10)

in Eq. (3.1). Instead of changing U , a nonzero meter Hamiltonian can be accounted for by changing the meter state and the
pointer variable, as shown in Eq. (5.8b).

5.3. Special cases for the meter Hamiltonian

Let us consider in more detail the effects of the meter Hamiltonian. The results shown below hold both for PPS
and standard measurements, irrespective of the measurement strength. The effects of the system Hamiltonian on PPS
measurements can be similarly considered.

In the general case,whenHM2 does not necessarily commutewith F̂ , the change of the pointer variable in Eq. (5.8b) cannot
be eliminated. Then itmay be convenient to include all the effects of themeterHamiltonian into the effective pointer variable
by the relation

R̂ → R̂(tM) = UĎ
MR̂ UM, (5.11)

where R(t) is the quantity R in the Heisenberg representation, while ρM is left unchanged [see Eq. (5.8b) with UM1 = IM].
Consider now several simple cases.

When the meter Hamiltonian is time-independent, Eq. (5.2), then Eq. (5.7b) simplifies to

UM = exp(−iHMtM). (5.12)

In this case the operator R̂(t) obeys the equation

∂ R̂(t)
∂t

= i[HM, R̂(t)] (5.13)

with the initial condition

R̂(0) = R̂. (5.14)

An alternative simplification exists in the special case, when not only HM1 but also HM2 commutes with F̂ ,

[HM2, F̂ ] = 0. (5.15)

In this case, the effect of the meter Hamiltonian can be taken into account without a change of R, by changing only ρM in
the formulas of the present theory. Indeed, now, UM in Eq. (5.7b) and hence UM2 in Eq. (5.9) commute with F̂ . Hence, we
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can choose in Eq. (5.9) UM1 = UM and UM2 = IM. Then Eq. (5.8b) yields that R is unchanged, whereas ρM is changed by the
relation

ρM → ρM(tM) = UM ρM UĎ
M. (5.16)

Here ρM(t) is the meter state in the Schrödinger representation; the state ρM(tM) would be obtained at the moment tM of
the measurement of the meter if the system–meter coupling were absent.

When the condition (5.2) holds, Eq. (5.16) is independent of tf [cf. Eq. (5.12)]. This means that now, as far as the
measurement is concerned, it is not important in which part of the interval (0, tM) the coupling (2.8) is nonzero.

Finally,when themetermeasurement is instantaneous (impulsive), tM, tf → 0, themeasurement results are independent
of the meter Hamiltonians HM1 and HM2, since then UM → 1 [see Eq. (5.7b)].

As shown in this section, if necessary, Hamiltonian effects can be easily taken into account in the theory ofmeasurements
where the Hamiltonians are neglected, at least, in the case (5.3). Therefore below, as a rule, we neglect the Hamiltonians. An
exception is Section 8.2.4, where we discuss some applications of the general theory developed in this section.

6. Nonlinear theory of weak pre- and post-selected measurements

Using Eqs. (4.8) and (4.4) one can try to obtain expressions both for the average pointer value and for the distribution
of the pointer values that hold for an arbitrary coupling strength γ . However, such expressions can be obtained in a closed
analytical form only for some simple special cases (see examples in Section 11 and Refs. [80–82,84,85,87,89,104,113,115,
119,145,181]). The resulting expressions significantly differ for different cases. Moreover, they are rather complicated and
usually can be analyzed only numerically. In contrast, the linear-response results discussed above in Section 2.4 (see also
Section 6.5.1) are simple and general. However, they hold only for sufficiently small values of γ Aw . Fortunately, as shown
below, it is possible to obtain for weak PPS measurements simple and general expressions, which involve Aw explicitly and
hold for arbitrarily large values of |γ Aw|.

In this section we develop a nonperturbative theory of weak PPS measurements for the case of a pure preselected state.
This theory serves as a basis for discussion of many aspects of weak PPSmeasurements in the following sections. Extensions
of this theory to the cases of a mixed preselected state and a general post-selection measurement are given in Sections 7
and 14.

6.1. Expansions in the coupling parameter

To obtain the description of weak PPS measurements for arbitrary values of γ Aw , we expand the numerator and
denominator of Eq. (4.10) in the parameter γ , as follows.

From Eq. (4.9) with R replaced by Rc , we obtain that

⟨ΠφRc⟩f = Tr [UĎCU(ρ ⊗ ρM)] (6.1)

with C = Πφ ⊗ R̂c . Then we use the expansion (3.6), where consecutively embedded commutators are expanded by the
formula (see Appendix A)

[D, . . . [D,  
n

C ] . . .]
n

=

n
k=0

(−1)k
n
k


Dn−kCDk, (6.2)

to obtain the formula

⟨ΠφRc⟩f =

∞
n=1

inγ n

n!

n
k=0

(−1)k
n
k


(AkρAn−k)φφ F n−k Rc F k, (6.3)

where the overbar stands for the average over ρM, so that Ō = Tr (ÔρM) for a meter operator Ô. The quantity ⟨Πφ⟩f is
calculated similarly to Eq. (6.3) with C = Πφ ⊗ R̂c replaced by C = Πφ ⊗ IM, yielding

⟨Πφ⟩f =

∞
n=0

inγ n F n

n!

n
k=0

(−1)k
n
k


(AkρAn−k)φφ . (6.4)

For completeness, we show also the expansion of ⟨ΠφR⟩f obtained similarly to Eq. (6.3),

⟨ΠφR⟩f =

∞
n=0

inγ n

n!

n
k=0

(−1)k
n
k


(AkρAn−k)φφ F n−k R F k. (6.5)

An advantage of using Eq. (4.10) instead of Eq. (4.8) is that in the expansion (6.3), in contrast to Eq. (6.5), the termwith n = 0
vanishes.
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In the next section we will consider the important case when the system is preselected in a pure state |ψ⟩, so that
ρ = |ψ⟩⟨ψ |, whereas the meter state ρM is generally mixed (the case of a mixed preselected state is discussed in Section 7).
In this case Eqs. (6.3) and (6.4) yield that

⟨ΠφRc⟩f = |⟨φ|ψ⟩|
2
{2γ Im(RcFAw)+ γ 2

{FRcF |Aw|
2
− Re[RcF 2(A2)w]}

− γ 3Im[F 2RcFAw(A2)∗w + RcF 3(A3)w/3]} + . . . , (6.6a)

⟨Πφ⟩f = |⟨φ|ψ⟩|
2
{1 + 2γ F̄ Im Aw + γ 2F 2[|Aw|

2
− Re (A2)w] − γ 3F 3 Im [Aw(A2)∗w + (A3)w/3]} + . . . . (6.6b)

Here (An)w = (An)φψ/⟨φ|ψ⟩ [cf. Eq. (2.36)] and the dots denote the terms of fourth and higher orders in γ .

6.2. Validity conditions for weak PPS measurements

As mentioned above, weak PPS measurements in the AAV (linear-response) regime are limited by the two conditions
in Eqs. (2.44) and (2.45). However, only the condition (2.44) is necessary for the measurements to be weak, whereas the
stronger condition (2.45) is required to ensure the linearity of the theory in γ . The condition (2.45) limits the magnitude
of Aw or, equivalently, bounds from below the overlap |⟨φ|ψ⟩|. Below we will show that under a condition ensuring the
weakness of PPS measurements, simple general formulas can be obtained which hold for arbitrary values of Aw .

The crucial point that allows us to treat weak PPS measurements nonperturbatively in Aw is the fact that, in the limit
⟨φ|ψ⟩ → 0, the terms of zero and first orders in γ vanish in Eqs. (6.6), whereas higher-order terms survive. Therefore
for a sufficiently weak system–meter coupling, one can neglect the third- and higher-order terms in Eqs. (6.6), whereas
the second-order terms should be retained, since they may dominate the zero- and first-order terms, at least, in the most
interesting case |⟨φ|ψ⟩| ≪ 1. As a result, for this situation of weak PPS measurements, we are able to obtain a simple
analytical formula valid for arbitrarily large weak values, as described in Section 6.4.

Herewederive validity conditions forweak PPSmeasurements. For this purpose,we estimate the terms in the expansions
(6.6). To obtain the validity conditions in a simple form, we will make several simplifying assumptions, which hold, at least,
for some typical cases.

We begin with the expansion (6.6b). The magnitudes of nth-order terms in Eq. (6.6b) are of the order of

|γ n (Ak)φψ (An−k)φψ F n| (0 ≤ k ≤ n), (6.7)

k being an integer. In weak PPS measurements |Aφψ | is typically sufficiently large. For simplicity, we assume that |Aφψ | is so
large that

|(An)φψ | . |Aφψ |
n. (6.8)

This holds, e.g., when |Aφψ | ∼ ∥A∥, where the norm ∥A∥ of Â is the maximum of the magnitudes of the eigenvalues of Â. (Of
course, the latter remark applies only to quantities Awith a finite ∥A∥. An extension of this remark to unbounded quantities
is out of the scope of the present paper.) We also assume that

|F n
c | . (1F)n, (6.9)

where Fc = F − F̄ . Eq. (6.9) implies that

|F n| . (|F̄ | +1F)n. (6.10)

Using Eqs. (6.7), (6.8), and (6.10), we find that the terms in Eq. (6.6b) of orders higher than two are negligibly small in
comparison with the second-order terms under the weak-coupling condition,

µ ≡ |γ Aφψ |(|F̄ | +1F) ≪ 1, (6.11)

where µ is the small parameter of the present theory.
Consider now the expansion (6.6a). The magnitudes of nth-order terms in Eq. (6.6a) differ from Eq. (6.7) only by the

replacement

F n → F kRcF n−k (0 ≤ k ≤ n). (6.12)

The estimation of the moments F kRcF n−k is simple for canonically conjugate F and R, but is rather intricate in the general
case. As shown inAppendix B, the terms in Eq. (6.6a) of orders higher than two are negligibly small under the above condition
(6.11). The assumptions used to derive this result are given in Appendix B.

The small parameter of the theory µ in Eq. (6.11) has a simple physical meaning: µ is an estimation of the exponent
γ Â⊗ F̂ of the unitary transformation (2.10). Thus the validity condition of the present theory (6.11) is a requirement for the
weakness of the unitary transformation (2.10). The condition (6.11) simplifies in two cases,

|γ Aφψ |1F ≪ 1 (|F̄ | . 1F ), (6.13a)

|γ Aφψ F̄ | ≪ 1 (|F̄ | & 1F ). (6.13b)
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6.3. Quantifying the strength of a measurement

In the experiments performed so far, the conditions were chosen in such a way that F̄ was zero, either exactly or
effectively. Here we allow for F̄ ≠ 0. To understand the effects of a nonzero F̄ , we recast the Hamiltonian (2.8) in the
form

H = g(t) Â ⊗ F̂c + g(t) F̄ Â. (6.14)

Here obviously only the first term on the right-hand side can correlate the system and the meter, whereas the second term
is responsible for a unitary transformation of the system alone. Correspondingly, the unitary transformation (2.10) splits
into two factors relating to the two types of the evolution.

The evolution due to F̄ occurs simultaneously with the evolution due to the coupling and hence affects the results of
PPS measurements, the effect of F̄ increasing with |F̄ |. In particular, weak PPS measurements are in a qualitatively different
regime for |F̄ | ≫ 1F than for |F̄ | . 1F (see Section 6.9). However, as shown below, it may be beneficial for experimentalists
that F̄ have a nonzero value, such as, e.g., |F̄ | ∼ 1F or even |F̄ | ≫ 1F .

The two conditions (6.13) ensure the weakness of the two types of evolution shown above. Thus, the small parameter of
the theory µ in Eq. (6.11) is the sum of two small parameters, which have different physical meanings. Namely,

µ0 = |γ Aφψ |1F (6.15)

quantifies the degree of correlation between the system and the meter or, in other words, the measurement strength, while

µ1 = |γ Aφψ F̄ | (6.16)

characterizes the strength of the unitary transformation of the system due to F̄ .

6.4. General nonlinear formula for the average pointer deflection

Under the condition (6.11) the terms of orders higher than two can be neglected in Eqs. (6.6), as was discussed in
Section 6.2.Moreover, the terms involving (A2)w can also be neglected in Eqs. (6.6), since, in viewof Eq. (6.8), |(A2)w| ≪ |Aw|

2

in the most interesting case |⟨φ|ψ⟩| ≪ 1, whereas for |⟨φ|ψ⟩| ∼ 1 all second-order terms are negligibly small due to the
conditions (6.8) and (6.11). Thus, for weak PPS measurements Eqs. (6.6) become

⟨ΠφRc⟩f = |⟨φ|ψ⟩|
2
[2γ Im ( RcFAw)+ γ 2 FRcF |Aw|

2
], (6.17a)

⟨Πφ⟩f = |⟨φ|ψ⟩|
2(1 + 2γ F̄ Im Aw + γ 2 F 2|Aw|

2). (6.17b)

As mentioned above, the second-order terms here generally cannot be neglected, since they dominate for sufficiently small
⟨φ|ψ⟩.

Inserting Eqs. (6.17) into Eq. (4.10), we obtain

R̄s − R̄ =
2γ Im ( RcFAw)+ γ 2 FRcF |Aw|

2

1 + 2γ F̄ Im Aw + γ 2 F 2|Aw|2
. (6.18)

The approximation (6.18) may fail when both terms in the numerator are vanishing or anomalously small or if they cancel,
exactly or approximately; then the (A2)w terms and perhaps higher-order terms [see Eq. (6.6)] should be taken into account.
However such cases are of little interest, since then R̄s − R̄ is very small.

It is easy to see that Eq. (6.18) can be recast in another form,

R̄s =
R̄ + 2γ Im ( RFAw)+ γ 2 FRF |Aw|

2

1 + 2γ F̄ Im Aw + γ 2 F 2|Aw|2
, (6.19)

which can sometimes be useful. The general nonlinear formula (6.18) [or (6.19)] is one of the main results of the present paper.
A large portion of the remainder of the paper is devoted to a discussion and to extensions of this formula.

Eq. (6.18) holds to all orders in the weak value. It is remarkable that, according to Eq. (6.18), weak PPS measurements
depend on A only through one parameter Aw (at least, for a pure preselected state). Moreover, weak PPS measurements
depend on γ and Aw through the product γ Aw . Eq. (6.18) shows that the average pointer deflection as a function of γ |Aw|

can have Lorentzian and dispersive lineshapes as well as linear combinations thereof (see also numerical calculations in
Section 12).

6.5. Regimes of weak PPS measurements

Consider the limiting cases of Eq. (6.18).
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6.5.1. Linear response
In first-order (linear in γ ) approximation, Eq. (6.18) yields the result, which we write in three equivalent forms,

R̄s − R̄ = 2γ Im ( RcFAw) (6.20a)

= 2γ |RcFAw| sin(θ + θ0) (6.20b)

= γ Im [R, F ] Re Aw + 2γ σFR Im Aw, (6.20c)

where

θ = arg Aw, θ0 = arg RcF , (6.21)

σFR =
{Rc, F}

2
=

{R, F}

2
− R̄F̄ , (6.22)

and {,} denotes the anticommutator. Eq. (6.20c) results from Eq. (6.20a), on writing RcF as a sum of a real and an imaginary
terms,

RcF = σFR +
[R, F ]

2
. (6.23)

Eq. (6.23) also implies that the quantity | Rc F | in Eq. (6.20b) is given by

|RcF | =

 [R, F ]

2


2

+ σ 2
FR. (6.24)

The quantity σFR in Eq. (6.22) is a measure of the correlation between F and R [182]; indeed, σFR is the quantum analog of
the covariance, which is a measure of the correlation between classical random variables. In particular, when F = R, the
covariance σFR equals the variance (1F)2.

Under the present assumptions, each of Eqs. (6.20) describes in the most general form the linear response for weak pre-
andpost-selectedmeasurements. In particular, Eq. (6.20c) contains the previous results on theweak value [18,124] as special
cases. Eq. (6.20b) shows that the magnitude of the linear response is maximized,

R̄s − R̄ = 2 (−1)kγ |RcF Aw|, (6.25)

when the weak-value argument θ assumes the values

θ = −θ0 +


k +

1
2


π (k = 0,±1, . . .). (6.26)

In contrast, the linear response vanishes for

θ = −θ0 + kπ (k = 0,±1, . . .). (6.27)

The first term in Eq. (6.20c), involving Re Aw , is an analog of Eq. (3.8), differing only by the replacement Ā → Re Aw .
This term is due to quantum properties of the meter, since it vanishes for commuting F and R. In contrast, the second term,
involving Im Aw , has no analog in weak measurements without post-selection; it arises for correlated F and R, and hence it
generally does not vanish for commuting variables.

Eq. (6.20c) implies that in the linear-response regime, meters with the zero covariance provide only the real part of Aw .
The class of such meters includes, in particular, meters optimal for weak standard measurements, Eq. (3.13). In contrast,
meters unsuitable for weak standard measurements, i.e., non-standard meters ([R, F ] = 0), provide in the linear-response
regime only the imaginary part of Aw .

Recall that for standard measurements, the average pointer deflection was estimated above with the help of the
Heisenberg–Robertson uncertainty relation (3.10). Similarly, weak PPS measurements are closely related to the generalized
uncertainty relation given by (see Appendix B.1)

1R1F ≥ |Rc F | (6.28)

or, in view of Eq. (6.24),

1R1F ≥

 [R, F ]

2


2

+ σ 2
FR. (6.29)

The generalized uncertainty relation will be used repeatedly below.
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Since |RcF | can bemuch greater than |[R, F ]| [cf. Eq. (6.24)], a comparison of Eqs. (3.8) and (6.20b) shows that the average
pointer deflection in weak PPS measurements can be strongly enhanced relative to that in standard measurements. Notice
that this enhancement is independent of the amplification due to a large weak value discussed by AAV [18] (for further
details see Section 6.7).

The necessary condition for the validity of linear response is that the denominator of Eq. (6.18) is close to one, i.e., the
post-selection probability in Eq. (6.17b) approximately equals the unperturbed value |⟨φ|ψ⟩|

2 (the value in the absence of
measurements in between the pre- and post-selections). This holds for

|γ Aw|(F 2)1/2 ≪ 1. (6.30)
The same condition allows one to neglect the quadratic term in the numerator of Eq. (6.18) if the linear term is not too small.
Since

F 2 = F̄ 2
+ (1F)2, (6.31)

Eq. (6.30) is equivalent to the condition

|γ Aw|(|F̄ | +1F) ≪ 1. (6.32)

6.5.2. Inverted region (the limit of very large weak values)
In the opposite limit of very large weak values,

|γ Aw|(|F̄ | +1F) ≫ 1, (6.33)
the average pointer deflection can be approximated by the expansion of Eq. (6.18) up to first order in (γ Aw)−1,

R̄s − R̄ =
FRcF

F 2
+

2

γ F 2
Im

RcF
A∗
w

+
2F̄ FRcF

γ (F 2)2
Im

1
Aw
. (6.34)

When the overlap ⟨φ|ψ⟩ tends to zero, i.e., Aw → ∞, the average pointer deflection tends to the value [cf. Eq. (6.34)]

R̄s,∞ − R̄ =
F Rc F

F 2
, (6.35)

where the limiting value of the average meter variable is

R̄s,∞ = lim
Aw→∞

R̄s =
FRF

F 2
. (6.36)

It is remarkable that this quantity depends only on the meter but not on the system or the coupling. Thus, the case
of orthogonal pre- and post-selected states provides no information on the system. Note that this holds only for weak
measurements, whereas higher-order corrections to Eq. (6.35) still can depend on the system.

Now the quantity of interest, which directly provides information on the system, is not the average pointer deflection
R̄s − R̄ but the (average) adjusted pointer deflection R̄s − R̄− (R̄s,∞ − R̄) = R̄s − R̄s,∞. Only when in the meter FRcF = 0, the
adjusted pointer deflection R̄s − R̄s,∞ coincides with the average pointer deflection R̄s − R̄. As follows from Eq. (6.34),

R̄s − R̄s,∞ =
2

γ F 2
Im

RcF
A∗
w

+
2F̄ FRcF

γ (F 2)2
Im

1
Aw
. (6.37)

The region (6.33) can be called the inverted region, since here the adjusted meter deflection (6.37) is inversely proportional
to the weak value, decreasing with the increase of the measurement strength.

In the traditional case F̄ = 0 or for FRcF = 0, the magnitude of the adjusted pointer deflection is maximized under the
condition (6.26), when

R̄s − R̄s,∞ = (−1)k
2|RcF |

γ F 2|Aw|
. (6.38)

Eq. (6.34) can be also considered as a first-order expansion of the pointer deflection in the overlap ⟨φ|ψ⟩. Correspond-
ingly, the condition (6.33) can be recast as

|⟨φ|ψ⟩| ≪ |γ Aφψ |(|F̄ | +1F). (6.39)
The regime (6.33) is well suited for measuring very small values of ⟨φ|ψ⟩ (see also Sections 6.7.2 and 6.10.4). The inverted
region (6.33) has not been discussed explicitly until now. However, the interferometric method of phase measurements
demonstrated experimentally in Ref. [22] can be shown to admit a quantum-mechanical interpretation as a weak PPS mea-
surement in the inverted region (see Section 13).

In the inverted region, the dependence on the coupling strength and the system parameters is quite different from that
in the linear and the intermediate nonlinear regimes, which hold in the region

|γ Aw|(|F̄ | +1F) . 1. (6.40)
Therefore below in many cases the regions (6.33) and (6.40) are discussed separately.
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6.5.3. Intermediate (strongly-nonlinear) regime
Consider now the region intermediate between linear response and the inverted region,

|γ Aw|(|F̄ | +1F) ∼ 1. (6.41)

We refer to this region as the strongly-nonlinear (or intermediate) regime. In this region, Eq. (6.18) cannot be simplified
since the dependence of the average pointer deflection on γ is significantly nonlinear. The condition (6.41) can be recast in
the form

µ ∼ |⟨φ|ψ⟩|, (6.42)

i.e., in the intermediate regime the small parameter of the theory is of the order of the overlap of the pre- and post-selected
states.

In the important case |F̄ | . 1F , which is of primary interest in most of the present paper, the condition of the strongly-
nonlinear regime in Eq. (6.41) becomes

|γ Aw|1F ∼ 1 (6.43)

or, equivalently,

µ0 ∼ |⟨φ|ψ⟩|. (6.44)

Eqs. (6.42) and (6.11) imply that the strongly-nonlinear regime (6.41) can be obtained for weak PPS measurements only
when the initial and final states are almost orthogonal,

|⟨φ|ψ⟩| ≪ 1. (6.45)

In the case (6.45), the weak value (2.36) is anomalously large, at least, when Aφψ is not too small, as in Eq. (6.8).
Below (Section 6.6.2) it is shown that optimal conditions for weak PPS measurements are obtained in the nonlinear

intermediate regime. Thus, Eq. (6.41) or (6.42) [or, equivalently, (6.44)] provides the optimality condition, at least, for
|F̄ | . 1F , whereas for |F̄ | ≫ 1F , the condition (6.41) [or (6.42)] is necessary but not sufficient for the optimal regime
(see Section 6.9).

6.6. Estimation of the average pointer deflection

Let us now estimate the typical magnitude of the average pointer deflection R̄s − R̄ for the linear and strongly-nonlinear
regimes.

6.6.1. Linear response
In the linear-response regime, Eq. (6.20b) implies that the magnitude of the pointer deflection satisfies the inequality

|R̄s − R̄| ≤ 2|γ Aw RcF |. (6.46)

Combining the generalized uncertainty relation (6.28) and Eq. (6.46) yields

|R̄s − R̄| ≤ 2|γ Aw|1F 1R. (6.47)

Eq. (6.47) implies that the upper bound for the magnitude of the average pointer deflection for given |γ Aw|,1F , and1R is

|R̄s − R̄| = 2|γ Aw|1F 1R. (6.48)

This upper bound is achieved when |RcF | equals the maximum allowed by the generalized uncertainty relation (6.28),

|RcF | = 1R1F . (6.49)

As discussed below in Section 6.10, meters satisfying Eq. (6.49) are optimal for weak PPS measurements, at least, in the linear-
response regime. The class of such meters includes, in particular, two important types of meters: (a) meters where F is a
linear function of R (e.g., F = R) and (b) meters with canonically conjugate F and R and a general complex Gaussian state
[cf. Eq. (2.53)].

As follows from Eq. (6.20b), the estimate of a typical value of |R̄s − R̄| for a given |γ Aw| is

|R̄s − R̄| ∼ |γ Aw RcF |. (6.50)

This estimate holds unless θ + θ0 is close to kπ , i.e., unless |θ + θ0 − kπ | ≪ 1 for some integer k. Furthermore, usually both
sides of the generalized uncertainty relation equation (6.28) are of the same order,

|RcF | ∼ 1R1F . (6.51)



78 A.G. Kofman et al. / Physics Reports 520 (2012) 43–133

Inserting Eq. (6.51) into Eq. (6.50) yields

|R̄s − R̄| ∼ |γ Aw|1F 1R. (6.52)

In the present paper we call meters satisfying the condition (6.49) or, at least, (6.51) regular meters. Such meters provide the
magnitude of the average pointer deflectionwhich is equal to or of the order of the upper bound not only in the linear regime
but, as shown below, in most cases beyond the linear regime. As discussed in Section 6.10, regular meters are efficient for
weak PPS measurements.

The average pointer deflection in the linear-response region vanishes or becomes very small when theweak-value phase
θ is close to−θ0 [cf. Eq. (6.20b)] orwhen1R is vanishing or very small [cf. Eq. (6.47)]. For such cases,weak PPSmeasurements
cannot be performed in the AAV (linear) regime. However, as shown below, weak PPS measurements are possible in the
nonlinear regime, even when the linear response is vanishing or very weak.

6.6.2. Strongly-nonlinear regime
Consider now the strongly-nonlinear regime (6.41). In this regime, measurements of Aw and/or γ are optimal, since now

the dependence of (R̄s − R̄) on Aw and γ is the strongest and, moreover, as we will show now, in the regime (6.41) |R̄s − R̄|
achieves the maximum value |R̄s − R̄|max or, at least, values of the order of |R̄s − R̄|max. Let us estimate |R̄s − R̄|max.

Here we consider the most important case |F̄ | . 1F (the case |F̄ | ≫ 1F is discussed in Section 6.9). First, we estimate
the maximum value of |R̄s − R̄| for the strongly-nonlinear regime (6.43) and then show that the resulting estimate holds for
all parameters. Under the condition (6.43), the denominator of Eq. (6.18) is of the order of one, so that the maximum value
of |R̄s − R̄| is given by

|R̄s − R̄|max ∼
|RcF |

1F
+

|FRcF |

(1F)2
. (6.53)

Taking into account that

FRcF = FcRcFc + 2F̄ Re RcF , (6.54)

Eq. (6.53) becomes finally

|R̄s − R̄|max ∼
|RcF |

1F
+

|FcRcFc |
(1F)2

. (6.55)

This quantity is of the order of or greater than the magnitude of the result (6.34), which means that Eq. (6.55) provides an
estimate of the maximum of the magnitude of the pointer deflection (6.18) over all values of γ Aw . Eq. (6.55) holds for any
F̄ , since the same result is obtained also for |F̄ | ≫ 1F (see Section 6.9). For regular meters [Eq. (6.51)], Eq. (6.55) simplifies,

|R̄s − R̄|max ∼ 1R +
|FcRcFc |
(1F)2

. (6.56)

In the peculiar case when 1R vanishes or is very small, whereas 1F is bounded (which is possible, e.g., for finite-
dimensional Hilbert spaces), RcF also vanishes or is very small [cf. the uncertainty relation in Eq. (6.28)]. Then the first
term on the right-hand side of Eq. (6.55) can be neglected, but the pointer deflection generally does not vanish,

|R̄s − R̄|max ∼
|FcRcFc |
(1F)2


|RcF | ≪

|FcRcFc |
1F


. (6.57)

This shows that PPS measurements may be performed even when1R = 0.
However, usually RcF is sufficiently large to obey

|RcF | &
|FcRcFc |
1F

. (6.58)

Then the second term on the right-hand side of Eq. (6.55) can be dropped without changing the order of the magnitude of
the result, yielding

|R̄s − R̄|max ∼
|RcF |

1F
. (6.59)

In this case, the pointer deflection is of the order of the maximum for a given1R if the meter is regular [Eq. (6.51)],

|R̄s − R̄|max ∼ 1R. (6.60)

This result holds under the condition [which is a special case of Eq. (6.58) for a regular meter]

1R &
|FcRcFc |
(1F)2

. (6.61)
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Note that Eq. (6.60) holds for any1R, when [F̂ , R̂] is a c-number. This occurs, e.g., in the cases when the variables F and
R are commuting or canonically conjugate (e.g., F = p, R = q) or are linear combinations of such variables. Indeed, then

|FcRcFc | = |Fc[R, F ] + F 2
c Rc | = |F 2

c Rc | . (1F)21R (6.62)

[see Eq. (B.7)], yielding Eq. (6.61) and hence Eq. (6.60).
Eqs. (6.55) and (6.56) provide simple estimates of the maximum magnitude of the pointer deflection over all possible

Aw and all allowed γ . Moreover, since the pointer deflection (6.18) depends on Aw and γ through the product γ Aw , the
maximum (6.55) or (6.56) results also when only one of the parameters Aw and γ is varied, while the other is fixed. Thus,
we obtain that the maximum of the pointer-deflection magnitude over all Aw for a given γ is independent of γ and hence
remains finite for γ → 0.

This result may look paradoxical. Note, however, that Eqs. (6.55) and (6.56) hold for a subensemble of the measured
systems with the relative size ⟨Πφ⟩f . In the present case of a strongly-nonlinear regime, Eq. (6.43), with |F̄ | . 1F , the
quantity ⟨Πφ⟩f in Eq. (6.17b) becomes

⟨Πφ⟩f ∼ |⟨φ|ψ⟩|
2. (6.63)

This quantity decreases with the decrease of γ as γ 2 [cf. Eq. (6.44)], ⟨Πφ⟩f ∼ |⟨φ|ψ⟩|
2

∼ µ2
0 ∝ γ 2. Correspondingly, the

average over the whole ensemble would yield the result (3.8), which vanishes with γ → 0.

6.6.3. Inverted region
Let us estimate the magnitude of the adjusted pointer deflection |R̄s − R̄s,∞| in the inverted region for the important case

|F̄ | . 1F . Taking into account Eq. (6.54), we obtain from Eq. (6.37) that

|R̄s − R̄s,∞| ∼
|RcF |

|γ Aw|(1F)2
+

|F̄ FcRcFc |
|γ Aw|(1F)4

∼
1

|γ Aw|(1F)2


|RcF | +

|F̄ FcRcFc |
(1F)2



=
|⟨φ|ψ⟩|

|γ Aφψ |(1F)2


| RcF | +

| F̄ FcRcFc |
(1F)2


. (6.64)

The latter expression shows that weak PPS measurements in the regime of very large weak values (the inverted region) can
be used to measure small overlaps. In the usual case F̄ = 0 or, more generally, for

|RcF | &
|F̄ FcRcFc |
(1F)2

(6.65)

Eq. (6.64) becomes,

|R̄s − R̄s,∞| ∼
| RcF ||⟨φ|ψ⟩|

|γ Aφψ |(1F)2
. (6.66)

Similarly to the linear and strongly-nonlinear regimes above, in the inverted region the pointer deflection is of the order
of the maximum for regular meters [Eq. (6.51)], at least, when1R is not too small. Namely, for regular meters, when

1R &
|F̄ FcRcFc |
(1F)3

, (6.67)

Eq. (6.64) yields,

|R̄s − R̄s,∞| ∼
1R|⟨φ|ψ⟩|

|γ Aφψ |1F
. (6.68)

Note that in the present limit the overlap ⟨φ|ψ⟩ is very small. However, Eq. (6.68) implies a strong amplification of the
adjusted pointer deflection, as discussed below in Section 6.7.2. Therefore, weak PPS measurements in the inverted region
are suitable for measuring the overlap.

It is of interest also to estimate the value of the post-selection probability ⟨Πφ⟩f in the inverted region. In the present
limit, Eq. (6.33), we obtain that Eq. (6.17b) becomes

⟨Πφ⟩f ≈ |⟨φ|ψ⟩|
2γ 2 F 2|Aw|

2
= γ 2

|Aφψ |
2 F 2. (6.69)

In the common case where F̄ is zero or small, |F̄ | . 1F , Eq. (6.69) yields

⟨Πφ⟩f ∼ γ 2
|Aφψ |

2 (1F)2. (6.70)
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6.7. Amplification in weak PPS measurements

Weak PPS measurements can result in very significant amplification of the average pointer deflection in comparison
with weak standard measurements. There are two different types of amplification peculiar to weak PPS measurements, the
(proper) amplification due to a large weak value and the enhancement due to correlation between the meter variables F
and R. Note that there can be also enhancement of the pointer deflection due to the free meter Hamiltonian HM; this effect
generally holds for both standard and PPS measurements, as discussed in Section 8.2.4.

Until now, amplification was discussed in the literature only for the linear response, however it takes place also in the
two other regimes—the strongly-nonlinear regime and the inverted region. Here we discuss amplification for all the three
regimes in the typical case |F̄ | . 1F . Amplification for the case |F̄ | ≫ 1F will be considered in Section 6.9. In the discussion
of amplification we will assume that the meter is regular [Eq. (6.51)], since such meters are efficient in PPS measurements,
as noted in Section 6.6.1.

6.7.1. Proper amplification due to a large weak value
Here we consider amplification for the linear-response and strongly-nonlinear regimes, i.e., for the region (6.40), given

now by

|γ Aw|1F . 1. (6.71)

We estimate amplification in weak PPS measurements by comparing the magnitudes of the average pointer deflection
in weak PPS and standard measurements. In this comparison, we assume that γ and F are the same in both types of
measurements. Moreover, we require that themagnitudes of Aφψ and Ā be equal or, at least, of the same order of magnitude,

|Aφψ | ∼ |Ā|. (6.72)

In the region of interest (6.71), we define the coefficient A of the proper amplification by the order of magnitude with
the help of the relation

A ∼
|R̄s − R̄|
µ01R

. (6.73)

In Eq. (6.73) the quantity

µ01R = |γ Aφψ |1F 1R (6.74)

is of the order of a typical value of the pointer deflection for standard measurements [cf. Eqs. (3.11) and (6.72)].
In the linear regime, inserting Eqs. (6.52) and (6.74) into Eq. (6.73) with the account of Eq. (2.36) yields [18,80,90]

A ∼ |⟨φ|ψ⟩|
−1. (6.75)

In the nonlinear regime, we assume the validity of Eq. (6.60) (amplification in the peculiar case of a vanishing or very small
1R is out of the scope of the present paper). Inserting Eq. (6.60) into Eq. (6.73) and taking into account Eq. (6.44) yields the
relation

A ∼ µ−1
0 ∼ |⟨φ|ψ⟩|

−1, (6.76)

which results again in Eq. (6.75). Thus, the result (6.75) holds in the whole region (6.71).
The inequality (6.71) with the account of Eq. (6.75) can be rewritten in the form

Aµ0 . 1, (6.77)

where the similarity sign is achieved under the optimal conditions. Thus, though A can be very large, for a given µ0 the
amplification coefficient A has the upper bound equal to µ−1

0 .
An important quantity characterizing quantum noise in PPS measurements is the SNR in the post-selected ensemble per

one measurement, i.e., the ratio of the magnitude of the average pointer deflection to the pointer uncertainty after the
measurement1Rs,

R0 =
|R̄s − R̄|
1Rs

. (6.78)

In the typical case considered here, where 1R is not vanishing or too small, we have 1Rs ≈ 1R in the linear-response
regime, whereas beyond the linear response inweak PPSmeasurements1Rs ∼ 1R. Thus, generally in the typical caseR0 ≃

|R̄s − R̄|/1R.
Eq. (6.73) implies that, for a fixedµ0, the quantity R0 increases in direct proportion with the amplification coefficient A,

R0 ≃
|R̄s − R̄|
1R

∼ Aµ0 = A|γ Aφψ |1F . (6.79)
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In view of Eq. (6.60), the maximum value of this ratio is of the order of one,

(R0)max ∼ 1, (6.80)

which is achieved under the optimal conditions, i.e., in the strongly-nonlinear regime. Note, however, that if one takes into
account the total ensemble, the amplification cannot increase the quantum SNR; correspondingly, the latter is the same in
weak PPS and standard measurements [90,94] (see Section 6.10.5 for further details.) Thus, Eqs. (6.79) and (6.77) imply the
remarkable fact that irrespective of how small the coupling strength γ is, the amplification A can be made so large that R0
achieves the maximum (6.80); this makes measuring very small γ values possible, as discussed in Section 6.8. The price for
this is that the size of the total ensemble increases as A2 [see below Eq. (6.126)].

The amplification coefficient satisfies an important relation, as follows. It is easy to see that in the region (6.71) ⟨Πφ⟩f ∼

|⟨φ|ψ⟩|
2. As a result, expression (6.75) can be recast in the form

A ∼ ⟨Πφ⟩
−1/2
f . (6.81)

This relation holds in all cases for which the proper amplification is considered here (see also Sections 6.7.2 and 6.9). It
shows that the proper amplification is closely related to the post-selection, increasingwith the decrease of the post-selection
probability ⟨Πφ⟩f and disappearing in the limit ⟨Πφ⟩f → 1.

6.7.2. Proper amplification in the inverted region
Weak PPS measurements in the inverted region involve a strong amplification. Here we estimate this amplification for

the typical case (6.67). In this case we can use Eq. (6.68), which can be recast as

|R̄s − R̄s,∞|

1R
∼

|⟨φ|ψ⟩|

|γ Aφψ |1F
= A′

|⟨φ|ψ⟩|. (6.82)

Here the factor

A′
= (|γ Aφψ |1F)−1

≫ 1 (6.83)

provides the proper amplification for the measurement of the overlap; this factor is large in weak PPS measurements, as
implied by Eq. (6.13a). As follows from Eqs. (6.70) and (6.83), the amplification coefficient A′ satisfies the same relation as
A [cf. Eq. (6.81)],

A′
∼ ⟨Πφ⟩

−1/2
f . (6.84)

The factor A′ describes the increase of the quantum SNR in the PPS ensemble (per one measurement)

R0 =
|R̄s − R̄s,∞|

1Rs
∼

|R̄s − R̄s,∞|

1R
(6.85)

relative to the case when the small parameter approaches the limit |γ Aφψ |1F ∼ 1, where the measurement becomes not
weak and hence the present theory breaks. Indeed, Eq. (6.82) yields

|R̄s − R̄s,∞|

1R
∼ |⟨φ|ψ⟩| (6.86)

when |γ Aφψ |1F ∼ 1. Eq. (6.83) shows that now, paradoxically, the decrease of the measurement strength |γ Aφψ |1F increases
the magnitude of the average adjusted pointer deflection |R̄s − R̄s,∞| (for given 1R and |⟨φ|ψ⟩|) and hence increases the
measurement accuracy with respect to technical errors.

However, A′ cannot be increased indefinitely, since Eq. (6.68) holds only until A′
|⟨φ|ψ⟩| ≪ 1 [cf. Eq. (6.33)]. When A′

becomes so large that A′
|⟨φ|ψ⟩| ∼ 1, the inverted-region case (the limit of very large weak values) is not applicable any

more. Instead, the measurement is performed in the strongly-nonlinear regime [cf. Eq. (6.41)], which provides the highest
accuracy and hence is optimal, as mentioned above.

6.7.3. Enhancement due to correlation between the meter variables
The pointer deflection in a measurement depends both on the system and the meter. Correspondingly, in weak PPS

measurements there exists not only the effect of amplification due to a large weak value discussed above but also the effect
of enhancement due to correlation between the meter variables.

Indeed, as follows from Eqs. (6.20b), (6.59) and (6.66), in all regimes of weak PPS measurements there is the effect of
enhancement, i.e., an increase of the average pointer deflection due to an increase of |σFR| for given1F and [R, F ]. This effect
can be characterized by the enhancement coefficient

E =

 2 RcF

[R, F ]

 =


1 +


2σFR

|[R, F ]|

2
1/2

, (6.87)



82 A.G. Kofman et al. / Physics Reports 520 (2012) 43–133

which is equal to or of the order of the factor by which the magnitude of the average pointer deflection for a nonzero σFR is
increased with respect to the case σFR = 0 [cf. Eqs. (6.20b), (6.59), and (6.66)]. In the second equality in Eq. (6.87) we used
Eq. (6.24). The enhancement coefficient (6.87) can be also recast in the form

E = | csc θ0|, (6.88)

where θ0 is defined in Eq. (6.21). Eq. (6.87) implies that the enhancement is large if and only if there is a strong correlation
between R and F , i.e., the covariance is large,

E =

 2σFR
[R, F ]

 ≫ 1 when |σFR| ≫ |[R, F ]|/2. (6.89)

This enhancement occurs always in the linear regime, whereas beyond the linear regime it occurs, at least, in typical
situations, when Eq. (6.59) and (6.66) hold. The coefficient E in Eq. (6.87) characterizes also an increase of the magnitude of
the average pointer deflection in the linear regime for PPS measurements with respect to that for standard measurements
due to a nonzero covariance, as follows from a comparison of Eqs. (3.8) and (6.20b).

An increase of |σFR| for given [R, F ] and 1F yields an increase of not only the pointer deflection but also the pointer
uncertainty 1R, as implied by the generalized uncertainty relation (6.29). However, for regular meters [Eq. (6.51)], which
are of interest here, the pointer deflection is typically proportional to1R in all regimes [see Eqs. (6.52), (6.60), and (6.68)].
Therefore, in this case, for given 1F and [R, F ], the SNR in the PPS ensemble per one measurement R0, Eq. (6.79), is
independent of σFR. Though an increase of |σFR| does not improve the quantum limit of the measurement accuracy, even
for the PPS ensemble, an enhancement of the pointer deflection increases the accuracy of the readout of the measurement
result with respect to technical noise and thus is beneficial.

Eq. (6.20c) implies that in the linear regime, the enhancement is possible only when Im Aw ≠ 0 [90]. However, in the
nonlinear regime, the enhancement is possible not only for Im Aw ≠ 0 but also for a real Aw , when F̄ ≠ 0. For a discussion
of specific cases, see below Section 8.2.3.

6.7.4. Discussion
Since the proper amplification A (or A′) and the enhancement E are independent of each other, we can write the total

amplification coefficient in the linear-response and strongly-nonlinear regimes as

AT = AE (6.90)

and in the inverted region as

A′

T = A′E . (6.91)

The amplification by a weak PPS measurement, described by Eqs. (6.90) and (6.91), does not amplify technical noise [90,94]
and hence is an important effect with promising applications in ultra-sensitive measurements and precision metrology.

It is worth noting here an important advantage of the enhancement E over the proper amplification A. As seen in
Eq. (6.81), there is a trade-off betweenA and the post-selection probability, that is,A cannot bemade large without making
the post-selection probability small. In contrast, the enhancement E can attain arbitrary large values in cases where the post-
selection probability is of order unity.

For non-standard meters ([R, F ] = 0) the enhancement cannot be described by the parameter E , because in this case
Eq. (6.87) yields E = ∞, which is an expression of the fact that standard measurements are impossible for non-standard
meters. Moreover, the parameters AT and A′

T are also infinite and hence do not make much sense, but the proper
amplification is still a meaningful notion.

6.8. Measuring weak values and coupling strengths

Eq. (6.18) allows one tomeasure any parameter entering this expression provided the other parameters are known. Here
wediscussmeasuring theweak valueAw and the coupling strength γ . Both linear and nonlinear regimes of themeasurement
are considered.

Since γ is real and Aw is complex, in principle one or two weak PPS measurements are sufficient for obtaining γ or
Aw , respectively. Below we discuss extracting γ and Aw for the above minimal number of measurements. Alternatively, to
increase the accuracy of the value of Aw , onemay performmore than theminimal number of measurements and then fit the
measurement results to Eq. (6.18). Note, however, that an increase in the number of measurements requires an increase in
time and resources.

6.8.1. Measuring the coupling strength γ
The parameter γ can be measured in either the linear or nonlinear regime. As discussed above, optimal measurements

of γ are obtained in the nonlinear regime (6.41), where |R̄s − R̄| is of the order of its maximum value.
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Note a difference between the measurement procedures in the linear and nonlinear cases: Given a measured value of
the pointer deflection (R̄s − R̄), in the linear (nonlinear) regime γ results from a solution of a linear (quadratic) equation
[cf. Eqs. (6.20) and (6.18)]. The roots of the quadratic equation can be obtained in analytic form; only one of them yields the
correct solution. Namely, the correct root γ0 is determined uniquely by the condition γ0 → 0 for R̄s → R̄.

Thus, the nonlinear Eq. (6.18) allows one to optimize the measurement of the coupling strength. Another advantage of
Eq. (6.18) is that it allows for measurement of γ , even when the first-order result (6.20a) vanishes or is very small; in this
case, it is required that FRcF ≠ 0.

6.8.2. Measuring weak values: one unknown parameter
Consider now the measurement of weak values. Aw is a complex quantity, and generally both the magnitude |Aw| and

the argument θ of Aw are unknown.
We first discuss the simple situation, where θ is known, at least, with an accuracy of up to π . Then Aw and |Aw|

2 can be
presented in the form,

Aw = Aw0 exp(iθ ′), |Aw|
2

= A2
w0, (6.92)

where Aw0 is real but its sign may be unknown, so that θ ′ equals θ for Aw0 > 0 or θ + π for Aw0 < 0. We assume that θ ′

in Eq. (6.92) is known. (For example, when Aw is known to be real or imaginary, one can set θ ′
= 0 or π/2, respectively,

i.e., Aw = Aw0 or Aw = iAw0, respectively.) Then, on inserting Eq. (6.92) into Eq. (6.20a) or (6.18), Aw0 [and hence Aw in
Eq. (6.92)] can be obtained similarly to γ (see Section 6.8.1), from a linear or quadratic equation, respectively.

6.8.3. Tomography of weak values
Consider now tomography of weak values, i.e, measuring a complex Aw in the absence of any preliminary information

on Aw . A complex Aw depends on two real parameters and hence to obtain Aw from Eq. (6.18), it is sufficient to perform two
measurements with different values of the coupling strength γ and/or of one or more of the meter parameters. The meter
parameters which can be varied include the observables R and F [150] and the meter state ρM [96]. Hereafter, we regard
meters with different parameters as different meters, even if they are realized with identical physical systems.

As mentioned above, the nonlinear regime is optimal for measurements. However, the nonlinear regime can be achieved
only for sufficiently large weak values or, in other words, for sufficiently small values of the overlap ⟨φ|ψ⟩ (cf. Section 6.5.3).
Therefore the linear regime is also important, since this is the only regime of weak PPS measurements achievable for not
too large weak values. Another reason why the linear regime is of interest is that the linear regime is somewhat easier
to analyze than the nonlinear regime. Below we show how to extract Aw with two measurements for both the linear and
nonlinear regimes.

6.8.4. Tomography of weak values: linear regime
Since the linear response (6.20) is proportional to γ , in the linear regime a variation of γ cannot be used for tomography

of weak values. Thus, in the two required measurements, the meters should necessarily differ by one or more parameters
(e.g., the meters may have different pointer variables), so that the parameter θ0 in Eq. (6.21) has different values in the two
measurements. We require that these values, denoted by θ0 and θ ′

0, obey the condition

|θ0 − θ ′

0| ≠ 0, π, 2π, . . . . (6.93)

The two measurements yield by Eq. (6.20b) the quantities

ξ = |Aw| sin(θ + θ0), ξ ′
= |Aw| sin(θ + θ ′

0). (6.94)

The equalities (6.94) can be recast as a set of two linear equations for Re Aw = |Aw| cos θ and Im Aw = |Aw| sin θ , which has
a solution under the condition (6.93). As a result, we obtain

Aw =
ξ exp(−iθ ′

0)− ξ ′ exp(−iθ0)
sin(θ0 − θ ′

0)
. (6.95)

For instance, in the experiment [102], the tomography of weak values was realized with θ0 = π/2 and θ ′

0 = 0. In this case,
Eq. (6.94) implies that ξ = Re Aw and ξ ′

= Im Aw; correspondingly, Eq. (6.95) yields Aw = ξ + iξ ′.
The condition (6.93) requires that, at least, in one of the two measurements [R, F ] ≠ 0, while in the other measurement

σFR ≠ 0. If σFR = 0 ([R, F ] = 0) in the measurements, only Re Aw (Im Aw) can be measured in the linear regime. Finally,
when [R, F ] = σFR = 0, the linear response vanishes and hence cannot be used formeasurements. The situation is drastically
different in the nonlinear regime, as follows.
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Table 4
Measurability of Re Aw , Im Aw , and |Aw | for different types of measurements. Here we use the following conventions: (a) the word ‘‘any’’
means any F̄ satisfying |F̄ | . 1F , (b) the parameters denoted as nonzero should be nonzero, at least, in one of the two measurements; (c)
the parameters denoted as zero vanish in all the measurements; (d) when both [R, F ] and σFR vanish, we assume that F Rc F ≠ 0. Note that
|Aw | is generally measurable in all the cases listed here.

Case Measurement type Measurability of:
[R, F ] σFR F̄ Re Aw Im Aw |Aw |

1 ≠0 ≠0 Any Yes Yes Yes
2 ≠0 0 0 Yes |Im Aw | Yes
3 ≠0 0 ≠ 0 Yes Yes Yes
4 0 ≠0 Any |Re Aw | Yes Yes
5 0 0 ≠0 |Re Aw | Yes Yes
6 0 0 0 No No Yes

6.8.5. Tomography of weak values: nonlinear regime
Consider now tomography of weak values in the nonlinear regime (6.43) for the important case |F̄ | . 1F . As in the linear

case, two measurements with different meters can be performed. However, now one has also an alternative possibility: to
perform the two measurements with different values of the coupling strength γ , using only one meter for all measurements.
The condition (6.93) is generally not required now. The coupling strength γ can be varied by changing the duration of the
interaction and/or the amplitude of the coupling rate g(t), cf. Eq. (2.11).

Inserting the measurement results on the left-hand side of Eq. (6.18) yields two second-order algebraic equations for
Re Aw and Im Aw . Indeed, multiplying both sides of Eq. (6.18) by the denominator of the fraction on the right-hand side,
transferring all the terms to the left-hand side and simplifying the expression yields

D0i + D1i Re Aw + D2i Im Aw + D3i|Aw|
2

= 0 (i = 1, 2), (6.96)

where the coefficients Dki can be easily expressed through the parameters of the problem and i denotes the two
measurements.

Eqs. (6.96) can be solved analytically, as follows. Multiplying Eqs. (6.96) for i = 1 and 2 by D32 and −D31, respectively,
and summing the resulting equations cancel the nonlinear terms and yield a linear relation between Re Aw and Im Aw . This
relation allows one to express Re Aw through Im Aw , thus reducing the problem to obtaining Im Aw . Finally, inserting the
above expression for Re Aw into one of Eqs. (6.96) yields a quadratic equation for Im Aw . The root of this equation, which
tends to zero for R̄s → R̄, gives Im Aw , which then is used to find Re Aw .

Table 4 shows the feasibility of measuring the weak value parameters Re Aw , Im Aw , and |Aw| for different types of
measurements. Generally, Eq. (6.18) involves Aw through terms proportional to Re Aw , Im Aw , and |Aw|

2. To determine Aw
completely, i.e., to obtain Re Aw and Im Aw with correct signs, each of Re Aw and Im Aw should enter linearly in Eq. (6.18) for,
at least, one of the two measurements. In particular, this happens when both [R, F ] ≠ 0 and σFR ≠ 0 do not vanish for, at
least, one of the two measurements (Table 4, case 1).

In case 2, a term linear in Im Aw is absent in Eq. (6.18), and hence Im Aw can be determined only up to a sign. In case 3,
Aw can be determined completely, since Im Aw enters linearly in the denominator of Eq. (6.18) when F̄ ≠ 0. Actually, the
optimal values of F̄ are those satisfying |F̄ | ∼ 1F , since then in the present nonlinear case (6.43) all the three terms in the
denominator of Eq. (6.18) are generally of the same order.

In cases 4 and 5, Re Aw can be obtained only up to a sign, whereas in case 6, only |Aw| can bemeasured. Note that in cases
5 and 6 the linear response is absent, but still information on Aw can be extracted (such a case takes place, e.g., for1R = 0,
see Section 8.1.2).

In summary, generally Aw can be obtained completely when, at least, one of the two measurements is performed with a
standard meter ([R, F ] ≠ 0). Measurements using only non-standard meters ([R, F ] = 0) typically yield Im Aw and |Re Aw|,
but not the sign of Re Aw .

6.9. Peculiar case: large average input variable, |F̄ | ≫ 1F

Until now we have focused mainly on the typical situation when |F̄ | . 1F . Usually in experiments on weak PPS mea-
surements, the conditions are chosen to make F̄ to vanish, exactly or effectively. However, as shown above, a moderately
large value of F̄ , |F̄ | ∼ 1F , may be useful in measuring weak values and coupling strengths.

Here we discuss the case of a large F̄ , |F̄ | ≫ 1F . This case differs significantly from the above situation |F̄ | . 1F . Now
the pointer deflection is generally small, except for the optimal regime which has the form of a narrow resonance whose
width decreases with increasing |F̄ |. Let us consider the linear response and the optimal region.

The linear-response regime is independent of F̄ , and it is described in the above Section 6.5.1. The region of its validity is
given by Eq. (6.32), which now becomes

|γ Aw F̄ | ≪ 1. (6.97)
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Since now F̄ is large, the maximum value of |γ Aw| allowed by Eq. (6.97) is small, and hence the average pointer deflection
in the linear-response regime is very small in the present case. The amplification coefficient in the linear response is given
by the above Eq. (6.75).

Consider now the optimal regime. When |F̄ | ≫ 1F , and Re Aw is small or vanishes,

|Re Aw| ≪ |Im Aw|, (6.98)

then R̄s versus γ has a narrow resonance at

γ F̄ Im Aw ≈ −1. (6.99)

In the vicinity of this resonance, Eq. (6.18) simplifies to

R̄s − R̄ =
Fc Rc Fc/F̄ − ϵ Im [R, F ] − 2 σFR x

F̄

x2 + ϵ2 + (1F/F̄)2

 , (6.100)

where

x = 1 + γ F̄ Im Aw, (6.101)

ϵ =
Re Aw
Im Aw

or ϵ = sgn (Im Aw)
π

2
− θ. (6.102)

The two expressions for ϵ in Eq. (6.102) are equivalent in the approximation where Eq. (6.100) holds. In the derivation of
Eq. (6.100) we used Eqs. (6.54) and (6.22); moreover, in the numerator and denominator of Eq. (6.100) we neglected terms
of higher orders in x, ϵ, and1F/F̄ .

Eq. (6.100) describes a resonance in R̄s as a function of the two variables x and ϵ or, in other words, versus any of the
parameters Im Aw , Re Aw , γ , and F̄ . Depending on the parameter values, the resonance as a function of x or ϵ can have either
Lorentzian or dispersive shape or a linear combination thereof. The resonance arises due to the fact that destructive quantum
interference results in a strongly reduced post-selection probability,

⟨Πφ⟩f ≈ |⟨φ|ψ⟩|
2
[x2 + ϵ2 + (1F/F̄)2]. (6.103)

The resonance as a function of x and ϵ has one or two extrema; the extremumwith the largest magnitude lies in the optimal
region,

x2 + ϵ2 .


1F
F̄

2

. (6.104)

Let us obtain the maximum of the magnitude of the average pointer deflection in Eq. (6.100) as a function of x and ϵ. The
second and third terms in the numerator of Eq. (6.100) can be written in the form −2|RcF |

√
x2 + ϵ2 cos(θ0 − θ2), where

| RcF | is given by Eq. (6.24) and θ2 is determined by the equalities cos θ2 = x/
√
x2 + ϵ2 and sin θ2 = ϵ/

√
x2 + ϵ2. Thus, we

obtain that for a given value of x2 + ϵ2 the quantity |R̄s − R̄| assumes the maximum value

|R̄s − R̄| =
|FcRcFc | + 2|F̄ ||RcF |

√
x2 + ϵ2

F̄ 2

x2 + ϵ2 + (1F/F̄)2

 , (6.105)

which is attained under the condition | cos(θ0 − θ2)| = 1; when Fc Rc Fc ≠ 0, there is an additional condition that the signs
of cos(θ0 − θ2) and −Fc Rc Fc/F̄ coincide. The maximum of Eq. (6.105) as a function of the variable

√
x2 + ϵ2 can be easily

found, and we obtain that the maximum of |R̄s − R̄| is

|R̄s − R̄|max =


4(1F)2|RcF |2 + ( FcRcFc )2 + |FcRcFc |

2(1F)2
. (6.106)

The maximummagnitude in Eq. (6.106) satisfies the simple estimate (6.55) obtained above for the case |F̄ | . 1F . Thus, the
estimate (6.55) holds irrespective of the value of F̄ .

The validity conditions of Eq. (6.106) depend on whether FcRcFc vanishes or not. When FcRcFc = 0, the maximum
magnitude (6.106) is achieved for

x = ±
1F σFR
F̄ |RcF |

= ±
1F
F̄

cos θ0, ϵ = ±
1F Im [R, F ]

2F̄ |RcF |
= ±

1F
F̄

sin θ0. (6.107)

Inserting Eq. (6.107) into Eq. (6.100) yields

R̄s − R̄ = ∓
|RcF |

1F
. (6.108)

In Eqs. (6.107) and (6.108) the upper (or lower) signs should be taken simultaneously.
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When FcRcFc ≠ 0, the maximum (6.106) is achieved for

x =
σFR FcRcFc
2F̄ |RcF |2

1 −

1 +


21F |RcF |

FcRcFc

2
1/2 ,

ϵ =
Im [R, F ] FcRcFc

4F̄ |RcF |2

1 −

1 +


21F |RcF |

FcRcFc

2
1/2 . (6.109)

Indeed, one can check that inserting Eq. (6.109) into Eq. (6.100) yields

R̄s − R̄ = sgn( FcRcFc )|R̄s − R̄|max, (6.110)

where |R̄s − R̄|max is given in Eq. (6.106).
As a special case of Eqs. (6.109)–(6.110), we obtain that for non-standard meters with RcF = 0 (cf. Section 8.1.2) the

maximum in Eq. (6.106) is achieved for

x = ϵ = 0, (6.111)

when

R̄s − R̄ =
FcRcFc
(1F)2

. (6.112)

To obtain the amplification coefficient in the optimal region (6.104), we use Eqs. (6.73) and (6.74), which yield

A ∼
|R̄s − R̄|

|γ Aφψ |1F 1R
∼

1R
|⟨φ|ψ⟩/F̄ |1F 1R

=
|F̄ |

1F |⟨φ|ψ⟩|
. (6.113)

Here we took into account that, in view of Eqs. (6.99) and (6.98), |γ Aφψ F̄ | ≈ |⟨φ|ψ⟩|; we also assumed the typical situation
(6.60). Thus, we obtain

A ∼
|F̄ |

1F |⟨φ|ψ⟩|
. (6.114)

In the optimal region (6.104), we obtain that Eq. (6.103) yields

⟨Πφ⟩
−1/2
f ∼

|F̄ |

1F |⟨φ|ψ⟩|
∼ A. (6.115)

Hence, the amplification coefficient in Eq. (6.114) satisfies the same relation (6.81), as the amplification coefficient in
Eq. (6.75), though the two coefficients significantly differ from each other. An estimation of the magnitude of Eq. (6.100)
for x2 + ϵ2 ≫ 1F 2/F̄ 2 also can be shown to yield Eq. (6.81).

Note that in the present case when |F̄ | ≫ 1F , the optimality condition (6.104) is much stricter than the condition for
the strongly-nonlinear regime (6.41) [or, equivalently, (6.42)].

An advantage of the present case |F̄ | ≫ 1F is that the optimal regime occurs at a much smaller value of |γ | than for
|F̄ | . 1F [cf. Eqs. (6.99) and (6.43), respectively]. Correspondingly, the amplification coefficient (6.115) is much higher than
the value (6.75) obtained in the case |F̄ | . 1F , for a given overlap magnitude |⟨φ|ψ⟩|. This allows for an increase of the
measurement precision in the present case as compared to the case |F̄ | . 1F , when, by some reason, the overlap ⟨φ|ψ⟩

cannot be made too small.
Moreover, the fact that Eq. (6.100) is a narrow resonance as a function of a number of parameters makes this resonance

very sensitive to small perturbations of the parameters of the problem. This sensitivity of the resonance can be used for
precise measurements of these parameters.

6.10. The minimum size of the ensemble, the signal-to-noise ratio, and efficient meters

Here we estimate the minimum size N0 of the ensemble required for a weak PPS measurement, as well as the signal-
to-noise ratio (SNR) characterizing quantum noise. We also discuss optimal and efficient meters for weak PPS and standard
measurements.
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6.10.1. General formulas
Consider an ensemble of N pairs consisting of a system and a meter. Only ⟨Πφ⟩fN of the N pairs are taken into account

in a PPS measurement. A measurement produces a shift of the maximum of the distribution of the sum of ⟨Πφ⟩fN pointer
values, equal to ⟨Πφ⟩fN (R̄s − R̄). The SNR R characterizing quantum noise equals the ratio of the magnitude of the above
shift (the signal) to the standard deviation of the above distribution1Rs


⟨Πφ⟩f N (the noise level), yielding

R =
|R̄s − R̄|
1Rs


⟨Πφ⟩fN (6.116)

or, equivalently,

R = R0


⟨Πφ⟩fN, (6.117)

where R0 is defined in Eq. (6.78).
We determine the minimum size of the ensemble N0 by requiring that at N = N0 the signal and the noise levels be equal

(R = 1), which yields, in view of Eq. (6.116),

N0 =
(1Rs)

2

⟨Πφ⟩f (R̄s − R̄)2
. (6.118)

Now Eq. (6.116) can be recast as

R =


N
N0
. (6.119)

Thus, the quantity N0 determines the SNR for a given ensemble of size N through Eq. (6.119).

6.10.2. The linear response. Efficient and optimal meters
In the linear-response regime, we have1Rs ≈ 1R and ⟨Πφ⟩f ≈ ⟨Πφ⟩ = Tr (Πφρ). Then Eq. (6.118) becomes

N0 =
(1R)2

⟨Πφ⟩ (R̄s − R̄)2
. (6.120)

We insert Eq. (6.47) into Eq. (6.120), taking into account Eq. (2.36) and the fact that in the present case of a pure initial state
⟨Πφ⟩ = |⟨φ|ψ⟩|

2. Then we obtain the lower bound on N0 for a given value of the measurement strength µ0 = |γ Aφψ |1F
[Eq. (6.15)],

N0 ≥ (2γ |Aφψ |1F)−2
= (2µ0)

−2. (6.121)

Meters for which the value of N0 achieves the lower bound are called here optimal. Equivalently, for optimal meters, the
SNR achieves the upper bound. From Eq. (6.120), we obtain that the lower bound on N0,

N0 = (2γ |Aφψ |1F)−2, (6.122)

is achieved when Eq. (6.48) is valid, i.e., when the condition (6.49) holds. Thus, meters satisfying Eq. (6.49) are optimal for
weak PPS measurements, at least, in the linear-response regime.

More generally, we call meters efficient if the value of N0 (the SNR) for measurements with such meters is equal to or
of the order of the lower (upper) bound. For regular meters, i.e., meters satisfying Eq. (6.51), N0 is of the order of the lower
bound,

N0 ∼ (γ |Aφψ |1F)−2. (6.123)

Thus, regular meters [Eq. (6.51)] are efficient for weak PPS measurements, at least, in the linear-response regime.
Beyond the linear-response regime, the minimal ensemble size N0 is determined by Eq. (6.118), which is more

complicated than Eq. (6.120). In this case, it is impossible to obtain an exact general result for the lower bound on N0, and
hence conditions for optimal meters are different for different types of meters. However, we can obtain a simple general
condition for efficient meters for weak PPS measurements, as follows.

Our analysis shows that beyond the linear-response regime,

1Rs ∼ 1R. (6.124)

This holds, at least, in the common case when1R is not too small, Eq. (6.61); here we restrict our consideration to this case.
Now we can insert Eq. (6.124) into Eq. (6.118) to obtain

N0 ∼
(1R)2

⟨Πφ⟩f (R̄s − R̄)2
. (6.125)
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This result implies that N0 is of the order of its lower bound when |R̄s − R̄| is of the order of its maximum. As follows from
the results of Sections 6.6.2, 6.6.3 and 6.9, |R̄s − R̄| is of the order of its maximum for not too small 1R when meters are
regular, i.e., when the condition (6.51) holds. Thus, regular meters are efficient beyond the linear-response regime. But, as
mentioned above, regular meters are efficient also for the linear-response regime. Hence, regular meters are efficient for all
regimes of weak PPS measurements.

6.10.3. The strongly-nonlinear regime
As follows from the results of Sections 6.6.2 and 6.9, in the strongly-nonlinear regime the upper bound of the magnitude

of the average pointer deflection for not too small1R is given by Eq. (6.60). Inserting Eq. (6.60) into Eq. (6.125) yields

N0 ∼ ⟨Πφ⟩
−1
f ∼ A2. (6.126)

Here the second relation follows from Eq. (6.81). Thus, in the optimal regime the ensemble size equals roughly the inverse
post-selection probability or, equivalently, the squared proper amplification coefficient.

This statement is valid irrespective of the value of F̄ . We note that in the optimal regime the following estimate of the
post-selection probability can be used for any F̄ ,

⟨Πφ⟩f ∼
|⟨φ|ψ⟩|

2

1 + (F̄/1F)2
. (6.127)

Indeed, Eq. (6.127) reduces to Eqs. (6.63) for |F̄ | . 1F and to the first relation in Eq. (6.115) for |F̄ | ≫ 1F . Inserting Eq. (6.127)
into Eq. (6.126) yields an explicit expression for N0,

N0 ∼
1 + (F̄/1F)2

|⟨φ|ψ⟩|2
. (6.128)

This result implies that the ensemble size is minimal,

N0 ∼ |⟨φ|ψ⟩|
−2, (6.129)

in the usual case |F̄ | . 1F , whereas in the case |F̄ | ≫ 1F , the ensemble size increases as F̄ 2,

N0 ∼
F̄ 2

(1F)2|⟨φ|ψ⟩|2
. (6.130)

6.10.4. Inverted region
We estimate N0 in the inverted region in the important case where |F̄ | . 1F . Now the relevant part of the average

pointer deflection, which directly depends on the system, is the adjusted pointer deflection R̄s − R̄s,∞ (cf. Section 6.6.3).
Correspondingly, in the above Eqs. (6.116), (6.118) and (6.125) one should perform the substitution

R̄s − R̄ → R̄s − R̄s,∞. (6.131)

We consider the typical case (6.67). Inserting Eqs. (6.68), (6.70) and (6.131) into Eq. (6.125) yields the minimal ensemble
size

N0 ∼ |⟨φ|ψ⟩|
−2, (6.132)

which has the same form as in the optimal regime, Eq. (6.129). Note, however, that in the inverted region ⟨φ|ψ⟩ is very
small, and therefore the value of N0 is significantly greater than in the optimal regime. In view of Eqs. (6.119) and (6.132),
for measurements in the inverted region the SNR is

R ∼ |⟨φ|ψ⟩|
√
N. (6.133)

It is quite remarkable that the quantum SNR (6.133), which was obtained for weak PPS measurements, is of the same
order as for strong (projective) measurements of a small overlap |⟨φ|ψ⟩|. Indeed, for a system in the state |ψ⟩, the overlap can
be determined by measuring the projection operator6 Πφ = |φ⟩⟨φ|. Such a measurement results in the eigenvalue 1 with
the probability P1 = |⟨φ|ψ⟩|

2 and the eigenvalue 0 with the probability P0 = 1 − |⟨φ|ψ⟩|
2. After the measurement of an

ensemble of N systems, the sum of the obtained eigenvalues is described by the binomial distribution and, correspondingly,

6 The method considered here is not the only conceivable projective measurement of |⟨φ|ψ⟩|. Another projective-measurement scheme, a balanced
homodyne detection, is discussed in Section 13.3; however for both schemes the SNR values are of the same order of magnitude.
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has the average NP1 and the standard deviation (NP1P0)1/2. The equality between the two latter quantities is attained for
the minimal ensemble size

N0 =
P0
P1

≈ |⟨φ|ψ⟩|
−2, (6.134)

where the approximation holds for |⟨φ|ψ⟩| ≪ 1. As follows from Eqs. (6.119) and (6.134), now the SNR is given by

R = |⟨φ|ψ⟩|
√
N. (6.135)

Thus, weak PPS measurements in the regime of very large weak values can be used to measure small overlaps with
the same quantum SNR as the ideal measurements. Moreover, when the measurement accuracy is limited by technical
noise, weak PPS measurements can provide a higher measurement accuracy than ideal measurements, since weak PPS
measurements involve a strong amplification (cf. Section 6.7.2).

An experiment on weak PPS measurements in the inverted region is discussed in Section 13.

6.10.5. Comparison of weak measurements with and without post-selection
Asmentioned above, the conditions for meters to be efficient for weak standard and PPSmeasurements are given by Eqs.

(3.14) and (6.51), respectively. The condition (6.51) is less restrictive than (3.14); in other words, meters efficient for weak
standard measurements are also efficient for weak PPS measurements, but the converse generally is not true.

More specifically, when the covariance σFR = 0, Eqs. (3.13) and (6.49) are equivalent, i.e., meters optimal for weak
standard measurements are also optimal for weak PPS measurements and vice versa. Moreover, when σFR vanishes or is
sufficiently small,

|σFR| . |[R, F ]|, (6.136)

Eqs. (3.14) and (6.51) are equivalent, i.e., meters efficient for weak standard measurements are also efficient for weak
standardmeasurements and vice versa. In otherwords,weakmeasurements with andwithout post-selection require ensembles
of comparable sizes (for comparable magnitudes of Aφψ and Ā).

In contrast, when the magnitude of the covariance is relatively large,

|σFR| ≫ |[R, F ]|, (6.137)

then the generalized uncertainty relation (6.29) implies | [R, F ]| ≪ 1R1F , i.e., such meters are not efficient for standard
measurements. Indeed, in the case (6.137) the ensemble size N0 in Eq. (3.17) is much greater than N0 for efficient meters
in Eq. (3.20). On the other hand, regular meters [i.e., meters satisfying Eq. (6.51)] are efficient for weak PPS measurements
irrespective of the value of σFR.

This can be understood in the following way. Assume that we increase |σFR|, whereas [R, F ] and 1F [and hence the
measurement strength (6.15)] are fixed. For a regular meter [Eq. (6.51)], this increase of |σFR| results in an increase of 1R.
Moreover, in this case for weak PPS measurements the pointer deflection increases proportionally to1R, at least, in typical
cases [cf. Eqs. (6.52), (6.60) and (6.68)], but for weak standardmeasurements it stays the same [cf. Eq. (3.8)]. As a result, with
an increase of |σFR| the minimum ensemble size N0 for weak PPS measurements in Eq. (6.125) is not changed, whereas N0
for weak standard measurements in Eq. (3.16) increases.

Recall that in the case (6.137), the enhancement coefficient E is large [see Eq. (6.89)]. It is the effect of enhancement
present in weak PPS measurements and absent in standard measurements which explains why meters not efficient for
weak standard measurements can be efficient for weak PPS measurements.

Finally, we recall that in the limiting case [R, F ] = 0 (non-standard meters), weak standard measurements cannot be
performed at all, while weak PPS measurements are still generally efficient.

7. Mixed preselected state

7.1. The general nonlinear formula

Here we extend the above results to take into account the cases where the initial (‘‘preselected’’) state of the system ρ
is mixed. Now Eqs. (6.3) and (6.4) imply that the expansions for ⟨ΠφRc⟩f and ⟨Πφ⟩f have the same form as in Eq. (6.6) with
the changes

|⟨φ|ψ⟩|
2

→ ρφφ, (7.1a)

(Ak)w(Al)∗w → A(k,l)w ≡
(AkρAl)φφ

ρφφ
(k, l ≥ 0), (7.1b)



90 A.G. Kofman et al. / Physics Reports 520 (2012) 43–133

where A0
= (A0)w = 1. As a result, Eqs. (6.17) become now

⟨ΠφRc⟩f = ρφφ[2γ Im ( RcFAw)+ γ 2 FRcF A(1,1)w ], (7.2a)

⟨Πφ⟩f = ρφφ(1 + 2γ F̄ Im Aw + γ 2 F 2 A(1,1)w ), (7.2b)

whereas Eqs. (6.18) and (6.19) yield, respectively,

R̄s − R̄ =
2γ Im ( RcFAw)+ γ 2 FRcF A(1,1)w

1 + 2γ F̄ Im Aw + γ 2 F 2 A(1,1)w

(7.3)

and

R̄s =
R̄ + 2γ Im ( RFAw)+ γ 2 FRF A(1,1)w

1 + 2γ F̄ Im Aw + γ 2 F 2 A(1,1)w

. (7.4)

Formally, Eqs. (7.2)–(7.4) follow from Eqs. (6.17)–(6.19) on replacing the definition (2.36) of the weak value by Eq. (2.60)
and replacing

|Aw|
2

→ A(1,1)w =
(AρA)φφ
ρφφ

. (7.5)

As shown by Eq. (7.3) or (7.4), in the case of a mixed initial state, the results of weak PPS measurements depend on two
weak-value parameters, Aw [given now by Eq. (2.60)] and the associated weak value A(1,1)w , Eq. (7.5).

7.2. Validity conditions for weak PPS measurements

The validity conditions for weak PPS measurements with a mixed preselected state can be derived as in Section 6.2, the
only difference being that the A-dependent factors in Eq. (6.7) are changed now, in view of Eqs. (7.1), as follows,

(Ak)φψ (An−k)ψφ → (AkρAn−k)φφ (0 ≤ k ≤ n). (7.6)

As a prerequisite to an estimation of these factors, we need to derive several inequalities, as follows.
The spectral expansion of ρ has the form

ρ =


i

λi|ψi⟩⟨ψi|, (7.7)

where ⟨ψi|ψj⟩ = δij, λi ≥ 0, and


i λi = 1. In view of Eq. (7.7), we can write

|(Akρ An−k)φφ |
2

=


i

λi (Ak)φψi (A
n−k)ψiφ


2

≤


i

λi|(Ak)φψi |
2


j

λj |(An−k)ψjφ |
2

= (AkρAk)φφ (An−kρAn−k)φφ, (7.8)

where the Cauchy–Schwarz inequality is used. Thus, we obtain the inequality

|(Akρ An−k)φφ |
2

≤ (Akρ Ak)φφ (An−kρ An−k)φφ . (7.9)

In particular, for n = k = 1, Eq. (7.9) implies that

|(A ρ)φφ |2 ≤ (A ρ A)φφ ρφφ (7.10)

or, in view of Eqs. (2.60) and (7.5),

|Aw|
2

≤ A(1,1)w . (7.11)

For a pure state ρ, Eqs. (7.9)–(7.11) become equalities. Moreover, for k ≥ 0, we have the inequality

(AkρAk)φφ =


i

λi|(Ak)φψi |
2

≤ λmax


i

|(Ak)φψi |
2

= λmax (A2k)φφ, (7.12)

where λmax = max{λi}.
To estimate the quantity on the right-hand side of Eq. (7.6), we assume that

(A2k)φφ . [(A2)φφ]
k (7.13)
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and that the left and right sides in Eq. (7.12) (with k = 1) are comparable, i.e.,

(A ρ A)φφ ∼ λmax(A2)φφ . (7.14)

Combining Eqs. (7.9), (7.12), and (7.13) yields

|(Ak ρ An−k)φφ | . λmax[(A2)φφ]
n/2. (7.15)

Using the relations (7.14), (7.15), and (B.15), we obtain that the omission of higher-order terms in the numerator and
denominator of Eq. (7.3) is justified under the condition

µ′
≡ |γ |[(A2)φφ]

1/2 (|F̄ | +1F) ≪ 1, (7.16)

where µ′ is the small parameter in the case of a mixed initial state.
The small parameter µ′ in Eq. (7.16) differs from µ in Eq. (6.11) by the A-dependent factor. The latter is obtained under

the assumptions (7.13) and (7.14). Note that Eq. (7.13) holds, e.g., when (A2)φφ ∼ ∥A∥
2. It is of interest to compare the

present validity conditions (7.13), (7.14), and (7.16) with the respective conditions (6.8) and (6.11) obtained for the case of
a pure initial state ρ = |ψ⟩⟨ψ |. In this case λmax = 1, so that Eq. (7.14) becomes the relation

|Aφψ | ∼ [(A2)φφ]
1/2, (7.17)

which implies the equivalence of the conditions (7.16) and (6.11). Note that the conditions (7.13) and (7.17) are generally
stricter than Eq. (6.8). However, this difference can be negligible in some cases, as, e.g., in the important case |Aφψ | ∼ ∥A∥.

7.3. Discussion

As mentioned above, the equality in Eq. (7.11) is obtained for all pure preselected states. Let us consider whether there
exist also mixed states ρ for which the equality in Eq. (7.11) is obtained. Eq. (7.11) is equivalent to Eq. (7.10), which, in view
of Eq. (7.7), can be recast as

i

λi Aφψi ⟨ψi|φ⟩


2

≤


j

λj|Aφψj |
2


i

λi|⟨φ|ψi⟩|
2. (7.18)

This relation directly follows from the Cauchy–Schwarz inequality [8], if the sum on the left-hand side is interpreted as a
scalar product of the vectors {

√
λi Aφψi} and {

√
λi ⟨φ|ψi⟩}. The equality in Eq. (7.18) and hence in Eq. (7.11) holds if and only

if the above vectors differ from each other by a scalar factor, i.e., if and only if for all i for which λi ≠ 0

Aφψj = α0⟨φ|ψi⟩, (7.19)

where α0 is some complex number independent of i. Note that in this case Eq. (2.60) implies that Aw = α0 = Aφψj/⟨φ|ψi⟩.
In other words, |Aw|

2
= A(1,1)w if and only if the initial state ρ is a mixture of pure orthogonal states such that any of them

taken as the initial state would produce the same weak value.
The condition (7.19) is trivial, i.e., always holds (unless ⟨φ|ψi⟩ = 0), when there is only one allowed value of i, i.e., when

ρ is pure. But the condition (7.19) is nontrivial when there are two or more allowed values of i, i.e., when ρ is mixed. In this
case, Eq. (7.19) always holds when Â is proportional to the unity operator, at least, in the subspace spanned by the states |φ⟩

and |ψi⟩ with the allowed values of i; however, Eq. (7.19) is very unlikely to hold for an arbitrary physical quantity A. Thus,
we obtain that, as a rule, the equality A(1,1)w = |Aw|

2 implies that the initial state is pure, the exceptions being the cases for
which A and the mixed preselected state ρ satisfy the condition (7.19).

When A(1,1)w = |Aw|
2, (7.3) and (7.4) reduce to Eqs. (6.18) and (6.19), respectively, i.e., the present theory of weak PPS

measurements developed for a pure preselected state is applicable also for the cases where ρ is mixed. However, when
|Aw|

2 < A(1,1)w , weak PPS measurements are generally affected by the fact that ρ is mixed. Note that the effect of the
mixedness of ρ increases with decreasing the ratio |Aw|

2/A(1,1)w .

7.4. Measurement regimes

a. The linear response. The linear approximation to Eq. (7.3) has the same form of Eq. (6.20) as for a pure preselected state,
but Aw is now given by Eq. (2.60). Consider the validity conditions of the linear response. The denominator in Eq. (7.3) is
close to one and hence can be omitted, when

γ 2 A(1,1)w [(1F)2 + F̄ 2
] ≪ 1. (7.20)

If, moreover, Aw is sufficiently large,

|γ RcF Aw| ≫ γ 2
|FRcF |A(1,1)w , (7.21)
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then generally also the quadratic term in the numerator of Eq. (7.3) can be neglected. Thus, now the linear response holds
under the conditions (7.20) and (7.21). When FRcF = 0, the condition (7.21) always holds. When FRcF ≠ 0, one can use
Eq. (6.54) to show that for regular meters [Eq. (6.51)] in the typical case of Eq. (6.58) the condition (7.21) is equivalent to
the requirement that |Aw|

2/A(1,1)w is much greater than a number which is much less than 1. Hence, in particular, when
|Aw|

2
∼ A(1,1)w the condition (7.21) holds, i.e., the condition (7.20) is sufficient for the linear regime; moreover, now the

condition (7.20) is equivalent to Eq. (6.30).
b. Beyond the linear response. In the present case of amixed initial state, theweak-value parametersAw andA(1,1)w generally

cannot be made infinitely large (see Section 10.3). Still, if A(1,1)w is sufficiently large, the nonlinear Eq. (7.3) should be used.
In particular, when the condition (7.20) is inverted,

γ 2A(1,1)w [(1F)2 + F̄ 2
] ≫ 1, (7.22)

measurements are performed in the regime of the inverted region. Then Eq. (7.3) yields Eq. (6.34) with the change
Aw → A(1,1)w /A∗

w , so that we obtain

R̄s − R̄ ≈
FRcF

F 2
+

2 Im (RcF Aw)

γ F 2 A(1,1)w

−
2F̄ FRcF Im Aw
γ (F 2)2 A(1,1)w

. (7.23)

c.Measuring the coupling strength and weak values. The dependence of R̄s on γ in Eq. (7.3) is similar to that in the case of a
pure initial state, though themaximum of |R̄s− R̄| is now generally reduced. Themeasurements of γ and theweak values Aw
and A(1,1)w are now performed similarly to the case of a pure initial state (see Section 6.8), the measurements being optimal
in the strongly-nonlinear regime [cf. Eq. (6.41)],

γ 2 A(1,1)w [(1F)2 + F̄ 2
] ∼ 1. (7.24)

Since now there are three real weak-value parameters, Re Aw , Im Aw , and A(1,1)w , measuring them requires, at least, three
weak PPS measurements with different values of the meter or coupling parameters, rather than two as for a pure initial
state.

7.5. Peculiar case: large average input variable, |F̄ | ≫ 1F

In the case |F̄ | ≫ 1F , it is convenient to characterize the effects of the mixedness of the preselected state by the
parameter

v =
(A(1,1)w − |Aw|

2)1/2

|Im Aw|
. (7.25)

Note that for pure preselected states v = 0. When ν is small, v ≪ 1, the pointer value is resonantly enhanced under the
conditions (6.98)–(6.99), the resonance being approximately described by the expression

R̄s − R̄ =
FcRcFc − ϵF̄ Im [R, F ] − 2xF̄σFR
F̄ 2

x2 + ϵ2 + (1F/F̄)2 + v2

 , (7.26)

which differs from Eq. (6.100) by the term v2 in the denominator. The effect of v ≠ 0 is to broaden the resonance (7.26) and
to decrease its amplitude, so that the maximum possible pointer deflection (6.55) can be achieved only for

v .
1F
|F̄ |

≪ 1, (7.27)

whereas for v ≫ 1F/|F̄ | the maximum magnitude of Eq. (7.26) is much less than Eq. (6.55), decreasing with v. Eq. (7.27)
provides a limitation on the ratio |F̄ |/1F under which the optimal regime (6.55) is possible, namely, |F̄ |/1F . v−1. The
sensitivity of the resonance (7.26) to the quantity v for v & 1F/|F̄ | can be used to measure v when v is very small.

7.6. The minimum size of the measurement ensemble

Let us estimate the minimum size of the ensemble needed for weak PPS measurements in the linear and strongly-
nonlinear regimes. We also assume for simplicity that |Aw|

2
∼ A(1,1)w .

a. Linear regime. Now the condition for the linear regime is given by Eq. (7.20). Inserting Eq. (6.47) into Eq. (6.120) and
taking into account that ⟨Πφ⟩ = ρφφ , we obtain

N0 ≥ [4γ 2A2
w(1F)2ρφφ]−1. (7.28)

The lower bound for N0,

N0 = [4γ 2A2
w(1F)2ρφφ]−1, (7.29)
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Table 5
Moments of the meter variables used in the present theory, for an arbitrary meter with R = F and different
types of the initial state ρM .

No. Meter configuration Moments of the meter variables:
RcF FRcF FcRcFc

1 F 3
c = 0 (1F)2 2F̄(1F)2 0

2 Arbitrary ρM (1F)2 F 3
c + 2F̄(1F)2 F 3

c

is obtained for optimal meters [Eq. (6.49)], whereas measurements with effective meters [Eq. (6.51)] require N0 of the order
of the value in Eq. (7.29).

b. Strongly-nonlinear regime. The strongly-nonlinear regime occurs under the condition (7.24). We assume that the
impurity of the preselected state is sufficiently small, so that the upper bound of the magnitude of the average pointer
deflection is of the same order as for a pure preselected state, i.e., |R̄s − R̄|max ∼ 1R [see Eq. (6.60); here1R is assumed to
be not too small]. Moreover, we use the estimate for ⟨Πφ⟩f in Eq. (6.127) with the substitution (7.1a), i.e.,

⟨Πφ⟩f ∼
ρφφ

1 + (F̄/1F)2
. (7.30)

Then Eq. (6.125) yields [cf. Eq. (6.128)]

N0 ∼ ⟨Πφ⟩
−1
f ∼

1 + (F̄/1F)2

ρφφ
. (7.31)

In the usual case |F̄ | . 1F , Eq. (7.31) reduces to a simple form [cf. Eq. (6.129)],

N0 ∼ (ρφφ)
−1. (7.32)

8. Examples of meters

The above theory is very general and holds for meters with finite- and infinite-dimensional Hilbert spaces. Below we
consider the average pointer deflection for various types of meters. In particular, we will obtain formulas for the meter
parameters which are important for weak PPS measurements. Such parameters, which are discussed below, include the
following mixed moments of the meter variables: RcF , FRcF , and FcRcFc [compare, e.g., Eqs. (6.18), (6.100) and (7.3)].

8.1. Non-standard meters

Here we consider two types of non-standard meters, namely, meters with R = F and those with1R = 0.

8.1.1. Meters with coinciding input and output variables, R = F
The above theory significantly simplifieswhenR and F commute. For the simplest such case,R = F , themoments ofmeter

variables used in the present theory are shown in Table 5 for different types of the initial state of the meter. In particular,
configuration 2 in Table 5 corresponds to the general case of an arbitrary initial state ρM, whereas meter configuration 1
describes the special case F 3

c = 0, which occurs, e.g., for a symmetric distribution Φ(F) = ⟨F |ρM|F⟩ (e.g., a Gaussian or a
Lorentzian) centered at F̄ , so thatΦ(F) = Φ(2F̄ − F). In Table 5 we used Eq. (6.54).

Thus, for meters with R = F , the general nonlinear formula (6.18) becomes (cf. configuration 2 in Table 5)

F̄s − F̄ =
2γ (1F)2 Im Aw + γ 2

[F 3
c + 2F̄(1F)2]|Aw|

2

1 + 2γ F̄ Im Aw + γ 2 F 2|Aw|2
. (8.1)

Consider two important special cases. In the linear regime [Eq. (6.30)], Eq. (8.1) yields

F̄s − F̄ = 2γ (1F)2 Im Aw, (8.2)

which is an extension of the second equality in Eq. (2.56) to the general meter state.
Now let us consider the inverted region, assuming for simplicity that F̄ = F 3

c = 0. We insert the meter moments listed
in Table 5 for configuration 1 into Eq. (6.34), taking into account that now F 2 = (1F)2 [cf. Eq. (6.31)]. This yields the simple
expression

F̄s =
2
γ

Im
1
A∗
w

for |γ Aw|1F ≫ 1. (8.3)

It is worth noting that Eq. (8.3) provides an interpretation for the result of a classical theory in Eq. (9) of Ref. [22] in terms of
weak values (see Section 13).
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8.1.2. Meters with zero pointer uncertainty,1R = 0
Furthermore, consider the case when1R = 0 and R̂ has a discrete spectrum.7 In this case

R̂ ρM = ρM R̂ = R̄ ρM (8.4)

[cf. the remark after Eq. (4.11)], and hence

R̂c ρM = ρM R̂c = 0. (8.5)

Eq. (8.5) implies that

RcF = Tr (ρMR̂c F̂) = 0. (8.6)

As a result, now the linear approximation (6.20) vanishes. However the weak value is still measurable in the nonlinear
regime. Indeed, now Eq. (6.18) becomes, in view of Eqs. (8.6) and (6.54),

R̄s − R̄ =
γ 2 FcRcFc |Aw|

2

1 + 2γ F̄ Im Aw + γ 2 F 2|Aw|2
. (8.7)

Note that Eq. (8.7) differs from zero only when F̂ and R̂ do not commute. Indeed, for commuting F̂ and R̂, we have
Fc Rc Fc = F 2

c Rc = Tr (F̂ 2
c R̂c ρM) = 0, in view of Eq. (8.5).

In both cases (8.1) and (8.7) one can measure Im Aw and |Re Aw|, as discussed in the end of Section 6.8.5.

8.2. Continuous-variable meters

The standard measurement theory [1,18,77] involves a continuous-variable meter and canonically conjugate variables.
Correspondingly, the bulk of the literature on weak values involves such meters. Here we apply the above theory to the
important case of continuous-variable meters.

First, we remind that meters with R = F (including continuous-variable meters) were discussed in Section 8.1 (see,
especially, Table 5). The case of commuting F and R is essentially similar to the case R = F . Consider now a continuous-
variable meter with non-commuting F and R.

8.2.1. Canonically conjugate variables
The present theory is applicable to arbitrary meter variables, however here we focus on canonically conjugate variables

given by Eq. (2.12). Since [q, p] = i, now Eq. (6.23) becomes

RcF ≡ qcp = σpq + i/2, (8.8)

and the general linear-response formula (6.20c) reduces to the result of Ref. [124], which is a direct extension of Eq. (2.40),

q̄s − q̄ = γ (Re Aw + 2 σpq Im Aw). (8.9)

The covariance σpq is an important parameter, since it affects the result (8.9) of weak PPS measurements. Moreover, it
enters the generalized uncertainty relation for the canonically conjugate meter variables p and q, which, as follows from Eq.
(6.29), has the form

1p1q ≥


1/4 + σ 2

pq. (8.10)

Therefore, it is of interest to obtain the conditions under which σpq ≠ 0.
Assume now for simplicity that at t = 0 the meter is in a pure state |ψM⟩. Presenting ψM(q) = ⟨q|ψM⟩ and ψM(p) =

⟨p|ψM⟩ in the forms

ψM(q) = fq(q) exp[iξ(q)], (8.11)

ψM(p) = fp(p) exp[−iζ (p)], (8.12)

where fq(q), ξ(q), fp(p), and ζ (p) are real and continuous functions, we obtain two equivalent expressions for the
anticommutator of q and p (see Appendix C),

{q, p} = 2 q ξ ′(q) = 2 p ζ ′(p), (8.13)

7 Here we do not consider the case1R = 0, when R̂ has a continuous spectrum, since then states with1R = 0 are generally unphysical.
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Table 6
Moments of meter variables used in the present theory, for a meter with F = p and R = q; different cases correspond to different types of the pure initial
state |ψM⟩. Here, ζ ′

c(p) = ζ ′(p)− q̄, and ξ ′
c(q) = ξ ′(q)− p̄.

Moments of the meter variables:
No. Meter configuration σpq pqcp pcqcpc

1 Constant or linear ζ (p) 0 0 0
2 Quadratic ζ (p), p3c = 0 b/2 bp̄ 0
3 Quadratic ζ (p) b/2 b p2pc/2(1p)2 b p3c /2(1p)2

4 Arbitrary |ψM⟩ pζ ′
c(p) or qξ ′

c(q) p2ζ ′
c(p) p2c ζ ′

c(p)

where the prime denotes differentiation. The second equality in Eq. (8.13) is an interesting and nontrivial relation between
the phases ξ(q) and ζ (p). Combining Eqs. (6.22) and (8.13) yields two equivalent expressions for σpq,

σpq = pζ ′(p)− q̄ p̄ = qξ ′(q)− q̄ p̄. (8.14)

A consequence of Eq. (8.14) is that σpq = 0 if, at least, one of the phases ζ (p) and ξ(q) is constant or linear, because linear
ζ (p) and ξ(q) imply,

ζ ′(p) = q̄, ξ ′(q) = p̄, (8.15)

as follows from the general expressions derived in Appendix C,

ζ ′(p) = q̄, (8.16)

ξ ′(q) = p̄. (8.17)

Consequently, we conclude that the covariance σpq for a coordinate q and the canonically conjugatemoment p is nonzero
if and only if one of the two equivalent conditions holds: (a) the phase ζ (p) is nonlinear in p and

p ζ ′(p) ≠ q̄ p̄ (8.18)

or (b) the phase ξ(q) is nonlinear in q and

q ξ ′(q) ≠ q̄ p̄. (8.19)

Inserting Eq. (8.14) into Eq. (8.9), we obtain two equivalent expressions for the linear response,

q̄s − q̄ = γ {Re Aw + 2[ pζ ′(p)− q̄ p̄ ] Im Aw} (8.20a)

= γ {Re Aw + 2[ qξ ′(q)− q̄ p̄ ] Im Aw}. (8.20b)

It is usually noted [18,124,130] that Eq. (8.9) reduces to Eq. (2.40) for a real ψM(q). The above discussion of σpq implies a
more general result: Eq. (2.40) holds whenever the phase of eitherψM(q) orψM(p) is a linear function (or, as a special case,
a constant or zero). In contrast, a nonlinear phase ζ (p) or ξ(q) generally results in a non-vanishing correlation between p
and q, σpq ≠ 0, so that both terms in Eqs. (8.9) do not vanish (see also Section 8.2.2).

Whenweak values are large, one should use the general nonlinear equation (6.18) [or (7.3), for amixed preselected state]
or Eqs. (6.100) and (7.26) for the case |F̄ | ≫ 1F . In particular, Eq. (6.18) with the account of Eq. (8.8) now becomes

q̄s − q̄ =
γ (Re Aw + 2σpq Im Aw)+ γ 2 pqcp|Aw|

2

1 + 2γ p̄ Im Aw + γ 2 p2|Aw|2
, (8.21)

whereas for a mixed preselected state one should replace |Aw|
2

→ A(1,1)w in Eq. (8.21).
The expressions for the meter parameters entering the present theory for the meter (2.12) with an arbitrary pure initial

state are shown in Table 6, configuration 4. To derive these expressions, we used Eqs. (6.22), (6.54), (8.13), (8.16), the equality

p qc p = p q p − q̄ p2, (8.22)

and the following relation obtained in Appendix C,

p q p = p2 ζ ′(p). (8.23)

The case whenψM(p) is real or has a constant or linear phase ζ (p), is especially simple, since then the real meter parameters
vanish, as shown in Table 6, configuration 1 (see also Section 8.2.3).

Consider now the simplest case of a nonlinear phase in themomentum representation: a quadratic ζ (p). Using Eq. (8.16),
it is easy to show that in the general case a quadratic ζ (p) satisfies the equation

ζ ′(p) = q̄ +
b (p − p̄)
2(1p)2

, (8.24)
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where b is a real dimensionless parameter characterizing the quadratic phase modulation. Inserting Eq. (8.24) into the
formulas for configuration 4 in Table 6 yields configuration 3 in Table 6. In particular, the linear-response result (6.20a)
becomes

q̄s − q̄ = γ (Re Aw + b Im Aw). (8.25)

Now we obtain σpq = b/2 (see Table 6, configuration 3), and the generalized uncertainty relation (8.10) now becomes

1p1q ≥

√
1 + b2

2
. (8.26)

When p3c = 0, which holds, e.g., for the function Φ(p) = |ψM(p)|2, which is symmetric with respect to p̄, Φ(p) =

Φ(2p̄ − p), the formulas for the case of the quadratic ζ (p) simplify: see configuration 2 in Table 6.
An example of a state with a quadratic phase and a symmetric Φ(p) is a general complex Gaussian state given by

Eqs. (2.51) and (2.52). The parameters 1p and 1q in Eqs. (2.51) and (2.52) are related by Eq. (2.53), which is essentially
the generalized uncertainty relation (8.26) with the equals sign. A general Gaussian state implies the formulas in Table 6,
configuration 2.

8.2.2. Invariance with respect to a meter gauge transformation
As mentioned above (see also Table 6), p and q are generally correlated (i.e., σpq ≠ 0) whenever the phase ζ (p) is

nonlinear. To understand better this result, we make the following remark.
The formulas in Table 6, configurations 1 and 4, imply that the average pointer deflection in the presence of a nonlinear

ζ (p) will not change if the meter is modified, as follows: (i) ζ (p) is replaced by a phase ζ̃ (p) which is vanishing or at most
linear in p and (ii) the pointer is changed according to

q → R̃ = q + ζ ′(p)+ C, (8.27)

where C is an arbitrary real constant. Eq. (8.27) is a special case of the invariance property of the average pointer deflection
under a gauge transformation of themeter, discussed in Section 4.2.2 [see, in particular, Eq. (4.20)]. In the case of a quadratic
ζ (p) as given in Eq. (8.24), Eq. (8.27) becomes

q → R̃ = q + bp + C . (8.28)

The modified pointer variable R̃ in Eq. (8.27) is obviously correlated with p when ζ (p) is nonlinear in p.
Note that R̃ is canonically conjugate to p, since [R̃, p] = [q, p] = i, for any ζ (p). This is not surprising, since the canonically

conjugate variable is known to be determined not uniquely [183].

8.2.3. Measuring physical parameters
Here we will consider weak PPS measurements involving several examples of meters with canonically conjugate

variables (2.12) in the usual case where |p̄| . 1p. As follows from the general discussion in Section 6, the optimal conditions
for measurements of physical parameters, such as γ and Aw , are obtained in the strongly-nonlinear regime, the condition
for which in Eq. (6.43) becomes now

|γ Aw|1p ∼ 1. (8.29)

Here we will discuss the optimal conditions for two cases: (i) the phase ζ (p) in Eq. (8.12) is constant or linear and (ii) ζ (p)
is nonlinear.

Case (i). A constant or linear ζ (p). In this case Eq. (8.21) is especially simple (cf. Table 6, configuration 1),

q̄s − q̄ =
γ Re Aw

1 + 2γ p̄ Im Aw + γ 2 p2|Aw|2
. (8.30)

This quantity differs from zero only when Re Aw is nonvanishing. The magnitude of the pointer deflection (8.30) is maximal
for

γ Aw =
±1p − ip̄

p2
, (8.31)

when Eq. (8.30) becomes, respectively,

q̄s − q̄ = ±
1

21p
. (8.32)

Thus, for p̄ = 0 (p̄ ≠ 0), the optimal Aw should be real (complex). The Heisenberg uncertainty relation [Eq. (8.10) with
σpq = 0] and Eq. (8.32) imply that now the maximummagnitude of the pointer deflection satisfies the relation

|q̄s − q̄|max ≤ 1q, (8.33)
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which is in agreementwith the general equation (6.60). The equality in Eq. (8.33) is achieved, e.g., formeterswith a Gaussian
initial state.

Case (ii). A nonlinear ζ (p). This case can be analyzed similarly to case (i), though generally Eq. (8.21) is more complicated
than Eq. (8.30). In contrast to case (i), this case shows the enhancement discussed in Section 6.7.3. In particular, in the optimal
regime the maximum magnitude of the pointer deflection is of the order of1q in both cases (i) and (ii), in agreement with
the general result (6.60). However, for a given 1p, the quantity 1q in case (ii) is greater than that in case (i) due to a non-
zero covariance σpq [cf. Eq. (8.10)]. An increase of the nonlinear ζ (p) leads to an increase of |σpq|, which in turn yields an
enhancement of the maximum pointer deflection and thus an increase of the measurement accuracy.

The enhancement of the pointer deflection occurs also in the linear-response regime. In contrast to the nonlinear regime,
this enhancement occurs only when Im Aw ≠ 0 [see Eq. (8.9)], being maximized when Aw is purely imaginary [21,90,93–95,
99,100]. In both regimes, the increase of the pointer deflection is characterized by the enhancement coefficient E given in
Eq. (6.87). However, the optimal conditions are obtained only in the nonlinear regime.

Let us consider two examples.
Example 1. Complex Aw . First, we consider the case of a quadratic ζ (p) with p̄ = p3 = 0. Then, as follows from Eq. (8.21)

and Table 6, configuration 2, we obtain

q̄s − q̄ =
γ (Re Aw + b Im Aw)
1 + γ 2 (1p)2|Aw|2

. (8.34)

The magnitude of Eq. (8.34) is maximum for the following values of γ Aw ,

γ Aw = ±
1 + ib

1p
√
1 + b2

. (8.35)

Substituting these values back into Eq. (8.34) yields, respectively,

q̄s − q̄ = ±

√
1 + b2

21p
. (8.36)

In view of Eq. (8.36) and the generalized uncertainty relation (8.26), we again obtain the upper bound for the magnitude
of the pointer deflection as in Eq. (8.33). The equality in Eq. (8.33) is achievable now, e.g., for a general complex Gaussian
meter wavefunction.

Note that the pointer deflection in Eq. (8.36) is enhanced relative to Eq. (8.32) by the factor given exactly by Eq. (6.87),
which now becomes

E =


1 + b2. (8.37)

In particular, for |b| ≫ 1 we obtain that

E = |b| ≫ 1. (8.38)

In the above example, just as in the linear case (8.9), the enhancement cannot be obtained with a real weak value,
since then the b-dependent term disappears in Eq. (8.34). The following example shows that in the nonlinear case a strong
enhancement is possible even for a real Aw , when p̄ ≠ 0.

Example 2. Real Aw . Let Aw be real, ζ (p) quadratic, and p3c = 0. Then Eq. (8.21) and Table 6, configuration 2, yield

q̄s − q̄ =
γ Aw + γ 2 b p̄ A2

w

1 + γ 2 p2 A2
w

. (8.39)

Now the pointer-deflection magnitude is maximal when

γ Aw = 2(q̄s − q̄). (8.40)

In this case the pointer deflection is for b ≠ 0

q̄s − q̄ =
b p̄

2p2

1 +


1 +

p2

(bp̄)2

1/2
 , (8.41)

whereas for b = 0

q̄s − q̄ = ±
1

2(p2)1/2
(b = 0). (8.42)

For |b| ≫ 1 the magnitude of Eq. (8.41) as a function of p̄ is maximum for |p̄| = 1p,

q̄s − q̄ = sgn(p̄)
b

21p
(|b| ≫ 1, |p̄| = 1p). (8.43)
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This result is easily obtained, if one takes into account that for |b| ≫ 1 and for not too small |p̄|, i.e., |p̄| ≫ 1p/|b|, the
fraction in the square brackets in Eq. (8.41) can be neglected, yielding q̄s − q̄ = bp̄/[p̄2 + (1p)2].

The magnitude of the pointer deflection in Eq. (8.43) is the same as in Eq. (8.36) with |b| ≫ 1. Comparing Eqs. (8.43) and
(8.42) with |p̄| = 1p shows that now enhancement is given by the factor

√
2|b|, which is of the order of the enhancement

coefficient E in Eq. (8.38), in agreement with the general discussion in Section 6.7.3. It is of interest also to compare
Eq. (8.43) with the special case p̄ = 0 of Eq. (8.42), q̄s − q̄ = ±(21p)−1, where the magnitude of Eq. (8.42) as a function of p̄
is maximum. As a result, we obtain that the maximum of |q̄s − q̄| as a function of both γ Aw and p̄ is increased by the factor
|b| for |b| ≫ 1 in comparison to that for b = 0.

8.2.4. Effects of the meter Hamiltonian
The meter Hamiltonian is often nonzero in experiments. Therefore, let us consider the effects of the meter Hamiltonian.

For simplicity, we assume that the meter is described by the same Hamiltonian as a free particle [90,126],

HM ≡ HM1 = HM2 =
p2

2mp
, (8.44)

where mp is the ‘‘particle’’ mass. In this subsection, in paragraph a we consider the case of the canonically conjugate meter
variables (2.12), whereas in paragraph bwe consider a more general case.

a. Effective initial state. Here we consider the case (2.12). Now the Hamiltonian (8.44) commutes with F = p, therefore,
as discussed in Section 5.3, the effects of the meter Hamiltonian can be taken into account by two equivalent ways: either
through the effective initial state or through the effective pointer.

Here we describe the effects of the meter Hamiltonian by the effective initial state [see Eqs. (5.16) and (5.12)],

ψM(p, tM) = exp(−iHMtM) ψM(p). (8.45)

The Hamiltonian (8.44) generates a quadratic contribution to the phase of ψM(p, tM), with b given by the quantity

b(tM) =
2(1p)2 tM

mp
, (8.46)

which increases with tM. Thus, the effective initial state can have a nonlinear phase modulation due to the free meter
Hamiltonian, even when the phase of the initial meter state ψM(p) is constant or linear in p.

Generally, the initial state ψM(p) has a nonlinear phase ζ (p). As a result, the meter parameters for weak PPS
measurements are the sums of the contribution due to ζ (p) (see Table 6, configuration 4) and the contribution due to the
meter Hamiltonian, i.e., due to the quadratic phase modulation determined by the parameter b in Eq. (8.46) (see Table 6,
configuration 3).

In particular, in the simple case, when the initial meter phase in the momentum space is constant or linear, the effect of
the meter Hamiltonian is to change case 1 in Table 6 to configuration 2 or 3. For a sufficiently long tM, this results in a large
pointer-deflection enhancement [cf. Eq. (8.38)],

E =
2(1p)2tM

mp
≫ 1. (8.47)

When ψM(p) is a Gaussian, Eq. (8.47) can be recast also as

E =
2(1qM)2 mp

tM
, (8.48)

where1qM is the uncertainty of q at themoment tM. To derive Eq. (8.48), we took into account that1p1qM = b(tM)/2 ≫ 1
[cf. Eq. (2.53)], which yields, in view of Eq. (8.46),

1qM =
1ptM
mp

. (8.49)

Eqs. (8.47) and (8.48) were obtained and checked experimentally in Ref. [90] (where the enhancement factor E is denoted
by F ) for the special case of linear response (see also Ref. [126]).

Note, however, that the same enhancement is obtainable also in the optimal regime, as discussed in Section 6.7.3 and
shown by a direct calculation in Section 8.2.3. It is advantageous to perform experiments in the optimal regime, since the
proper amplification and hence the total amplification [Eq. (6.90)] are greater in the optimal regime by, at least, an order of
magnitude than those in the linear regime.

b. Effective pointer variable. Consider the case when F is arbitrary, whereas R = q. Now the Hamiltonian HM does not
necessarily commute with F̂ . In this case, as discussed in Section 5.3, the effects of HM can be taken into account through the
effective pointer variable. From Eqs. (5.11), (5.13), (5.14) and (8.44) we obtain that the effective pointer variable is

q(tM) = q +
tM
mp

p, (8.50)
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both for PPS and standard measurements. Correspondingly, now the pointer deflection equals (irrespective of the
measurement strength)

q̄s,f − q̄ = (q̄s,f − q̄)0 +
tM
mp
(p̄s,f − p̄)0. (8.51)

Here the subscript s (f ) corresponds to PPS (standard) measurements, whereas the two terms in the parentheses denoted
by the subscript ‘‘0’’ are the unperturbed results of the measurements of the coordinate and the momentum, respectively,
i.e., the results obtained in the absence of the meter Hamiltonian.

Eq. (8.51) implies that, when tM is very small, the effect of the meter Hamiltonian is negligible,

q̄s,f − q̄ = (q̄s,f − q̄)0. (8.52)

In the opposite limit, when tM is sufficiently large, the unperturbed contribution from the coordinate can be neglected in
Eq. (8.51), and the measurement of the coordinate provides the unperturbed momentum deflection,

q̄s,f − q̄ =
tM
mp
(p̄s,f − p̄)0. (8.53)

In this case, the measurement of the momentum is ‘‘translated’’ into the measurement of the coordinate [76]. This is a very
useful feature, since it is usually much easier to measure the position of a particle than its momentum.

Note that the factor tM/mp in Eq. (8.53) increases with tM and hence can provide a strong enhancement. In the case
(2.12), this enhancement is equivalent to that mentioned above, which is due to the correlation between F and R. However,
generally (e.g., for F = q) the enhancement due to the meter Hamiltonian in Eq. (8.53) differs from the enhancement
discussed in Section 6.7.3.

Let us discuss special cases.
(i) Consider measurements with

F = R = q. (8.54)

This case is realized, e.g., in the Stern–Gerlach experiment [18], as well as in some optical experiments [21,83,93–95,99,
100]. We note a difference between standard and weak PPS measurements for the case (8.54). For standard measurements,
the first term on the right-hand side of Eq. (8.51) vanishes [cf. Eq. (3.8) with F = R = q], i.e., the ‘‘translation’’ (8.53) is exact
for any tM. Hence, effectively the meter variables are given by [cf. the case (2.79)]

F = q, R =
tM
mp

p. (8.55)

In comparison, for PPS measurements both terms in Eq. (8.51) are generally nonzero. Now the ‘‘translation’’ (8.53) is
approximate; it occurs only when tM is sufficiently long, whereas in the opposite limit of a short tM Eq. (8.52) holds [95].

(ii) Consider the meter with the canonically conjugate variables given by Eq. (2.12), F = p and R = q. Now for standard
measurements, Eq. (8.52) is exact, i.e., effects of the meter Hamiltonian vanish. In contrast, for weak PPS measurements
with the meter (2.12), effects of the meter Hamiltonian do not vanish. Now Eq. (8.51) yields the results discussed above
in paragraph a. This can be checked by inserting Eqs. (8.21) and (8.1) with F = p on the right-hand side of Eq. (8.51)
and using Table 6. Thus, the two seemingly different approaches developed for this case in paragraphs a and b are
equivalent, in agreement with the discussion in Section 5.3. This equivalence implies that the quadratic phase characterized
by the parameter (8.46) can be equivalently replaced by the effective pointer (8.50). In turn, the latter equivalence is a
consequence of the invariance of PPS measurements with respect to gauge transformations of the meter (Section 4.2.2, see
also Section 8.2.2).

c. The covariance and the spatial spread. Consider a meter modeled as a particle moving in a potential, and let F = p and
R = q. Due to nonzero meter Hamiltonian HM, the meter state is changing in time. We now assume, for simplicity, that
the system Hamiltonian is zero. In the special case of instantaneous (impulsive) measurements, tM, tf, ti → 0, Jozsa [124]
obtained Eq. (8.9), where the covariance σpq is related to the rate at which the meter distribution is spreading in space by
the equality

σpq =
mp

2
d{[1q(t)]2}

dt


t=0
, (8.56)

where 1q(t) is calculated for the free-evolving meter state ρM(t) = e−iHMtρMeiHMt . As mentioned in Section 5.3, in the
present case tM, tf, ti → 0, the measurement results are not modified by the meter Hamiltonian HM; hence also Eq. (8.21)
with σpq obeying Eq. (8.56) holds now.

Consider nowwhether it is possible to extend Eq. (8.56) tomeasurementswith a finite duration, tM−ti > 0. Forweak PPS
measurements with a finite duration, even when the coupling is impulsive, tf − ti → 0, the effects of themeter Hamiltonian
generally cannot be taken into account by a relation, which, as Eq. (8.56), depends only on the meter state. Indeed, when
the meter Hamiltonian HM does not commute with the coupling Hamiltonian (2.8), the effects of HM include necessarily a
change of the pointer variable (see Section 5.3).
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An exception is the case of the free-particle meter Hamiltonian (8.44). Indeed, since the Hamiltonian (8.44) commutes
with the coupling Hamiltonian (2.8), then, as shown in Section 5.3, the meter Hamiltonian can be taken into account in
measurementswith a finite duration simply by replacing the initialmeter stateρM with the stateρM(tM) [see Eq. (5.16)]. This
means that now Eqs. (8.9) and (8.21) are not changed, but Eq. (8.56) should bemodified by the substitution t = 0 → t = tM,
i.e.,

σpq =
mp

2
d{[1q(t)]2}

dt


t=tM

. (8.57)

8.3. Two-level meter

Until recently, pre- and post-selected measurements were studied mainly employing a continuous-variable meter, the
exception being two early experimental works [81,82]. In a number of recent theoretical papers, measuring weak values of
a qubit with a qubit (two-level) meter was discussed [123,127,149], whereas measurement of an arbitrary system with
a spin and a qubit meters was considered in Refs. [122,130], respectively. A qubit meter was used in experiments for
weak PPS measurements of a qubit [81,82,87,97,98] and a continuous-variable system [101,102]. Here we discuss weak
PPS measurements of an arbitrary system with a qubit meter, beyond the linear-response regime.

For a two-level (qubit) meter, the operators F̂ and R̂ can be written in the form,

F̂ = F̂1 + f0, F̂1 = σ⃗ · n⃗F , (8.58)

R̂ = σ⃗ · n⃗R, (8.59)

where n⃗F and n⃗R are unit vectors and f0 is a real number. The operators (8.58)–(8.59) are not themost general ones. However,
the most general situation easily reduces to the case (8.58)–(8.59) with the help of simple substitutions.8

The meter parameters in the formulas of the present theory [see, e.g., Eqs. (6.18), (6.100), (7.3) and (7.26)] are now
given by

F̄ = F̄1 + f0, F 2 = 1 + 2f0F̄1 + f 20 , 1F =


1 − F̄ 2

1 , (8.63)

1R =


1 − R̄2, (8.64)

RcF = MR − R̄F̄1 + iMI ,

FRcF = M − R̄ + 2f0(MR − R̄F̄1),

FcRcFc = M − 2F̄1MR + R̄(2F̄ 2
1 − 1), (8.65)

where

MR = Re RF1, MI = Im RF1, M = F1RF1. (8.66)

From Eqs. (8.58), (8.59) and (8.66) we obtain that

MR = cos η, MI = F̄2 sin η, M = F̄1 cos η − F̄3 sin η. (8.67)

Here η (0 ≤ η ≤ π ) is the angle between n⃗F and n⃗R,

F̄1 = Tr [(σ⃗ · n⃗F )ρM], F̄2,3 = Tr [(σ⃗ · n⃗2,3)ρM], (8.68)

8 Indeed, in the most general case R̂ has the form

R̂ = r1σ⃗ · n⃗R + r0, (8.60)

where r0 and r1 are real. As implied by Eq. (4.10), replacing Eq. (8.59) by Eq. (8.60) results in multiplying the expression for R̄s − R̄ by r1 .
Similarly, the most general F̂ has the form

F̂ = f1(F̂1 + f0), (8.61)

where f1 is real. However, when the factor f1 ≠ 1, it can be absorbed in the parameter g(t) in the Hamiltonian (2.8) and, hence, also in the coupling strength
γ . Hence, using Eq. (8.61) instead of Eq. (8.58) results in the following substitution in the formulas of the present theory,

γ → f1γ . (8.62)
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Table 7
Moments of meter variables used in the present theory, for various configurations of a two-level meter. The parameter F̄1 determines F̄ , F 2 , and 1F by
Eq. (8.63), whereas f2 = 1 − (s⃗M · n⃗F )

2
= (1F)2 .

No. Meter configuration Moments of the meter variables:
R̄ F̄1 RcF FRcF FcRcFc

1 n⃗F ⊥ n⃗R, s⃗M = n⃗2 0 0 i 0 0
2 n⃗F = n⃗R, s⃗M · n⃗F = 0 0 0 1 2f0 0
3 s⃗M = n⃗2 0 0 eiη 2f0 cos η 0
4 n⃗F = n⃗R s⃗M · n⃗F s⃗M · n⃗F f2 2f0f2 −2F̄1f2
5 s⃗M = n⃗R 1 cos η 0 − sin2 η − sin2 η

6 s⃗M = n⃗R, n⃗F ⊥ n⃗R 1 0 0 −1 −1
7 s⃗M = 0 0 0 cos η 2f0 cos η 0

whereas n⃗2,3 are unit vectors defined by

n⃗2 =
n⃗R × n⃗F

sin η
, n⃗3 = n⃗F × n⃗2. (8.69)

Note that for noncommuting R̂ and F̂ (i.e., for η ≠ 0), {n⃗F , n⃗2, n⃗3} is an orthonormal basis in the Bloch sphere of the meter.
The general initial condition for a two-level meter is

ρM = (I + σ⃗ · s⃗M)/2, (8.70)

where s⃗M is the pseudospin. Using Eqs. (8.70) and (8.68), we obtain that in Eqs. (8.64), (8.65) and (8.67)

R̄ = s⃗M · n⃗R, F̄1 = s⃗M · n⃗F , F̄2,3 = s⃗M · n⃗2,3, (8.71)

the quantities F̄i being the components of the pseudospin in the orthonormal basis {n⃗F , n⃗2, n⃗3}.
When R̂ and F̂ commute, then η = 0 or π , i.e., n⃗F = ±n⃗R. In this case, the quantities F̄2,3 are not defined, but they drop

from the expressions, and Eqs. (8.67) and (8.71) yield that

MR = ±1, MI = 0, M = R̄ = ±F̄1, (8.72)

where the choice of the sign on the right-hand sides of the equations coincides with that in the equality n⃗F = ±n⃗R.
In the present case of a two-level meter there are a number of free parameters, variation of which allows one to obtain

desirable values of the meter moments. Several possible configurations of the qubit meter are listed in Table 7. To obtain
the values of the moments of the meter variables shown in Table 7, we used Eqs. (8.65), (8.67), (8.69), (8.71) and (8.72).

A simple, but important, case is obtained when the initial meter state is pure (i.e., s⃗M is a unit vector) and {n⃗R, n⃗F , s⃗M}

is a right-handed basis in the Bloch sphere of the meter, see meter configuration 1 in Table 7. This situation is similar
to configuration 1 in Table 6. To obtain the explicit expression, we combine the data of configuration 1 in Table 7 with
Eqs. (8.63) and (6.18), yielding

R̄(1)s =
2γ Re Aw

1 + 2γ f0 Im Aw + γ 2(1 + f 20 )|Aw|2
. (8.73)

Another simple situation, which is especially suitable for the case of an imaginary weak value, is given by configuration 2 in
Table 7, for which we obtain

R̄(2)s =
2γ Im Aw + 2γ 2f0|Aw|

2

1 + 2γ f0 Im Aw + γ 2(1 + f 20 )|Aw|2
. (8.74)

The superscripts ‘‘(1)’’ and ‘‘(2)’’ remind that Eqs. (8.73) and (8.74) relate to cases 1 and 2 in Table 6. Eqs. (8.73) and (8.74)
simplify in the linear regime, where γ Aw is small, yielding respectively [cf. Eqs. (2.40) and (2.41)]

R̄(1)s = 2γ Re Aw, (8.75)

R̄(2)s = 2γ Im Aw. (8.76)

Note that in configuration 2 in Table 7, themetermay be in a pure ormixed statewith s⃗M ⊥ n⃗F or even in the completelymixed
state, s⃗M = 0. The fact that the purity of the meter state is not important in this case may be used to simplify experiments
on weak PPS measurements, which employ configuration 2 in Table 7.

When the weak value is complex, joint measurements with meter configurations 1 and 2 allow one to perform weak-
value tomography (i.e., to obtain the real and imaginary parts of the weak value). One can work in the linear-response
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regime, using Eqs. (8.75) and (8.76), or in the strongly-nonlinear regime, using Eqs. (8.73) and (8.74) (see Section 6.8). The
linear-response version of this method was demonstrated9 experimentally in Ref. [102].

Table 7 lists also several other possible meter configurations. In particular, configuration 3 resembles configurations 2
and 4 in Table 6, configuration 1 in Table 7 being a special case of configuration 3 for η = π/2. Configurations 2 and 4–7 in
Table 7 are examples of non-standard meters. In configurations 2 and 4, R̂ and F̂ commute, configuration 2 being a special
case of configuration 4. In configurations 5 and 6,1R = 0 since then ρM is a pure state which is an eigenstate of R̂ (see also
Section 8.1); case 6 is a special case of case 5. Finally, configuration 7 is the case of a completely mixed state of the meter;
this demonstrates the possibility of weak PPS measurements with meters in a completely mixed state. The special case of
configuration 7 with s⃗M = n⃗R is included in configuration 2.

It is easy to show that meters with configurations 1–3 in Table 7 satisfy the condition (6.49); thus, they belong to
the class of meters optimal for weak PPS measurements in the linear-response regime, as discussed in Section 6.10.2.
In addition, meters with configuration 1 in Table 7 are also optimal for weak standard measurements, since they satisfy
Eq. (3.13). Moreover, meters with configurations 4 and 7 in Table 7 are regular meters, i.e., they are effective for weak PPS
measurements, since they satisfy the condition (6.51), with the exception of the cases |F̄1| ≈ 1 formeters with configuration
4 and | cos η| ≪ 1 for meters with configuration 7.

The above results show that forweak PPSmeasurements, the qubitmeter is at least as versatile as the continuous-variable
meter. One ormore of the parameters entering Table 7 can be varied in experiments in order to perform tomography ofweak
values or optimize the measurements.

8.4. Experiments where the average input variable is nonzero, F̄ ≠ 0

In previous theoretical and experimental studies of weak PPS measurements, F̄ has been always set to zero, exactly or
effectively. In the present theory we do not make this assumption, i.e., now generally F̄ ≠ 0. Still, as shown above, the linear
response does not depend on F̄ [see Eq. (6.20)]; however, its validity condition generally does depend on F̄ [see Eq. (6.97)].

What is more important is that, as shown above, weak PPS measurements depend significantly on the value of F̄ in the
nonlinear regime. In particular, a nonzero F̄ can facilitate measurements of Aw and γ (Sections 6.8.5 and 8.2.3), whereas the
optimal regime in the peculiar case |F̄ | ≫ 1F has some advantages, as discussed in Sections 6.9 and 7.5. Here we mention
some systems for which the above effects can be checked experimentally.

Qubit meter is a simple example of a meter for which generally F̄ ≠ 0 (Section 8.3). As follows from Eq. (8.63), for qubit
meters the ratio F̄/1F can be easily tuned by changing F̄1, i.e., by changing the initial meter state ρM (for specific examples,
see the values of F̄1 in Table 7). Moreover, F̄ is always nonzero when F̂ is a projector; it can also be shown that this is the
case for the experiments [82,88].

The quantity |F̄ | can be very large, as in the proposed Stern–Gerlach experiment [18] and in the actual optical experiments
using birefringent elements [80,82,83,85,88,96]. In this case, under certain conditions the effects of F̄ can be often
eliminated [18], using the invariance of PPS measurements under gauge transformations of the system, see Section 4.2.1,
especially Eqs. (4.15) and (4.16). Indeed, in a typical case of a two-level system with Â = σz , Eqs. (4.15) and (4.16) imply
that F̄ is effectively zero in PPS measurements when [18]

γ F̄ = nπ for n = 0,±1,±2, . . . . (8.78)

In the above optical experiments γ was not varied, since it was fixed by the condition (8.78) with some value of n.
As discussed above, a nonzero F̄ can be useful in the nonlinear regime. In the case of very large F̄ , one can obtain an

effective F̄ of an arbitrary magnitude by making the value of γ or F̄ slightly differing from that fixed by Eq. (8.78). Then, in
view of Eqs. (8.78) and (4.16), in the results for PPS measurements obtained in the present paper, the average of F should be
substituted by its effective value,

F̄ → F̄ −
nπ
γ
, (8.79)

where n is the integer minimizing |F̄ − nπ/γ |. In particular, inserting Eq. (8.79) into the validity conditions of the present
theory and of different regimes, such as, e.g., Eqs. (6.13) and (7.16), provides the limits for the allowed values of the quantity
F̄ − nπ/γ .

Finally, we note that F̄ can be tuned also by performing in any part of the interval (0, tS) an additional unitary
transformation U ′

= exp(−iαÂ) on the system, where α is a real number. This will replace the transformation U (2.10)

9 More specifically, in Ref. [102] in both configurations 1 and 2, F̂ is the operator of a spin component, so that the parameters in Eq. (8.61) are given by
f0 = 0 and f1 = 1/2. As a result, Eq. (8.62) implies that Eqs. (8.75) and (8.76) become now, respectively,

R̄(1)s = γ Re Aw, R̄(2)s = γ Im Aw . (8.77)
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by UU ′, which is equivalent to the replacement

F̄ → F̄ +
α

γ
. (8.80)

9. Distribution of the pointer values

Higher-order moments Rn
s of R can be obtained by substituting R̂ → R̂n in Eq. (6.18) or (7.3). These moments can be

written in the form

Rn
s =


R

RnΦs(R), (9.1)

where Φs(R) is the distribution of the eigenvalues R of R̂ for t ≥ tf. Hence, the maximum information is provided by the
distributionΦs(R), discussed in this section.

9.1. General meter

Herewe discuss the case of a general meter which can be a systemwith a finite number of states or a continuous-variable
system. For simplicity, we will considerΦs(R) for a nondegenerate R̂; then

Φs(R) = |R⟩⟨R|s, (9.2)

where |R⟩ is the eigenvector of R̂with the eigenvalue R. Substituting R̂ → |R⟩⟨R| into Eq. (6.19) yields

Φs(R) = {Φ(R)+ 2γ Im [AwΦ1(R)] + γ 2
|Aw|

2Φ2(R)}/Q0. (9.3)

HereΦ(R) = ⟨R|ρM|R⟩ is the initial distribution of R,Φ1(R) = ⟨R|F̂ρM|R⟩ is generally complex,whereasΦ2(R) = ⟨R|F̂ρMF̂ |R⟩
is real; finally, Q0 equals

Q0 = 1 + 2γ F̄ Im Aw + γ 2 F 2|Aw|
2. (9.4)

Here and below in Section 9 we assume that the initial state of the system is pure; if this is not the case, the results obtained
still hold under the replacement (7.5). Consider several important cases.

When the meter is initially in a pure state |ψM⟩, then in Eq. (9.3)

Φ(R) = |ψM(R)|2, Φ1(R) = ψ∗

M(R) dR, Φ2(R) = |dR|2, (9.5)

where

ψM(R) = ⟨R|ψM⟩, dR = ⟨R|F̂ |ψM⟩. (9.6)

The function Φs(R) in Eq. (9.3) simplifies when F is a function of R, F = h(R). The latter implies that [F̂ , R̂] = 0. [For
nondegenerate F̂ and R̂, also the converse is true, i.e., the equality [F̂ , R̂] = 0 implies that F = h(R).] When F = h(R), in
Eq. (9.3)

Φn(R) = hn(R)Φ(R) (n = 1, 2), (9.7)

Φ1(R) now being real.
It is interesting that in the case F = h(R) the final pointer distribution (9.3) depends on the initial probability distribution

Φ(R) but not on the coherent properties of the initial state ρM [cf. Eq. (9.7)], whereas for noncommuting F̂ and R̂, Eq. (9.3)
generally depends on the phase of the initial state [cf. Eq. (9.5)].

9.2. Continuous-variable meter

Consider now in more detail the distribution of the values of a continuous pointer variable (e.g., p or q). In the previous
studies, it was assumed that the initial meter state is a real Gaussian in the F or R representation [18]. Here we only assume
that the initial pointer distributionΦ(R) has a bell-like shape (e.g., Lorentzian or Gaussian).

Note that the validity condition for the result (9.3) forΦs(R) generally depends on R. In the main part of the peakΦs(R),
i.e., in the interval within the peak width, the validity condition is the same as for R̄s (see Sections 6.2 and 7.2). However, for
far tails of Φs(R) the present theory can fail, as illustrated by examples shown below. This is explained by the fact that the
validity conditions of the present theory can become much stricter for the tails than for the central part of Φs(R). Since far
tails ofΦs(R) are of little interest, we do not go further into this point.
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A weak PPS measurement can change the distribution of R significantly or slightly, depending on the values of the
parameters, as discussed below. When the effect of the measurement is not too strong, an initially bell-shaped distribution
can remain bell-shaped with the maximum generally shifted from the initial position. This shift is important in some
applications, such as superluminal propagation and slow light [76,84,85,88,114,116]. If this shift is sufficiently small,
simple formulas for the shift can be derived, as shown below. These formulas hold regardless of whether the shape of the
distribution changes or remains the same. Recall that some cases where the distribution is shifted practically without a
change of the shape are listed in Section 2.4.2.

9.2.1. Coinciding meter variables, R = F
We begin with the simple case R = F . Then Eqs. (9.3) and (9.7) yield

Φs(F) = Φ(F) [1 + 2γ (Im Aw)F + γ 2
|Aw|

2F 2
]/Q0, (9.8)

where Φ(F) = ⟨F |ρM|F⟩ is the distribution of F before the measurement (at t = 0). Thus, Φs(F)/Φ(F) is a quadratic
polynomial in F .

Note that the linear-response approximation provides a wrong result for the tails of the distribution (9.8) even in the
linear-response regime (6.32), since for large |F | the nonlinear term dominates in Eq. (9.8). This is an indication that for the
case R = F the present theory does not describe the far tails ofΦs(F), as discussed above.

The quantityΦs(F)/Φ(F) is minimal at

Fmin = −
Im Aw
γ |Aw|2

, (9.9)

where

Φs(Fmin)

Φ(Fmin)
=
(Re Aw)2

|Aw|2Q0
. (9.10)

Thus,Φs(F) is always positive, except for the case of a purely imaginary weak value, ReAw = 0, when

Φs(Fmin) = 0, Fmin = −(γ Im Aw)−1. (9.11)

Consider now the typical case |F̄ | . 1F (the other case |F̄ | ≫ 1F is discussed in the last but one paragraph of this
subsection). In the linear regime [Eq. (6.30) or (7.20)] the main part ofΦs(F), except for the far tails, is given by

Φs(F) ≈ Φ(F) [1 + 2γ (Im Aw)F ] for |F − F̄ | . 1F . (9.12)

This equation implies that, like Φ(F), the function Φs(F) (9.12) has a bell-like shape with the maximum of Φs(F) shifted
from the maximum Fmax ofΦ(F) by

1Fmax = β (F̄s − F̄) = 2βγ (1F)2 Im Aw. (9.13)

Here F̄s is given by Eq. (8.2) and

β =
Φ(Rmax)

|Φ ′′(Rmax)|(1R)2
, (9.14)

where now R = F , the primes denoting the second derivative. In the derivation of Eq. (9.13) we assumed that the peak top
has a parabolic shape,

Φ(F) ≈ Φ(Fmax)− |Φ ′′(Fmax)|(F − Fmax)
2/2 for |F − Fmax| ≪ 1F . (9.15)

WhenΦ(F) is Gaussian,

Φ(F) =
1

√
2π 1F

exp

−
(F − F̄)2

2(1F)2


, (9.16)

then β = 1 in Eq. (9.13), yielding again Eq. (2.56). Thus, we extended Eq. (2.56), derived in Section 2.4.2 for the case of a
pure meter state ψM, to the case of an arbitrary meter state ρM with a Gaussian Φ(F). Moreover, Eq. (9.13) shows that for
a general non-Gaussian Φ(F), the shift of the maximum 1Fmax differs from the average pointer deflection (F̄s − F̄) by a
dimensionless factor β , which depends on the shape ofΦ(F).

In the opposite limit Aw → ∞, i.e., for mutually orthogonal |ψ⟩ and |φ⟩, Eq. (9.8) yields

Φs(F) =
F 2Φ(F)

F 2
. (9.17)

This equality holds approximately also for γ 2
|Aw|

2
≫ 1/ F 2. Now the functionΦs(F) has two peaks of comparable heights,

at least, for |F̄ | . 1F .
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In contrast, when |F̄ | ≫ 1F , Φs(F) is a bell-shaped function, except for the case (6.98)–(6.99), where the narrow reso-
nance (6.100) occurs. The shift of the maximum of this bell-shaped function from the maximum of Φ(F) can be shown to
be given approximately by the first equality in Eq. (9.13). However, now the average pointer deflection (F̄s − F̄) is described
by a nonlinear formula, so that

1Fmax = β(F̄s − F̄) = β
2γ (1F)2 ( Im Aw + γ F̄ |Aw|

2)

1 + 2γ F̄ Im Aw + γ 2 F̄ 2|Aw|2
, (9.18)

which follows from Eq. (8.1) for |F̄ | ≫ 1F . In Eq. (9.18) we took into account that for |F̄ | ≫ 1F one has

F 2 = (1F)2 + F̄ 2
≈ F̄ 2 (9.19)

and [cf. Eq. (6.9)]

F 3 − F 2F̄ = 2(1F)2F̄ + F 3
c ≈ 2(1F)2F̄ . (9.20)

This result is obtained if the condition (9.15) holds and if Fmax ∼ F̄ , which holds whenΦ(F) is not too asymmetric. Note that
for a GaussianΦ(F), β = 1 in Eq. (9.18).

Finally, we note that the general Eq. (9.8) simplifies for an imaginary weak value,

Φs(F) = Φ(F)[1 + γ (Im Aw)F ]
2/Q0. (9.21)

In particular, the intensity distribution of the ‘‘split-Gaussian mode’’ obtained in Ref. [22] can be interpreted quantum-
mechanically as a quantity proportional to the special case of Eq. (9.21) whereΦ(F) is Gaussian and F̄ = 0 (see Section 13).

9.2.2. Canonically conjugate R and F
Herewe study ameter with canonically conjugate variables R and F . For such ameter, the shift of the pointer distribution

in the linear regime is known to be proportional to Re Aw , at least, when the initial meter state in the pointer representation
is a real Gaussian [18,78,90,135]. However, for the general case the shift has not been discussed yet.

Here we assume that the meter is initially in a pure state |ψM⟩, the pointer distribution possessing an arbitrary bell-like
shape. In particular, we will show that for a complex Gaussian and for non-Gaussian states, the shift of the maximum of the
pointer distribution generally depends on both the real and imaginary parts of the weak value.

For the canonically conjugate variables (2.12), the second Eq. (9.6) yields dq = −iψ ′

M(q), where the prime denotes
differentiation. Then Eqs. (9.3)–(9.5) yield that

Φs(q) =
Φ(q)− 2γ Re[Awψ∗

M(q)ψ
′

M(q)] + γ 2
|Aw|

2
|ψ ′

M(q)|
2

1 + 2γ p̄ Im Aw + γ 2 p2|Aw|2
. (9.22)

This expression depends on the phase of the initial state, unlike the results in Section 9.2.1.
For |γ Aw| ≪ (p2)−1/2 [cf. Eq. (6.30)] and |q − q̄| . 1q one can use in Eq. (9.22) the approximation linear in γ , yielding

Φs(q) ≈ Φ(q)− 2γ Re[Awψ∗

M(q)ψ
′

M(q)]

= Φ(q)− γ (Re Aw)Φ ′(q)+ 2γ (Im Aw) ξ ′(q)Φ(q), (9.23)

where in the last equality Eq. (8.11) is taken into account.We assume thatΦ(q) is a bell-shaped functionwith themaximum
at qmax, so that for |q − qmax| ≪ 1q it is expressed as

Φ(q) ≈ Φ(qmax)− |Φ ′′(qmax)|(q − qmax)
2/2. (9.24)

Moreover, in some interval |q − qmax| ≪ 1ξ , we have

ξ ′(q) ≈ ξ ′(qmax)+ ξ ′′(qmax)(q − qmax), (9.25)

the double primes in Eqs. (9.24) and (9.25) denoting the second derivative. Then Φs(q) is also a bell-shaped function with
the maximum at qmax +1qmax, where

1qmax = γ [Re Aw + 2β ξ ′′(qmax) (1q)2 Im Aw]. (9.26)

Here β is given by Eq. (9.14) with R = q. Eq. (9.26) holds when

|1qmax| ≪ min{1q,1ξ }. (9.27)

Eq. (9.26) shows that generally the shift of the maximum of the distribution of q depends on both the real and imaginary parts
of the weak value. Generally, the shift does not coincide with the average pointer deflection,1qmax ≠ q̄s − q̄.

However, there are cases when Eq. (9.26) possesses the convenient property (2.47), which now has the form

1qmax = q̄s − q̄. (9.28)
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In particular, Eq. (9.28) holds in the following cases.

(a) The weak value is real. In this case Eq. (2.50) holds, as shown above.
(b) The phase ofψM(q) is vanishing or linear in q. In this case, Eq. (9.26) simplifies and becomes equal to the average pointer

deflection (2.40),

1qmax = q̄s − q̄ = γ Re Aw. (9.29)

Previously in Ref. [18], Eq. (9.29) was obtained for the special case when ψM(q) is a real Gaussian.
(c) ψM(q) is a general complex Gaussian state. For this state we obtained above Eq. (2.54). Here we can derive Eq. (2.54) in a

different way. Namely, taking into account that for a general Gaussian state, β = 1 and the phase ξ(q) is [see Eq. (2.52)]

ξ(q) =
b(q − q̄)2

4(1q)2
+ p̄q, (9.30)

we obtain that Eq. (9.26) coincides with Eq. (8.25).

For orthogonal states |ψ⟩ and |φ⟩ (when Aw = ∞), Eq. (9.22) yields

Φs(q) =
|ψ ′

M(q)|
2

p2
=

[f ′
q(q)]

2
+ [ξ ′(q)]2Φ(q)

p2
, (9.31)

where Eq. (8.11) was used. In particular, for a real ψM(q), the function (9.31) becomes

Φs(q) = [f ′

q(q)]
2/p2; (9.32)

it has two peaks of comparable heights with the minimumΦs(qmax) = 0 at the maximum ofΦ(q). However, for a complex
ψM(q), Eq. (9.31) generally does not vanish at any point.

As an example, for a real Gaussian state Eq. (9.32) becomes

Φs(q) =
Z2
q (q − q̄)2

(1q)2
exp


−
(q − q̄)2

2(1q)2


. (9.33)

This is a two-peak function, symmetric with respect to q̄ and vanishing at q = q̄. Previously, an unnormalized distribution
proportional to Eq. (9.33) was obtained numerically (Fig. 4(b) in Ref. [113]) and experimentally (Fig. 2(c) in Ref. [80]). In
contrast to Eq. (9.33), for the complex Gaussian meter state (2.52) the distribution (9.31) vanishes nowhere and is generally
not symmetric.

Note that the general equation (9.22) can be written in an explicit form for the complex Gaussian state (2.52). In this case
Φs(q)/Φ(q) is a quadratic function of q, where

Φ(q) = Z2
q exp


−
(q − q̄)2

2(1q)2


. (9.34)

In particular, for a real Gaussian state, Eq. (2.52) with p̄ = q̄ = b = 0, and a real Aw we obtain a simple result,

Φs(q) =
Φ(q)[1 + (γ Aw1p)(q/1q)]2

1 + (γ Aw1p)2
, (9.35)

where1p = (21q)−1 [cf. Eq. (2.53) with b = 0].
In the case of a complex Gaussian state, as in Section 9.2.1, the present theory is not applicable for the far tails of Φs(q).

An indication to this is the fact that the far tails in Eq. (9.35) cannot be described by the linear-response approximation,
irrespective of how weak the coupling is, since the term ∝ γ 2q2 in the numerator of Eq. (9.35) always dominates for
sufficiently large |q|.

10. Weak values for a qubit

Weak values Aw for a qubit were calculated previously for a number of special cases, usually with a pure preselected state
[18,21,90,126,130]. Here we provide a general study of the standard and associated weak values Aw and A(1,1)w for a qubit,
with an arbitrary preselected state.

10.1. General formulas

We assume that the measured system operator is

Â = σ⃗ · n⃗A, (10.1)
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where σ⃗ = (σx, σy, σz) is the vector of the Pauli matrices and n⃗ is a unit vector in the Bloch sphere. The operator (10.1) has
the eigenvalues ±1. Generally, the pre- and post-selected states of the qubit are, respectively,

ρ = (I + Pin σ⃗ · n⃗in)/2 (0 ≤ Pin ≤ 1),

Πφ ≡ |φ⟩⟨φ| = (I + σ⃗ · n⃗f )/2. (10.2)

Here n⃗in and n⃗f are unit vectors, Pin n⃗in and n⃗f being the pseudospins of ρ and |φ⟩, respectively, whereas Pin is the length of
the initial-state pseudospin.

The initial state ρ can also be written in the form of the spectral expansion (7.7),

ρ =
1 + Pin

2
|n⃗in⟩⟨n⃗in| +

1 − Pin
2

| − n⃗in⟩⟨−n⃗in|, (10.3)

where |n⃗in⟩ is a state with the pseudospin given by the unit vector n⃗in. Eq. (10.3) implies that Pin is expressed through the
eigenvalues of ρ by the relation

Pin = |λ1 − λ2|. (10.4)

Pin characterizes the purity of the initial state; Pin varies from 1, corresponding to a pure state, to 0 for a maximally mixed
state. Correspondingly 1 − Pin is a measure of the impurity of the initial state.

Taking into account that Oφφ = Tr (OΠφ) for any operator O of a qubit, we obtain from Eqs. (2.60), (7.5), (10.1), (10.2),
and the formula [184]

(σ⃗ · n⃗)(σ⃗ · n⃗′) = (n⃗ · n⃗′)IS + iσ⃗ · (n⃗ × n⃗′) (10.5)

that

Aw =
n⃗A · n⃗f + Pin(n⃗A · n⃗in + in⃗A · n⃗in × n⃗f )

1 + Pinn⃗in · n⃗f
, (10.6)

A(1,1)w =
1 − n⃗in · n⃗f + Pin(n⃗A · n⃗in)(n⃗A · n⃗f )

1 + Pinn⃗in · n⃗f
. (10.7)

According to Eq. (10.6), Aw is generally complex. Aw is real if the vectors n⃗A, n⃗in, and n⃗f lie in the same plane or for Pin = 0
(the completely mixed initial state), whereas Aw is purely imaginary when n⃗A is perpendicular to the sum of the pre- and
post-selected pseudospins Pin n⃗in + n⃗f and, in addition, the vectors n⃗in and n⃗f are not collinear.

10.2. Conditions for maximizing weak values

Eq. (10.6) shows that a necessary condition for |Aw| to be large is Pinn⃗in · n⃗f ≃ −1 or, equivalently, the simultaneous
relations

Pin ≃ 1, n⃗in ≃ −n⃗f . (10.8)

The conditions (10.8) ensure that the overlap between the initial and final states is small,

ρφφ ≪ 1. (10.9)

In the case of a pure preselected state, Pin = 1, the condition (10.8) or (10.9) requires that the pre- and post-selected states
be almost orthogonal. In the case of a mixed preselected state, the condition (10.8) requires that the preselected state ρ be
almost pure and that its eigenstate corresponding to the greater eigenvalue, i.e., |n⃗in⟩ [cf. Eq. (10.3)], be almost (or completely)
orthogonal to the post-selected state.

The condition (10.8) is necessary but not sufficient to maximize the weak value. In the further study of conditions under
which the weak value is maximal, we consider separately the cases of pure and mixed preselected states. As mentioned
above, in the case of a pure preselected state, Eq. (10.9) means that the initial and final states are almost orthogonal,
|⟨φ|ψ⟩| ≪ 1. This condition is equivalent to

|ψ⟩ ≃ |φ1⟩, |φ⟩ ≃ |φ2⟩, (10.10)

where {|φ1⟩, |φ2⟩} is an orthonormal basis,

|φ1⟩ = |n⃗0⟩, |φ2⟩ = | − n⃗0⟩. (10.11)

Here n⃗0 is a unit vector in the Bloch sphere. Note that the pseudospin n⃗0 is not uniquely determined by the condition (10.10),
and actually there is a narrow cone of possible values of n⃗0.

Anyhow, in the case (10.10) for any allowed value of n⃗0, Eq. (2.36) yields

Aw ≈
Aφ2φ1
⟨φ|ψ⟩

. (10.12)
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For a given magnitude of the overlap |⟨φ|ψ⟩|, the magnitude of the weak value |Aw| is maximal when |Aφ2φ1 | is maximal.
Let us obtain |Aφ2φ1 | for the operator Â in Eq. (10.1). Since Â2

= IS [cf. Eq. (10.5)], we obtain that

Aφ1φ1Aφ1φ1 + Aφ1φ2Aφ2φ1 = (A2)φ1φ1 = 1, (10.13)

and hence

|Aφ2φ1 |
2

= 1 − (Aφ1φ1)
2

= 1 − (n⃗A · n⃗0)
2

= 1 − cos2 η1 = sin2 η1. (10.14)

Here η1 is the angle between n⃗A and n⃗0; we used Eq. (10.5) in the second equality in Eq. (10.14). Finally, Eq. (10.14) yields

|Aφ2φ1 | = sin η1. (10.15)

Hence, the maximal |Aφ2φ1 | = 1 is obtained for any basis {|φ1⟩, |φ2⟩} corresponding to a vector n⃗0 in Eq. (10.11)
perpendicular to n⃗A,

n⃗0 ⊥ n⃗A. (10.16)

Accordingly, the magnitude of Aw in Eq. (10.12) is maximum for a given |⟨φ|ψ⟩| ≪ 1,

|Aw|max = |⟨φ|ψ⟩|
−1, (10.17)

under the condition Eq. (10.16). Note that the weak value in Eq. (10.17) is unusual.
In the case of a mixed preselected state, Eq. (10.17) does not hold, however the conditions for maximizing |Aw| are the

same as above, with the only difference that now |ψ⟩ in Eq. (10.10) should be replaced by |n⃗in⟩. In the next subsection, we
provide explicit formulas for weak values of a qubit.

10.3. Explicit formulas for a typical case

Let us consider in detail a typical case. First, we recall that a unit vector in the Bloch sphere has the form

n⃗ = (sin κ cos ν, sin κ sin ν, cos κ), where 0 ≤ κ < π; −π < ν ≤ π. (10.18)

Here κ and ν are the usual spherical coordinates of the pseudospin, i.e., κ is the angle between the pseudospin and the z
axis, whereas the projection of n⃗ on the xy plane forms the polar angle ν with x⃗. A pure state with the pseudospin n⃗ is given
by

|n⃗⟩ = cos(κ/2)|z⃗⟩ + exp(iν) sin(κ/2)| − z⃗⟩. (10.19)

We assume here that Â = σx, i.e., n⃗A = x⃗. Moreover, we set n⃗in = n⃗ and n⃗f = −z⃗, i.e., |φ⟩ = | − z⃗⟩. Hence, for a pure
preselected state, we have |ψ⟩ = |n⃗⟩; in this case the angle κ in Eq. (10.19) is a measure of the overlap of the pre- and
post-selected states, since

|⟨φ|ψ⟩| = sin
κ

2
. (10.20)

In particular, for small κ , we have sin(κ/2) ≈ κ/2, implying

κ = 2|⟨φ|ψ⟩| for κ ≪ 1. (10.21)

Now Eqs. (10.6) and (10.7) yield

Aw =
Pin sin κ

1 − Pin cos κ
exp(−iν), A(1,1)w =

1 + cos κ
1 − Pin cos κ

. (10.22)

In particular, for a pure initial state (Pin = 1) Eq. (10.22) yields

Aw = cot
κ
2


exp(−iν). (10.23)

As shown by Eqs. (10.22) and (10.23), the phase of Aw can be chosen at will by an appropriate choice of the initial and final
states. In particular, the weak value in Eqs. (10.22) and (10.23) is real (imaginary) when n⃗, Eq. (10.18), lies in the xz (yz)
plane. For a mixed initial state, the magnitude of the weak value in Eq. (10.22) decreases with the decrease of the purity Pin.

In the important case κ ≪ 1, the expressions for Aw and A(1,1)w simplify. In particular, for a pure initial state, the weak
value in Eq. (10.23) is large, tending to infinity for κ → 0,

Aw ≈
2
κ
exp(−iν) (κ ≪ 1). (10.24)

Now for κ ≪ 1 the condition (10.16) for maximizing |Aw| is satisfied, since in the present case n⃗0 = z⃗ and n⃗A = x⃗.
Correspondingly, Eq. (10.24) yields the same |Aw| as in Eq. (10.17), in view of Eq. (10.21).
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Fig. 6. (Color online). Weak values for a qubit versus the angle κ . We show Aw and |Aw | for a pure preselected state, Eq. (10.23), and Aw , |Aw |, and
[A(1,1)w ]

1/2 for a mixed preselected state with Pin = 0.99, Eq. (10.22). The quantity Aw is shown for ν = 0. Since |Aw | corresponding to an arbitrary ν equals
Aw corresponding to ν = 0, the solid and dot-dashed curves show both Aw and |Aw |.

For a mixed initial state, the necessary conditions for a large weak value (10.8) become now

Pin ≈ 1, κ ≪ 1. (10.25)

Therefore, below we assume the initial state-impurity is small, 1 − Pin ≪ 1, i.e., Pin ≈ 1. In the case (10.25), we obtain that
Eq. (10.22) becomes approximately

Aw =
2κ exp(−iν)
κ2 + 2(1 − Pin)

, A(1,1)w =
4

κ2 + 2(1 − Pin)
. (10.26)

Now |Aw| and A(1,1)w as functions of κ have dispersive and Lorentzian shapes, respectively. Eq. (10.26) shows explicitly that
the weak values for a qubit with a mixed preselected state are always finite.

In Fig. 6, the weak values Aw for pure and mixed preselected states with ν = 0 as well as the quantity [A(1,1)w ]
1/2 for a

mixed state with an arbitrary ν [see Eqs. (10.23) and (10.22) ] are plotted as a function of the angle κ , i.e., essentially as a
function of the overlap |⟨φ|ψ⟩| [cf. Eqs. (10.20) and (10.21)]. Note that the quantity Aw corresponding to ν = 0 coincides
with |Aw| corresponding to an arbitrary ν, as seen from the first equality in Eq. (10.22). Hence, the solid and dot-dashed
curves in Fig. 6 show both Aw and |Aw|.

For

κ2
≫ 2(1 − Pin), (10.27)

the weak values for the pure and mixed preselected states [Eqs. (10.23) and (10.22), respectively] are approximately equal,
and A(1,1)w ≈ |Aw|

2 (cf. Fig. 6). However, for

κ2 . 2(1 − Pin) (10.28)

the magnitude of the weak value for a mixed preselected state is significantly less than that for a pure preselected state and
also than [A(1,1)w ]

1/2 (cf. Fig. 6). Both |Aw| and A(1,1)w have large but finitemaxima:

|Aw| = [2(1 − Pin)]−1/2 at κ = [2(1 − Pin)]1/2 (10.29)

and

A(1,1)w =
2

1 − Pin
at κ = 0. (10.30)

It is interesting that now limκ→0 Aw = 0 for amixed preselected state. In contrast, for a pure preselected state, limκ→0 Aw =

∞, as one would expect.
Eq. (10.29) shows that the maximum weak-value magnitude increases with the purity of the preselected state. This

dependence is rather slow; e.g., for a state with a high purity, Pin = 0.99, the maximum |Aw| is only
√
50 ≈ 7.1 (see the

dot-dashed curve in Fig. 6). Generally, the greater |Aw|, the more stringent is the condition on the purity of ρ. Namely, to
achieve a given large weak-value magnitude |Aw|, the parameter Pin should satisfy the condition

1 − Pin ≤ (2|Aw|
2)−1 (|Aw| ≫ 1). (10.31)

In otherwords, the allowed impurity of the preselected state decreases quadraticallywith the targetweak-valuemagnitude.
For example, to obtain |Aw| = 100, it is necessary that 1 − Pin ≤ 5 × 10−5.
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Note that Eq. (10.31) holds for the operator Â in Eq. (10.1). A general observable O for a qubit is a linear function of the
physical variable with the operator given by Eq. (10.1). Therefore, Aw is a linear function of Ow . Replacing Aw by this function
in Eq. (10.31) yields the upper value of the allowed impurity of the preselected state for a given weak value Ow (assuming
that |Aw| ≫ 1).

Here, as almost everywhere in the present paper, we assume that the post-selection measurement is ideal. However, a
non-ideal post-selectionmeasurement can affect PPSmeasurements similarly to amixed preselected state, as shown below
in Section 14.5.

10.4. Effects of preselected-state impurity on weak PPS measurements

The results of the previous subsection allow us to analyze the effects of the impurity of the preselected state on weak
PPS measurements. In the linear-response regime, the pointer deflection is proportional to the weak value, Eq. (6.20), and
hence the dependence of the pointer deflection on the impurity of the preselected state is the same as that of Aw , see the
discussion in the previous subsection.

Consider now the nonlinear behavior, which becomes important under the conditions in Eq. (10.25). In this case, inserting
Eq. (10.26) into Eq. (7.3) yields

R̄s − R̄ =
γ κ Im ( RcFe−iν)+ γ 2 FRcF

κ2/4 + (1 − Pin)/2 − γ κ F̄ sin ν + γ 2 F 2
. (10.32)

The impurity of the preselected state contributes in Eq. (10.32) only the term 2(1 − Pin), which disappears for a pure
preselected state. Thus, generally the main effect of the impurity of the preselected state on weak PPS measurements of
a qubit is to decrease the average pointer deflection.

Let us discuss the conditions under which the initial-state impurity effects can be neglected. For the linear-response and
strongly-nonlinear regimes, i.e., in the interval [cf. Eqs. (7.20) and (7.24)]

γ 2
[(1F)2 + F̄ 2

] . κ2/4, (10.33)

the impurity is negligible under the condition given in Eq. (10.27), i.e., in the case when the weak values for the pure and
mixed preselected states are approximately equal.

A more interesting situation arises in the inverted region,

κ2/4 ≪ γ 2
[(1F)2 + F̄ 2

] ≪ 1 (10.34)

(here the right inequality is the weak-measurement condition). Now for the case

(1 − Pin)/2 ≪ γ 2
[(1F)2 + F̄ 2

], (10.35)

Eq. (10.32) becomes in the first approximation

R̄s − R̄ =
FRcF

F 2


1 −

1 − Pin
2γ 2F 2


+
κ Im ( RcFe−iν)

2γ F 2
+
κ FRcF F̄ sin ν

γ (F 2)2

≈
FRcF

F 2
+
κ Im ( RcFe−iν)

2γ F 2
+
κ FRcF F̄ sin ν

γ (F 2)2
, (10.36)

where the final expression is the same as for a pure preselected state, Eq. (6.34). This expression is obtained by neglecting
in the first line the small term in the brackets, which slightly changes the value of the pointer deflection in the limit κ → 0.
Thus, in the cases when Eqs. (10.34) and (10.35) are satisfied the initial-state impurity has a negligible effect on weak PPS
measurements, though in this case it is possible that κ2 . 2(1− Pin) and hence the weak value can be much less than that for
a pure preselected state. The above discussion shows that in the inverted region weak PPS measurements are less sensitive
to the impurity effects than in other regimes; this can be advantageous for precision measurements.

Finally, we consider the resonance given in Eq. (7.26) for the case |F̄ | ≫ 1F . It is easy to see that now the resonance
conditions given in Eqs. (6.98) and (6.99) have the form

ν ≈ ±
π

2
, 2γ F̄ ≈ ±κ, (10.37)

where the upper or the lower signs should be considered simultaneously. Moreover, the parameter v in Eq. (7.25) becomes

v =

√
2(1 − Pin)
κ

≪ 1. (10.38)

As mentioned in Section 7.5, this parameter should be very small for the resonance not to be smeared out. In particular, as
follows from Eq. (7.26), the effects of the impurity can be neglected when

2(1 − Pin)
κ2

≪


1F
F̄

2

≪ 1, (10.39)
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which is much stronger than the condition in Eq. (10.27). This fact can be used to measure very small impurities of quantum
states.

It is remarkable that, although the three conditions given in Eqs. (10.27), (10.35) and (10.39) are very different, they are
special cases of the simple condition

(1 − Pin)/2 ≪ ⟨Πφ⟩f . (10.40)

Thus, the initial-state impurity has negligible effects on weak PPS measurements of a qubit, when the impurity is much less
than the post-selection probability. To understand why the condition (10.40) arises, we note that it is easy to show that the
denominator in Eq. (10.32) equals ⟨Πφ⟩f in Eq. (7.2b). Therefore, the effects of the impurity of the preselected state on weak
PPS measurements of a qubit, at least, in the most interesting case |κ| ≪ 1, can be taken into account in Eq. (4.10), written
for a pure initial state (Pin = 1), by the substitution

⟨Πφ⟩f = ⟨Πφ⟩f 0 → ⟨Πφ⟩f = ⟨Πφ⟩f 0 + (1 − Pin)/2, (10.41)

where ⟨Πφ⟩f 0 is the post-selection probability for a pure state. This explains why the condition allowing to neglect the
impurity effects has the form of Eq. (10.40).

11. Exact solutions for arbitrary-strength PPS and standard measurements

Exact solutions for PPS measurements of arbitrary strength were obtained in a number of papers, [80–82,84,85,87,89,
104,113,115,119,145,181]. Here we obtain exact results for PPS measurements of arbitrary strength in the case where

Â2
= C0IS, (11.1)

C0 being an arbitrary positive number. The Hermitian operator Â in Eq. (11.1) can have an arbitrary dimension, but the
eigenvalues of Â, possibly degenerate, can assume only two values that have equal magnitudes and opposite signs, namely,
±

√
C0.
Without loss of generality, we will assume that

Â2
= IS. (11.2)

Indeed, as implied by Eq. (2.10), the results obtained for the case (11.2) become valid for the case (11.1) under the
substitutions

Â → Â/

C0, γ →


C0 γ . (11.3)

The eigenvalues of the operator Â in Eq. (11.2) can equal 1 or −1.
The case (11.1) includes many useful situations. In particular, the set of operators with the property (11.2) includes the

Pauli matrices, qubit operators of the form (10.1), and direct products of them.
Our results are very general. In particular, we consider arbitrary initial states of the system and the meter. First we

consider the case of a general meter and then discuss specific examples of the meter.

11.1. Formulas for a general meter

a. Average pointer value. It is easy to see that in the case (11.2), Eq. (2.10) yields

U = cos(γ F̂)− iÂ sin(γ F̂). (11.4)

On inserting Eq. (11.4) into Eqs. (4.9) and (4.5), we obtain from Eq. (4.8) that

R̄s =
Gcc + 2Im(AwGcs)+ A(1,1)w Gss

Q1
, (11.5a)

where

Q1 = [1 + Mc + 2MsIm Aw + (1 − Mc)A(1,1)w ]/2. (11.5b)

In Eq. (11.5) we denoted

Gcc = cos(γ F)R cos(γ F), Gcs = cos(γ F)R sin(γ F), Gss = sin(γ F)R sin(γ F), (11.6)

Mc = cos(2γ F), Ms = sin(2γ F). (11.7)

It is interesting that now the system parameters enter the exact Eqs. (11.5) through the same weak values Aw and A(1,1)w as
in the weak-coupling case, Eq. (7.4). Eq. (7.4) results on expanding Eqs. (11.5) in powers of γ up to γ 2 and neglecting small
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terms as discussed in Section 6.4. Thus, in the case (11.2) [and hence in the case (11.1)], weak values can be obtained from
PPS measurements of an arbitrary strength and not only from weak PPS measurements.

b. Exact pointer distribution for PPS measurements. An exact expression for the pointer-value distribution is obtained from
Eq. (11.5a) under the substitution R̂ → |R⟩⟨R|, using Eq. (9.2). This yields

Φs(R) =
Φcc(R)+ 2Im[AwΦsc(R)] + A(1,1)w Φss(R)

Q1
, (11.8)

where

Φcc(R) = ⟨R| cos(γ F)ρM cos(γ F)|R⟩, Φsc(R) = ⟨R| sin(γ F)ρM cos(γ F)|R⟩,
Φss(R) = ⟨R| sin(γ F)ρM sin(γ F)|R⟩.

(11.9)

When the initial state of the meter is pure, |ψM⟩, then Eq. (11.9) becomes,

Φcc(R) = |ψc(R)|2, Φsc(R) = ψs(R)ψ∗

c (R), Φss(R) = |ψs(R)|2, (11.10)

where

ψc(R) = ⟨R| cos(γ F)|ψM⟩, ψs(R) = ⟨R| sin(γ F)|ψM⟩. (11.11)

11.2. Specific types of meters

The results in Section 11.1 are exact and can be applied for arbitrary coupling strength and an arbitrary meter. Here we
specify these results for several important types of the meter.

11.2.1. Coinciding meter variables, F = R
Eqs. (11.8) and (11.5a) simplify when F is a function of R. For example, when F = R, Eq. (11.6) implies that

Gcc = F cos2(γ F) = [F̄ + F cos(2γ F)]/2 = F̄/2 + M ′

s/2 (11.12)

and, similarly,

Gcs = M ′

c/2, Gss = F̄/2 − M ′

s/2, (11.13)

where

M ′

s = F cos(2γ F), M ′

c = F sin(2γ F) (11.14)

As a result, Eq. (11.5) becomes

F̄s =
F̄ + M ′

s + 2M ′
c Im Aw + (F̄ − M ′

s)A
(1,1)
w

1 + Mc + 2MsIm Aw + (1 − Mc)A
(1,1)
w

. (11.15)

Furthermore, in the present case F = R, the exact pointer distribution (11.8) with the account of Eq. (11.9) becomes

Φs(F) = 2Φ(F)
cos2(γ F)+ (Im Aw) sin(2γ F)+ A(1,1)w sin2(γ F)

1 + Mc + 2MsIm Aw + (1 − Mc)A
(1,1)
w

. (11.16)

a. Symmetric Φ(F). As an example, consider the case of a symmetric distribution Φ(F) centered at F = 0, i.e., Φ(F) =

Φ(−F). Now one has F̄ = Ms = M ′
s = 0, and Eq. (11.15) acquires a simple form,

F̄s =
2M ′

c Im Aw
1 + Mc + (1 − Mc)A

(1,1)
w

. (11.17)

If, in addition, the weak value is purely imaginary and the preselected state is pure, so that A(1,1)w = |Aw|
2

= (Im Aw)2, the
exact pointer distribution in Eq. (11.16) becomes especially simple,

Φs(F) = 2Φ(F)
[cos(γ F)+ (Im Aw) sin(γ F)]2

1 + Mc + (1 − Mc)|Aw|2
. (11.18)

b. GaussianΦ(F). Consider the case of a continuous-variable meter, so that the variable F = R can be, e.g., the coordinate
or the momentum. Assume that the distributionΦ(F) is Gaussian, Eq. (9.16). Then Eqs. (11.7) and (11.14) yield

Mc = cos(2γ F̄) exp[−2(γ1F)2], Ms = sin(2γ F̄) exp[−2(γ1F)2], (11.19)
M ′

c = [F̄ sin(2γ F̄)+ 2γ (1F)2 cos(2γ F̄)] exp[−2(γ1F)2],

M ′

s = [F̄ cos(2γ F̄)− 2γ (1F)2 sin(2γ F̄)] exp[−2(γ1F)2]. (11.20)
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Now the average pointer value is given by Eq. (11.15) or (11.17) with the account of Eqs. (11.19) and (11.20). Moreover, the
pointer distribution after the measurement is given by Eq. (11.16) or (11.18) with the account of Eq. (11.19).

In particular, for a zero-mean GaussianΦ(F), F̄ = 0, Eqs. (11.19) and (11.20) become

Mc = exp[−2(γ1F)2], Ms = 0, (11.21)

M ′

c = 2γ (1F)2 exp[−2(γ1F)2], M ′

s = 0. (11.22)

Then Eq. (11.17) with the account of Eqs. (11.21) and (11.22) yields the following explicit expression,

F̄s =
4γ (1F)2 Im Aw

1 − A(1,1)w + (1 + A(1,1)w ) exp[2(γ1F)2]
. (11.23)

For the special case, where F = p is the meter momentum and the preselected state is pure, so that A(1,1)w = |Aw|
2,

Eqs. (11.23) and (11.16) with the account of Eq. (11.21) were obtained in Ref. [145].

11.2.2. Conjugate meter variables
Consider a meter with continuous variables. The case F = R was discussed in Section 11.2.1. Here we consider the case

of the canonically conjugate variables (2.12), F = p and R = q.
a. Arbitrary pure meter state. For a pure meter state, as shown in Appendix C, we have

Gcc = cos(γ p) q cos(γ p) = (q̄ + G1)/2,

Gss = sin(γ p) q sin(γ p) = (q̄ − G1)/2,

Gcs = cos(γ p) q sin(γ p) = (iγ + G2)/2, (11.24)

where

G1 = ζ ′(p) cos(2γ p), G2 = ζ ′(p) sin(2γ p). (11.25)

Furthermore, consider the exact pointer distribution. In the present case of the meter variables (2.12), it is given in
paragraph b in Section 11.1, where now, using the expression F̂ = p = −i∂/∂q, we obtain that Eq. (11.11) becomes

ψc(q) = [ψM(q + γ )+ ψM(q − γ )]/2, ψs(q) = [ψM(q + γ )− ψM(q − γ )]/(2i). (11.26)

b. Real even meter wavefunction. Consider a simple example. Let the initial meter state be pure and such that ψM(p) and
ψM(q) are real, even functions, i.e.,

ψM(p) = ψ∗

M(p), ψM(p) = ψM(−p); (11.27a)

ψM(q) = ψ∗

M(q), ψM(q) = ψM(−q). (11.27b)

Note that the condition (11.27a) implies Eq. (11.27b) and vice versa. In the case (11.27), we have q̄ = p̄ = Ms = 0. As a
result, in particular, Eq. (11.5b) becomes

Q1 = [1 + Mc + (1 − Mc)A(1,1)w ]/2. (11.28)

Moreover, now ζ (p) = 0, yielding Gcc = Gss = 0 and Gcs = iγ /2. Then Eqs. (11.5a) and (11.28) yield the following simple
formula,

q̄s =
2γ Re Aw

1 + Mc + (1 − Mc)A
(1,1)
w

. (11.29)

The pointer distribution after the measurement is obtained from Eq. (11.8) with the account of Eqs. (11.10), (11.26) and
(11.27b),

Φs(q) = [(1 − 2Re Aw + A(1,1)w )Φ(q + γ )+ (1 + 2Re Aw + A(1,1)w )Φ(q − γ )

+ 2(1 − A(1,1)w ) ψM(q + γ )ψM(q − γ )]/(4Q1), (11.30)

where Q1 is given in Eq. (11.28). If, moreover, the preselected state is pure and Aw is real, so that A(1,1)w = A2
w , Eq. (11.30)

simplifies,

Φs(q) = [(1 − Aw) ψM(q + γ )+ (1 + Aw) ψM(q − γ )]2/(4Q1). (11.31)

c. General Gaussian meter state. When the meter initial state is a general complex Gaussian state (2.51), all the relevant
averages can be expressed in a simple form. Taking into account Eqs. (8.24) and (11.25), we obtain that in Eq. (11.24)

G1 = [q̄ cos(2γ p̄)− γ b sin(2γ p̄)] exp[−2(γ1p)2],

G2 = [q̄ sin(2γ p̄)+ γ b cos(2γ p̄)] exp[−2(γ1p)2]. (11.32)

NowMc and Ms are given by Eq. (11.19) with F = p.
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d. Real Gaussian meter state. In particular, for a real and zero-mean Gaussian meter state, Eq. (11.29) with the account of
Eq. (11.19) yields the following explicit expressions,

q̄s =
2γ Re Aw

1 + A(1,1)w + (1 − A(1,1)w ) exp[−2(γ1p)2]
. (11.33)

Now the pointer distribution is given by Eq. (11.30) or (11.31), where

ψM(q) = (

2/π 1p)1/2 exp[−(1p)2q2], (11.34)

Φ(q) = ψ2
M(q) =


2/π 1p exp[−2(1p)2q2], (11.35)

Q1 = {1 + A(1,1)w + (1 − A(1,1)w ) exp[−2(γ1p)2]}/2. (11.36)

In particular, Eq. (11.30) becomes

Φs(q) =
(1 − 2Re Aw + A(1,1)w )Φ(q + γ )+ (1 + 2Re Aw + A(1,1)w )Φ(q − γ )+ 2(1 − A(1,1)w ) exp[−2(γ1p)2]Φ(q)

2{1 + A(1,1)w + (1 − A(1,1)w ) exp[−2(γ1p)2]}
.

(11.37)

A result similar to that in Eq. (11.31) with the account of Eq. (11.34) was obtained (without a normalization factor) in
Ref. [113] for the case F = q, R = p. Moreover, for the special case, where the preselected state is pure, so that A(1,1)w = |Aw|

2,
Eqs. (11.33) and (11.37) were obtained in Ref. [145].

11.2.3. Two-level meter
Consider now a two-level meter (qubit). Using Eq. (8.58) and taking into account that F̂ 2

1 = I , we obtain that

cos γ F̂ = cos γ cos(γ f0)− F̂1 sin γ sin(γ f0), sin γ F̂ = cos γ sin(γ f0)+ F̂1 sin γ cos(γ f0). (11.38)

Inserting Eq. (11.38) into Eqs. (11.6) and (11.7) yields

Gcc = C2
10C

2
11R̄ − S20S21MR/2 + S210S

2
11M,

Gcs = [C2
10S21R̄ + S20(C21MR + iMI)− S210S21M]/2,

Gss = C2
10S

2
11R̄ + S20S21MR/2 + S210C

2
11M,

Mc = C20C21 − S20S21F̄1, Ms = C20S21 + S20C21F̄1. (11.39)

HereMR, MI , and M are given by Eqs. (8.67), (8.71) and (8.72), whereas (m = 1, 2)

Cm0 = cos(mγ ), Sm0 = sin(mγ ), Cm1 = cos(mγ f0), Sm1 = sin(mγ f0). (11.40)

11.3. Exact solution for standard measurements

Though in this section we focus mainly on PPS measurements, here we also briefly mention the exact result for standard
(i.e., not post-selected) measurements with an arbitrary measurement strength for the case (11.2). On inserting Eq. (11.4)
into Eq. (3.1), it is easy to obtain that

R̄f = Gcc + Gss + 2Ā ImGcs. (11.41)

Eq. (11.41) provides an extension of Eq. (3.8); expanding Eq. (11.41) up to first order in γ yields Eq. (3.8). Thus, the average
values of operators satisfying Eq. (11.2) or, more generally, Eq. (11.1) can be provided directly by standard measurements
of an arbitrary strength and not only by weak measurements.

12. Numerical results and discussion

Here we present results of calculations for weak PPS measurements of a qubit with two types of a continuous-variable
meter. We assume that for both meters, F = p and p3c = 0. For meter 1, R = p, whereas for meter 2, R = q and the phase
ζ (p) is quadratic. In this section we set1p = 1.

For the measured qubit we take Â = σx, |ψ⟩ = |n⃗⟩, Eq. (10.19), and |φ⟩ = | − z⃗⟩. Correspondingly, in Figs. 7–11, Aw is
given by Eq. (10.23), whereas in Fig. 12, Aw and A(1,1)w are given by Eq. (10.22). Eqs. (10.22) and (10.23) imply that now the
weak-value argument is given by θ = −ν. Note that |Aφψ | ≤ 1, and hence the validity condition (6.11) of Eq. (6.18) certainly
holds for

|γ | ≪ (1 + |p̄|)−1. (12.1)
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Fig. 7. (Color online). The average pointer deflection (R̄s − R̄) versus the coupling strength γ . Here 1p = 1, Pin = 1 (a pure initial state); thick
lines: Eqs. (12.2); thin lines: the exact solution (11.5). Solid red lines: R = p, p̄ = 0; dot-dashed brown lines: R = p, p̄ = 1; solid dark-green lines:
R = q, p̄ = b = 0; dashed blue lines: R = q, p̄ = b = 1. The figure shows several lineshapes which are possible in weak PPS measurements. Notice that
our general formulas (12.2) approximate very well the exact solutions in the region where the measurements are weak, see the inequality (12.1), which
now is |γ | ≪ 1.

Fig. 8. (Color online). The average pointer deflection (R̄s − R̄) versus the phase θ of Aw . Here1p = 1, Pin = 1; thick lines: Eqs. (12.2); thin lines: the exact
solution (11.5). The thin lines are not seen since they practically coincide with the thick lines. The four cases are plotted with the same line styles as in
Fig. 7.

To get a better understanding of weak PPS measurements, below we show plots of our general formulas (6.18), (6.100)
and (7.3) versus various parameters. The values of the meter parameters in Eqs. (6.18), (6.100) and (7.3) are given by
configuration 1 in Table 5 and configuration 2 in Table 6 for meters 1 and 2, respectively. In particular, for meters 1 and
2, respectively, Eq. (6.18) can be rewritten as

p̄s − p̄ =
2γ (1p)2 (Im Aw + γ p̄|Aw|

2)

1 + 2γ p̄ Im Aw + γ 2(1 + p̄2)|Aw|2
, (12.2a)

q̄s − q̄ =
γ Re Aw + γ b Im Aw + γ 2bp̄|Aw|

2

1 + 2γ p̄ Im Aw + γ 2(1 + p̄2)|Aw|2
. (12.2b)

Eqs. (12.2) are valid for a pure preselected state. They hold also for a mixed preselected state when the substitution (7.5) is
performed. In Figs. 7–12 the plots of Eqs. (12.2) are shown by thick lines. These results are verified against the exact solution
specified for a Gaussian meter state; this solution is plotted by thin lines. The exact solution is given by Eqs. (11.5), with the
account of Eqs. (11.24), (11.32) and (11.19) for R = q or Eqs. (11.12), (11.13), (11.19) and (11.20) for R = p.
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Fig. 9. (Color online). The average pointer deflection (R̄s − R̄) versus the angle κ in Eq. (10.23). Here1p = 1, Pin = 1; thick lines: Eqs. (12.2); thin lines:
the exact solution (11.5). The thin lines are not seen since they practically coincide with the thick lines. The four cases are plotted with the same line styles
as in Fig. 7.

Fig. 10. (Color online). The average pointer deflection (R̄s − R̄) versus the coupling strength γ . Here1p = 1, Pin = 1; thick lines: Eqs. (12.2); thin lines:
the exact solution (11.5); dotted lines: the simplified Eqs. (12.5). The thin lines are not seen since they practically coincide with the thick lines. The figure
shows the regime of a narrow resonance obtainable for F̄ ≫ 1F , i.e., now for p̄ ≫ 1.

Fig. 7 presents the average pointer deflection (R̄s − R̄) versus the coupling strength for different values of p̄ and b. One
can see that Eqs. (12.2) approximate the exact solutions very well when the condition (12.1) holds (i.e., now for |γ | ≪ 1).
In this interval, Fig. 7 shows a variety of lineshapes, which, as discussed above, include Lorentzian-like, dispersive-like, as
well as similar, though more complicated, lineshapes. The main features of the curves agree with the analysis in Section 6.
Namely, when γ is very close to zero, the dependence is described by the linear equation (8.2) (for R = p) or (8.25) (for
R = q). The exception is the case R = q, p̄ = b = 1 (the blue dashed lines),when the linear response vanishes; this plot
shows clearly that weak PPS measurements are possible even in the absence of a linear response. With a further increase of
|γ |, the quantity |R̄s − R̄| increases to a value of the order of the maximum, i.e., of order1R [see Eq. (6.60)], for

|γ Aw| ∼ (1 + |p̄|)−1 (12.3)
[cf. Eq. (6.41)], i.e., now for |γ | ∼ 0.05/(1 + |p̄|). Note that in the present case

1R = 1p = 1 for R = p, (12.4a)

1R = 1q =

√
1 + b2

2
for R = q, (12.4b)

where Eq. (12.4b) follows from Eq. (2.53).



A.G. Kofman et al. / Physics Reports 520 (2012) 43–133 117

Fig. 11. (Color online). The average pointer deflection (R̄s − R̄) versus the phase θ of Aw . Here 1p = 1, Pin = 1; thick lines: Eqs. (12.2); thin lines: the
exact solution (11.5); dotted lines: the simplified Eqs. (12.5). The figure shows the regime of narrow resonance obtainable for |p̄| ≫ 1.

Fig. 12. (Color online). The average pointer deflection (R̄s − R̄) versus the angle κ in Eq. (10.23), for a mixed initial state. Here 1p = 1; thick curves:
Eqs. (12.2) with the substitution (7.5); thin lines: the exact solution (11.5). The thin curves are not seen since they practically coincide with the thick lines.
The four cases are plotted with the same line styles as in Fig. 7. The figure shows that adding a small impurity in the preselected state can result in a
significant decrease of the maximummagnitude of the average pointer deflection.

Fig. 8 shows the dependence of the average pointer deflection (R̄s − R̄) on the phase of the weak value for γ = 0.05,
the other parameters being as in Fig. 7. Now the coupling strength γ satisfies the condition (12.1); correspondingly, there
is no discernable difference between the exact and approximate formulas. Moreover, now we set |γ Aw| = 1 to satisfy the
condition (12.3); hence Fig. 8 corresponds to a significantly nonlinear regime. Therefore, the maximum values of |R̄s − R̄| in
Fig. 8 are of order1R. For curves with p̄ = 0, the θ dependence is sinusoidal, and the maxima and zeros of |R̄s − R̄| occur at
the same values of θ as for the linear response, Eqs. (6.26) and (6.27), since the last term in the numerator and the second
term in the denominator of Eqs. (12.2) disappear now. Note that for meter 1, θ0 = 0, whereas for meter 2, θ0 = π/2 for
p̄ = 0 and θ0 = π/4 for p̄ = 1. For curves with p̄ ≠ 0, the θ dependence is not sinusoidal, and the positions of the maxima
and zeros of |R̄s − R̄| differ from those for the linear response, since then, in contrast to the case p̄ = 0, generally all the
terms in Eqs. (12.2) are nonzero.

Fig. 9 demonstrates the dependence of (R̄s − R̄) on the angle κ which determines |Aw| = cot(κ/2), see Eq. (10.23).
Actually for κ ≪ 2, Fig. 9 shows the dependence on the quantity 2/|Aw| (≈ κ). In Fig. 9, the exact and approximate formulas
practically coincide. Fig. 9 illustrates the fact that |R̄s − R̄| becomes significant, i.e., of order1R, when Aw is sufficiently large
to satisfy Eq. (12.3). The latter condition is now equivalent to κ ∼ 0.1(1 + |p̄|).
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Table 8
The correspondence between the notation used here and the one used in Refs. [21,22].

γ q 1q ϕ

[21] k x a −φ

[22] k x σ φ

In Figs. 7–9 above we illustrated the behavior of the average pointer deflection (R̄s − R̄) for the case F̄ . 1F (p̄ . 1 now).
Consider now the case F̄ ≫ 1F (i.e., p̄ ≫ 1 in this section), which, as mentioned in Section 6, is quite different from the
case F̄ . 1F . In this case (R̄s − R̄) is significant only when the parameters x and ϵ in Eqs. (6.101)–(6.102) are small. Thus, as
shown by Figs. 10 and 11, (R̄s − R̄) is a narrow resonance as a function of different parameters in the problem. This case is
approximated by Eq. (6.100), which for meters 1 and 2 becomes, respectively,

p̄s − p̄ =
−2(1p)2x

p̄ (x2 + ϵ2 + p̄−2)
, (12.5a)

q̄s − q̄ =
−ϵ − bx

p̄ (x2 + ϵ2 + p̄−2)
. (12.5b)

Figs. 10 and 11 show that the simple Eqs. (12.5) describe well the resonance in the pointer deflection. In Fig. 10, ϵ = 0,
whereas the varied parameter γ is linearly related to x. In contrast, in Fig. 11, x is negligibly small, whereas θ is linearly
related to ϵ. In this case, as shown by Eq. (12.5b), (q̄s − q̄) is practically independent of b; correspondingly, the plots for
b = 0 and b = 1 practically coincide in Fig. 11. One can see that (R̄s − R̄) is almost zero for the case R = q, b = 0, when
Re Aw = ϵ = 0 (Fig. 10), and for R = p when x practically vanishes (Fig. 11). The reason for this is clear from the simplified
(12.5b) and (12.5a), respectively.

Note that there is a slight discrepancy between Eqs. (12.2a) and (11.5) for R = p when θ ≈ −π/2 (see the thick and
thin red solid lines in Fig. 11). This is explained by the fact that in this case the two terms in the numerator of Eq. (12.2a)
practically cancel, so the higher-order terms neglected in Eq. (6.18) become noticeable. However, this discrepancy is rather
insignificant, since it occurs for the not very interesting case of a small (R̄s − R̄) [see the remark after Eq. (6.18)].

The effect of amixed initial state is illustrated in Fig. 12, where Pin = 0.99. A comparison of Figs. 9 and 12 shows that even
a small impurity of the initial state can significantly decrease the maximum magnitude of the average pointer deflection;
see also the discussion in Section 10.4.

13. Discussion of two recent interferometric experiments

Starling et al. [22] experimentally demonstrated an optical-phasemeasurement technique based on phase amplification.
Similar sensitivity to balanced homodyne detection was obtained. In Ref. [22], the experiment was explained on the basis
of classical wave optics. A similar experiment was performed also in Ref. [21], but there the explanation was given in terms
of the weak value. Modified versions of the experiment in Ref. [21] were performed in Refs. [99,100] in connection with
potential metrology applications. The experiment in Ref. [21] was analyzed in Refs. [93,94], and a nonlinear version of this
experiment was discussed in Ref. [181].

Below we provide a unified description of both experiments [21,22] on the basis of the present nonperturbative theory
of weak PPS measurements. In particular, we show that the results of Refs. [21,22] are described by two opposite limits of
the same nonlinear formula. The correspondence between the notation here and in Refs. [21,22] is presented in Table 8.

13.1. Unified theory of two interferometric measurement schemes

We begin with a brief description of the schematic of the weak PPS measurement in Refs. [21,22] shown in Fig. 13
(the details can be found in Refs. [21,22]). A photon enters a Sagnac interferometer, composed of a 50/50 beam splitter
and mirrors, and eventually exits the same beam splitter. The measured quantum system consists of the clockwise and
counterclockwise paths of a photon in the interferometer, denoted by |1⟩ and |2⟩, respectively. The system is coupled to the
meter (a transverse degree of freedom of the photon) by a controlled tilt given to the piezo-driven mirror (PDM), resulting
in the transverse-momentum shifts γ and −γ of the photon in the paths |1⟩ and |2⟩, respectively. The coupling unitary
operator is given [21] by Eq. (2.10), where F̂ = q is the transverse coordinate and

Â = |1⟩⟨1| − |2⟩⟨2|. (13.1)

Moreover, due to the polarizer and the half-wave plate (HWP), the photon passes the Soleil-Babinet compensator (SBC)
in the polarization state depending on the path. As a result, after passing the SBC, the photon acquires different phases ϕ1
and ϕ2 in the paths |1⟩ and |2⟩, respectively, so that a relative phase

ϕ = ϕ1 − ϕ2 (13.2)
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Fig. 13. (Color online). Schematic diagram of the Sagnac interferometer for weak PPS measurements used in Refs. [21,22]. Here HWP is a half-wave plate,
SBC is a Soleil-Babinet compensator, and PDM is a piezo-driven mirror.

is introduced between the paths. In the clockwise (counterclockwise) path the photon passes the SBC before (after) the PDM,
therefore the photon state before the exit of the photon from the interferometer is

U2UU1|ψ0⟩ψM(q) = UU2U1|ψ0⟩ψM(q). (13.3)

Here |ψ0⟩ is the photon state immediately after the photon enters the interferometer,

|ψ0⟩ =
1

√
2
(|1⟩ + i|2⟩), Uj = exp(iϕj|j⟩⟨j|). (13.4)

In Eq. (13.3) we changed the order of the operators U2 and U , since U2 commutes with Â and hence with U . Eq. (13.3) implies
that the effective preselected state is [21]

|ψ⟩ = U2U1|ψ0⟩ =
1

√
2
(eiϕ |1⟩ + i|2⟩). (13.5)

Here the last equality holds with the accuracy to an irrelevant total phase.
The post-selection is performed by detecting (with the split detector) the photons exiting only the ‘‘dark port’’ of the

beam splitter, the post-selected state being [21]

|φ⟩ =
1

√
2
(|1⟩ − i|2⟩). (13.6)

Eqs. (13.1), (13.5) and (13.6) imply that

⟨φ|ψ⟩ =
eiϕ − 1

2
≈

iϕ
2
, Aφψ =

eiϕ + 1
2

≈ 1. (13.7)

Here and below the approximations hold for |ϕ| ≪ 1. Using Eq. (13.7) in Eq. (2.36) yields the weak value [21]

Aw = −i cot
ϕ
2


≈ −

2i
ϕ
. (13.8)

The split detector measures the average transverse coordinate of the photon, which means that R = F = q. Moreover,
in Refs. [21,22] the initial meter state is a Gaussian with q̄ = 0, whereas the beam divergence is negligible, i.e., the meter
Hamiltonian is zero. Hence, from Eq. (6.18) and line 1 in Table 5 we obtain that

q̄s =
2γ (1q)2 Im Aw

1 + γ 2 (1q)2|Aw|2
= −

2γ (1q)2 tan(ϕ/2)
tan2(ϕ/2)+ γ 2 (1q)2

≈ −
4γ (1q)2ϕ

ϕ2 + 4γ 2 (1q)2
. (13.9)

The last expression in Eq. (13.9) as a function of γ or ϕ has the dispersion shape, with the maximum andminimum given by

q̄s = ±1q at ϕ = ∓2γ (1q). (13.10)

The formula (13.9) holds under the condition (6.13a), which now becomes

|γ |1q ≪ 1. (13.11)
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The formula (13.9) simplifies in two limits. In the linear-response regime,

|γ Aw|1q ≪ 1, i.e., 2|γ |(1q) ≪ |ϕ|, (13.12)

Eq. (13.9) yields (cf. [21], Eq. (5))

q̄s = 2γ (1q)2 Im Aw = −2γ (1q)2 cot
ϕ
2


≈ −

4γ (1q)2

ϕ
, (13.13)

whereas in the inverted region,

|γ Aw|1q ≫ 1, i.e., 2|γ |1q ≫ |ϕ|, (13.14)

Eq. (13.9) yields

q̄s = −
2
γ

Im A−1
w , (13.15)

i.e. (cf. [22], Eq. (9)),

q̄s = −
2
γ

tan
ϕ
2


≈ −

ϕ

γ
. (13.16)

Eqs. (13.13) and (13.16) constitute the central results10 of Refs. [21] and [22], respectively.11 As shown above, these
two experiments were performed in different regimes of weak PPS measurements, described by two limits of our general
nonlinear formula, which now has the form (13.9).

It is of interest also to consider the distribution of the pointer values. It is given by Eq. (9.21) taking into account Eqs. (9.4)
and (13.8),

Φs(q) =
[γ q − tan(ϕ/2)]2Φ(q)
tan2(ϕ/2)+ γ 2 (1q)2

. (13.17)

In particular, in the limit (13.14)

Φs(q) ≈


q
1q

−
tan(ϕ/2)
γ1q

2
Φ(q). (13.18)

For a GaussianΦ(q), Eq. (13.18) coincides, up to a constant factor, with the intensity at the dark port (i.e., the unnormalized
pointer distribution) given by Eq. (7) in Ref. [22] (cf. Table 8). In Ref. [22] the light with the intensity distribution (13.18)
is called the ‘‘split-Gaussian mode’’, since this distribution has a slightly asymmetric two-peak shape, shown in Fig. 2 in
Ref. [22].

Thus, we have derived the results of Ref. [22] quantum-mechanically. We have shown that the experiment in Ref. [22] is
a weak PPS measurement in the inverted region.

13.2. Amplification coefficient for phase measurements

Starling et al. [22] showed that their experiment is well suited for precision measurements of the phase ϕ. They claimed
that their technique involves phase amplificationwith the coefficient proportional to γ−1, but they did not provide the exact
value of the amplification coefficient. Let us obtain the latter. Note that, in view of the first of Eqs. (13.7),

|ϕ| = 2|⟨φ|ψ⟩|. (13.19)

As follows from the general discussion in Section 6.7.2, in measurements of the overlap the proper amplification coefficient
is [cf. Eq. (6.83)]

A′
= (|γ |1q)−1, (13.20)

where we took into account the second of Eqs. (13.7). The amplification coefficient Aϕ for the phase ϕ is related to A′ by
the relation A′

|⟨φ|ψ⟩| = Aϕ |ϕ|, i.e., in view of Eq. (13.19),

Aϕ =
A′

2
= (2|γ |1q)−1. (13.21)

10 Dixon et al. [21] demonstrated also an enhancement of the pointer deflection due to propagation effects, see also the discussion in Refs. [93,181]. These
propagation effects are completely analogous to the time evolution due to a meter Hamiltonian [90]. Hence, they can be explained also with the help of
the present theory of the effects of the meter Hamiltonian (Sections 5 and 8.2.4).
11 Eq. (13.15) is absent in Ref. [22], since this paper describes a classical theory. However, a formula, which differs from Eq. (13.15) by the absence of the
factor γ−1 , is mentioned in an earlier version of the above paper: Ref. [169], Eq. (9).
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This can be compared with the linear-response result in Eq. (13.13), which was used in Ref. [21] for an amplification of
the pointer deflection (i.e., the beam deflection) or formeasuring γ , the proper amplification coefficient being [cf. Eqs. (6.75)
and (13.19)]

A ∼ |ϕ|
−1. (13.22)

In the case (13.12) [(13.14)] themagnitude of the pointer deflection (13.13) [(13.16)] increases, when the ratio γ /ϕ increases
(decreases). For both cases, the amplification is maximal in the strongly-nonlinear regime,

|γ Aw|1q ∼ 1, i.e., 2|γ |1q ∼ |ϕ|, (13.23)

where, in view of Eqs. (13.21) and (13.22), we have

Aϕ ∼ A ∼ |ϕ|
−1. (13.24)

In this regime, the nonlinear equation (13.9) should be used.

13.3. A comparison of the phase-amplification technique with projective measurements

In Section 6.10.4, we obtained an estimation of the SNR with respect to the quantum noise for weak PPS measurements
in the regime of very large weak values [see Eq. (6.133)]. The above estimation holds for the general case. However, for
the special case of the phase-amplification technique [22] (i.e., the weak PPS measurement described above), the quantum
SNR can be obtained exactly. Indeed, in view of Eq. (6.69) and the second equation in Eq. (13.7), we obtain that now the
post-selection probability is given by the value [22]

⟨Πφ⟩f = γ 2(1q)2 ≪ 1, (13.25)

which is small due to Eq. (13.11). Taking into account also that the pointer deflection is given by Eq. (13.16), we obtain from
Eq. (6.116) that the quantum SNR is given by

R = 3−1/4
|ϕ|

√
N ≈ 0.76|ϕ|

√
N. (13.26)

Here we took into account that now R = q and that Eq. (13.18) with a Gaussian Φ(q) implies the pointer uncertainty
1qs ≈ 31/41q. [The latter result follows from the fact, which can be easily shown, that one can approximately neglect the
small second term in the brackets in Eq. (13.18).]

Eq. (13.26) is derived assuming that the average position is obtained by a statistical analysis of the measurement results.
For comparison, in the split-detection method the average position is deduced from the difference between the integrated
intensities on the left and right sides of the detector, resulting in a somewhat higher SNR than Eq. (13.26) [22],

R =


2
π

|ϕ|
√
N ≈ 0.80|ϕ|

√
N. (13.27)

The phase ϕ can be measured also with the help of strong (projective) quantum measurements. The projective
measurement described in Section 6.10.4 can be implemented in the present case by setting γ = 0 and measuring the
statistics of photons exiting the dark and bright output ports of the beam splitter in Fig. 13, since the exit probabilities equal
P1 = |⟨φ|ψ⟩|

2
≈ ϕ2/4 and P0 = 1 − P1, respectively. As follows from Eqs. (6.135), for this method, the SNR with respect to

the quantum noise is

R1 =
|ϕ|

√
N

2
. (13.28)

In fact, in Ref. [22] a more sophisticated version of strong measurements was implemented, the so called balanced
homodyne detection. In this scheme a unitary transformation of |ψ⟩ is performed, so that ϕ → π/2 + ϕ in Eq. (13.5),
and then the integrated intensities of both output ports are subtracted, resulting in the homodyne signal per one photon
sinϕ ≈ ϕ. As shown in Ref. [22], the quantum SNR for the balanced homodyne detection is

R2 = |ϕ|
√
N, (13.29)

two times greater than for the above simple scheme of projective measurements [cf. Eq. (13.28)].
A comparison of Eqs. (13.26) and (13.27), on one hand, with Eq. (13.29), on the other hand, shows that the phase-

amplification technique has similar sensitivity to balanced homodyne detection with respect to quantum noise [22]. This is
in agreement with the discussion in Section 6.10.4, where the quantum SNR was shown to be generally of the same order
for projective and weak PPS measurements.

As noted in Ref. [22], the phase-amplification technique is a robust, low-cost alternative to balanced homodyne phase
detection, since one can use a low-cost split detector with a low saturation intensity, owing to the large attenuation [cf.
Eq. (13.25)]. In this case, an increase of the attenuation does not decrease the quantum SNR (13.27) due to the simultaneous
increase of the amplification coefficient (13.21).
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14. PPS measurements with a general post-selection measurement

14.1. General formulas

Until now (except for some remarks in Section 2.3.1), we considered PPS measurements in which the post-selection is
performed by ameasurement projecting the system state on a discrete, nondegenerate eigenstate of some variable B. In this
section, we discuss the general case, where the post-selection is performed by means of a general measurement described
by an arbitrary POVM. This case includes different possible situations, such as, e.g., a projection on a degenerate eigenvalue
of B. Another situation, where this case may be relevant, arises when one takes into account errors in the post-selection
measurement. Indeed, in the presence of measurement errors, a projective measurement can be described as a general
measurement characterized by a POVM [3,28,185] rather than by a projection-valued measure.

In the general case, a PPS ensemble consists of systems for which the post-selection measurement yields a specific
outcome. The POVMoperator corresponding to thismeasurement outcome is denoted here by E. By repeating the derivation
in Section 4.1 with the change

Πφ → E, (14.1)

it is easy to obtain that in the general case [cf. Eqs. (4.8) and (4.10)]

R̄s =
⟨ER⟩f
⟨E⟩f

(14.2)

and

R̄s − R̄ =
⟨ERc⟩f

⟨E⟩f
, (14.3)

where ⟨E⟩f is the post-selection probability and the averages are given by [cf. Eqs. (4.9) and (4.5)]

⟨ER⟩f = Tr [(E ⊗ R̂) ρf ], ⟨E⟩f = Tr [(E ⊗ IM) ρf ]. (14.4)

14.2. Relation between PPS and standard measurements of any strength

Eq. (14.2) allows us to connect PPS and standard quantummeasurements of arbitrary strength. In the limiting case when
E is just the unity operator IS, we obtain that ⟨E⟩f = ⟨IS⟩f = 1 and hence Eq. (14.2) reduces to Eq. (3.1). Thus, in this
case PPS measurements coincide with standard measurements for any measurement strength and any preselected state.
This statement extends the similar results obtained for the special cases of strong and weak measurements with a pure
preselected state in Ref. [76] (cf. Section 2.3.1).

The above statement is a limiting case of a more general relation between PPS and standard quantum measurements
of any strength, as follows. If Â commutes with either ρ or E, then an arbitrary-strength PPS measurement of A provides
formally the same results as a standard measurement with the preselected state described by the ‘‘density matrix’’

ρ ′
=

Eρ + ρE
2 Tr (Eρ)

. (14.5)

To prove this statement, we use Eqs. (14.4) and (4.3) to write

⟨ER⟩f = Tr [(E ⊗ R̂)U (ρ ⊗ ρM)UĎ
] =

1
2
Tr [(Is ⊗ R̂)U ((Eρ + ρE)⊗ ρM)UĎ

], (14.6)

⟨E⟩f = Tr [(E ⊗ IM)U (ρ ⊗ ρM)UĎ
] = Tr [U (Eρ ⊗ ρM)UĎ

] = Tr (Eρ ⊗ ρM) = Tr (Eρ) Tr ρM = Tr (Eρ). (14.7)

In the second equalities in Eqs. (14.6) and (14.7) we used Eqs. (D.8) and (D.6), respectively. Inserting Eqs. (14.6) and (14.7)
into Eq. (14.2) yields Eq. (3.1) with ρ given by Eq. (14.5). This proves the statement in question.

When Tr (Eρ) = 0, ρ ′ in Eq. (14.5) does not exist. However, in this case PPS measurements are not possible, since the
post-selection probability (14.7) is zero.

Consider some consequences of the above equivalence of PPS and standard measurements of any strength. For strong
PPS measurements, the probabilities in Eq. (2.20) are given now by

Pi|E = Tr (Πi ρ
′). (14.8)

Indeed, it is easy to check that Eqs. (2.20) and (14.8) are equivalent now. Correspondingly, the average of A in strong PPS
measurements given by Eq. (2.61) or, more generally, by the formula

As =


i

ai Pi|E (14.9)
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coincides now with the average of A resulting from the equivalent strong standard measurements: As = Ā′, where

Ā′
= Tr (Âρ ′). (14.10)

This equality results directly on inserting Eq. (14.8) into Eq. (14.9). Moreover, the equivalence of weak PPS and standard
measurements means that Aw = Ā′. This equality is derived independently also in Section 14.3. The above results imply that
now

Aw = As. (14.11)

It should be noted thatρ ′ in Eq. (14.5) is Hermitian and Tr ρ ′
= 1, however generallyρ ′ is not a positive operator.Whenρ ′

is a positive operator, both PPS and standard measurements can be performed. However, when ρ ′ has, at least, one negative
eigenvalue, then ρ ′ does not correspond to a physical state; in this case a standard measurements cannot be performed,
and the above equivalence is formal. For example, when E = |φ⟩⟨φ| and ρ = |ψ⟩⟨ψ |, whereas |φ⟩ ≠ |ψ⟩ and ⟨φ|ψ⟩ ≠ 0,
then ρ ′ can be shown to have, at least, one negative eigenvalue. Still, now the results of measurements are usual values,
irrespective of whether the operator ρ ′ is positive or not. In particular, Ā′ in Eq. (14.10) is a usual value of A. This follows
from the above result Ā′

= As and the fact that As is a usual value of A, since As in Eq. (14.9) is an average of A over a classical
(i.e., positive) probability distribution Pi|E .

Note that the quantity ρ ′ in Eq. (14.5) was considered previously in a different context in Ref. [132], where it was called
the ‘‘transient density matrix’’. There ρ ′ was discussed in connection with weak PPS measurements in the linear-response
regime.

Now let us apply the above relation between PPS and standard measurements to prove the time-symmetry property,
mentioned in Section 2.5.2, that measurements in a preselected (only) ensemble and a post-selected (only) ensemble with
the same pre- or post-selected state, respectively, produce the same results, irrespective of the measurement strength.
Consider measurements in a post-selected ensemble, i.e., an ensemble with the completely mixed preselected state ρc.m.,
Eq. (2.18), and a post-selected state |φ⟩. Since ρc.m. commutes with any Â, a measurement in a post-selected ensemble is
equivalent to a measurement in a preselected ensemble with the preselected state ρ ′, Eq. (14.5). Now E = Πφ ≡ |φ⟩⟨φ|,
and, in view of Eq. (2.18), Eq. (14.5) yields

ρ ′
=
Πφ ρc.m. + ρc.m.Πφ

2 Tr (Πφ ρc.m.)
=

2Πφ/d
2d−1

= Πφ . (14.12)

This proves the statement in question.

14.3. Weak PPS measurements

Now the expansions in the coupling parameter can be obtained in the form [cf. Eqs. (6.3)–(6.5)],

⟨ERc⟩f =

∞
n=1

inγ n

n!

n
k=0

(−1)k
n
k


Tr (Ân−kEÂkρ) F n−kRcF k, (14.13)

⟨E⟩f =

∞
n=0

inγ n F n

n!

n
k=0

(−1)k
n
k


Tr (Ân−kEÂkρ), (14.14)

⟨ER⟩f =

∞
n=0

inγ n

n!

n
k=0

(−1)k
n
k


Tr (Ân−kEÂkρ) F n−kRF k. (14.15)

Correspondingly, the expansions (6.6) hold now with the changes [cf. Eq. (7.1)]

|⟨φ|ψ⟩|
2

→ Tr (Eρ), (14.16a)

(Ak)w(Al)∗w → A(k,l)w ≡
Tr (ÂlEÂkρ)

Tr (Eρ)
(k, l ≥ 0). (14.16b)

In the linear approximation in γ , Eqs. (14.3), (14.13) and (14.14) yield the linear-response result (6.20), where in the
present general case the weak value is given by

Aw =
Tr (EÂρ)
Tr (Eρ)

. (14.17)

Eq. (14.17) follows also from Eq. (14.16b), on taking into account that Aw = A(1,0)w . The real part of the weak value (14.17)
was obtained in Ref. [118]. Note, however, that the real part of Aw is generally not sufficient to describe the linear response
(6.20). Eq. (14.17) was obtained in Ref. [103] and discussed in Ref. [130].
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It is easy to show that Aw is a usual value, when any two of the operators Â, ρ, and E commute. Indeed, then Aw in
Eq. (14.17) can be written as the average of A in the state (14.5),

Aw = Tr (Âρ ′). (14.18)

This situation includes two different cases:

(a) When E or ρ commutes with Â, then, as shown in Section 14.2, the results of PPS and standard measurements of
any strength coincide, Eq. (14.18) being a consequence of this fact for weak measurements. Moreover, as shown in
Section 14.2, Aw in Eq. (14.18) is a usual value, though ρ ′ may have negative eigenvalues. This case involves paragraphs
b, c, f, and g in Section 2.5.2 as its special cases.

(b) When E and ρ commute, ρ ′ in Eq. (14.5) becomes ρ ′
= Eρ/Tr (Eρ), which is a positive operator, implying that Aw in

Eq. (14.18) is a usual value. This case is an extension of paragraphs a and e in Section 2.5.2.

As shown above, in the nonlinear theory of weak PPS measurements, in addition to the weak value, also the associated
weak value A(1,1)w is generally required. As follows from Eq. (14.16b), in the general case this is given by

A(1,1)w =
Tr (ÂEÂρ)
Tr (Eρ)

. (14.19)

14.4. Time-symmetry properties for PPS measurements of any strength

A time-symmetry relation for measurements in ensembles of some special types was discussed in the last paragraph of
Section 14.2. Here we consider a more general time-symmetry property.

The expansions (6.6) with the changes (14.16) imply a time-symmetry property for PPS measurements of any strength.
Namely, it is easy to see that the above expansions remain invariant, except for the changes

A(k,l)w → (A(k,l)w )∗ = A(l,k)w , (14.20)

under the simultaneous substitutions

ρ →
E

Tr E
, E → e1ρ. (14.21)

Here e1 is any positive number such that e1ρ is an allowed POVM operator. As implied by Eq. (2.6), this means that the
maximal eigenvalue of e1ρ should not exceed one; hence,

0 < e1 ≤ λ−1
max, (14.22)

where λmax is the maximal eigenvalue of ρ.
The quantities which interchange in the time-symmetry relation (14.21) are, with an accuracy up to numerical factors,

the preselected state ρ and the post-selection POVM operator E, rather than pre- and post-selected states, as one might
expect naively. The reason for this is that the density matrix ρ, on one hand, and the post-selection measurement outcome
togetherwith the corresponding POVMoperator E, on the other hand, provide the complete information about the pre-selection
and the post-selection, accessible to an experimenter, and this information completely determines a given PPS ensemble.

In this connection, we note that the terms ‘‘pre-selection’’ and ‘‘post-selection’’ are perhaps somewhat confusing. Using
the same word ‘‘selection’’ masks the fact that ‘‘pre-selection’’ and ‘‘post-selection’’ describe in principle different physical
processes. ‘‘Pre-selection’’ means the process of preparation of the initial state of the quantum system. Correspondingly, the
‘‘preselected state’’ is a well defined notion—it is simply the initial state of the system.

In contrast, ‘‘post-selection’’ is conditioning of the measured statistical data on acquired information from the final
measurement of the system. The only information required for the post-selection is the result of the final measurement
and the corresponding POVM operator. Hence, the notion of the ‘‘post-selected state’’ is generally meaningless, since the
final state of the system is irrelevant. Indeed, it is irrelevant whether the system is destroyed by the measurement or,
if not, in what state it is. The notion of the ‘‘post-selected state’’ has a physical meaning only when the post-selection
is performed by a strong measurement corresponding to a nondegenerate eigenvalue of an observable. Then, according
to the projection postulate, if the measurement is minimally disturbing, i.e., projective, the state of the system after the
measurement coincides with the corresponding eigenstate. A pre- and post-selected ensemble can be characterized by
such a pure ‘‘post-selected state’’, even when the strong measurement is not minimally disturbing, i.e., when the system
is destroyed or its final state differs from the ‘‘post-selected state’’. In all other cases the final state generally depends on
the state of the system before the final measurement even for minimally disturbing (e.g., projective) measurements [cf.
Eq. (2.5)]. As a result, the final state generally depends on both the preselected state and the measurement(s) performed
in the PPS ensemble in between the pre-selection and the post-selection. Therefore, identically pre- and post-selected
ensembles, which have underwent different measurements, generally have different final states and hence cannot be
characterized by a unique ‘‘post-selected state’’. The above discussion implies that the post-selection POVM operator is a
more fundamental characteristic of a PPS ensemble than the final state of this ensemble.
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Consider the important casewhen the pre- and post-selected states are pure. (Here, as inmany other places in this paper,
we use the term ‘‘pure post-selected state’’, since it has a physicalmeaning in the sense discussed in the previous paragraph.)
In this case, we have ρ = Πψ ≡ |ψ⟩⟨ψ | and E = e0Πφ (0 < e0 ≤ 1). When e0 ≠ 1, the POVM operator E = e0Πφ is not a
projector, but still the post-selected state is |φ⟩. Now the time-symmetry relation (14.21) becomes

ρ = Πψ → Πφ, E = e0Πφ → e1Πψ , (14.23)

where e1 is an arbitrary number satisfying 0 < e1 ≤ 1. Bearing in mind that the POVM operator corresponding to a pure
post-selected state |φ⟩ is generally proportional to the projector Πφ with the coefficient which may differ from 1, we can
replace Eq. (14.23) by a simple relation,

|ψ⟩ ↔ |φ⟩. (14.24)

Thus, in the case of pure pre- and post-selected states, the time-symmetry relation is conceptually simple: Eq. (14.20) holds
under the exchange of the pre- and post-selected states. This is an extension of the time-symmetry relation for strong PPS
measurements [75–77] (see Section 2.3.2) to PPS measurements of an arbitrary strength.

Consider the important special cases of strong and weak PPS measurements. Strong PPS measurements are not affected
by the change (14.21), as implied by Eq. (2.20). This is an extension of the time-symmetry relation for strong PPS
measurements [75–77] (see Section 2.3.2) from the case of pure pre- and post-selected states to the general case of strong
PPS measurements.

For weak PPS measurements the above time-symmetry property (14.20)–(14.21) means that the weak value and the
associated weak value satisfy the relations [cf. Eq. (14.20)]

Aw → A∗

w, A(1,1)w = invariant (14.25)

under the simultaneous substitutions (14.21). Thus, the results of weak PPS measurements generally are changed by the
substitutions (14.21), unless Aw is real.

Consider a simple example. When the pre- and post-selected state are pure, Eqs. (14.24) and (14.25) yield the following
symmetry relation,

Aw → A∗

w for |ψ⟩ ↔ |φ⟩. (14.26)

This relation also follows from Eq. (2.36).

14.5. A pure preselected state

Consider an important situation when in a weak PPS measurement the preselected state is pure, ρ = |ψ⟩⟨ψ |, but the
post-selection measurement is general. As mentioned above, such a situation may arise, e.g., when measurement errors are
to be taken into account.

Now the weak values (14.17) and (14.19) become

Aw =
(EA)ψψ
Eψψ

, A(1,1)w =
(AEA)ψψ

Eψψ
. (14.27)

The present situation is closely related to the case of a mixed preselected state and a pure post-selected state. Indeed, the
weak values (2.60) and (7.5) are connected to the formulas (14.27) by the relation (14.25) under the substitutions

ρ →
E

Tr E
, |φ⟩ → |ψ⟩. (14.28)

Owing to this relation, one can use results of preceding sections in the present case. Namely, in the present situation the
nonlinear equations (7.3) and (7.4) hold provided the definitions (14.27) are used. Moreover, the other results obtained
above for the case of a mixed preselected state (see especially Sections 7 and 10 and Fig. 12) are also valid now, provided
the substitutions (14.28) and the definitions (14.27) are used.

15. Conclusion

Weak pre- and post-selected measurements are important for studies of the fundamentals of quantum mechanics.
They also hold promise for precision metrology, since they provide significant amplification of the pointer deflection in
comparison to standard weak measurements. This paper starts with a brief review of strong and weak PPS measurements
(Section 2). Afterwards, we present original contributions, which generalize previous theoretical work.

In particular, a nonperturbative theory of weak PPS measurements is developed. The theory is applicable to an arbitrary
quantum system and an arbitrary meter, with arbitrary initial states for both of them. The results are expressed in simple
analytical forms.We have shown that weak values and the coupling strength can bemeasured not only in the linear regime,
as was done previously, but also in two other regimes: the strongly-nonlinear regime and the inverted region (i.e., the limit
of very large weak values, where the overlap of the pre- and post-selected states is very small). We have verified our theory
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by showing that the optical experiment in Ref. [22] can be described quantum-mechanically as a weak PPS measurement in
the regime of large weak values.

Optimal conditions for measurements are obtained in the strongly nonlinear regime, since there the pointer deflection
is generally of the order of the maximum value. Correspondingly, under optimal conditions, the amplification is stronger
than in the linear regime by at least an order of magnitude. The nonlinear regime can be achieved only for anomalously
large weak values, which implies the requirement that the overlap of the pre- and post-selected states is small. The optimal
conditions are obtained when the above overlap is of the order of the small parameter of the theory.

We have revealed that, in the nonlinear regime, weak PPS measurements significantly depend on the value of F̄ .
In particular, a nonzero F̄ may facilitate measurements of weak values (Section 6.8.5) and the coupling strength γ
(Section 8.2.3). Moreover, the optimal regime of measurements is qualitatively different for |F̄ | . 1F and for |F̄ | ≫ 1F .
In the latter case, the optimal conditions are much stricter, but the amplification is much stronger, than for |F̄ | . 1F . This
increase of the amplification may result in an increased measurement precision. The optimal regime for |F̄ | ≫ 1F is very
sensitive to small perturbations of several parameters; this property can be used for various precision measurements. We
have indicated experimental schemes where F̄ is nonzero and tunable.

We have derived exact solutions for PPSmeasurements of a qubit with several types of meters and, using these solutions,
verified the present theory by numerical calculations. The present theory can be verified experimentally in many physical
systems, including optical experiments and experiments with various types of qubits (such as qubits in solid state, atoms,
NMR, etc.). Moreover, the present results can be applied to improve the accuracy of precision measurements. In particular,
the present theory can be applied to existing experimental setups, such as those in Refs. [21,22,90,93–95], where using the
optimal regime can increase the amplification by, at least, an order of magnitude.

In recent years, research on weak PPS measurements and weak values has been expanding with an increasing rate.
In spite of the initial controversy, weak values have demonstrated to be a fruitful concept both for fundamental studies
and for designing novel experimental techniques. Potential applications of weak values include such diverse topics as
optical communications, metrology, and quantum information processing. The general theory of weak PPS measurements
developed here will provide insights and a useful guide for further applications of weak values.
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Appendix A. Formula for embedded commutators

Here we derive a formula for n consecutively embedded commutators,

[D, . . . [D,  
n

C ] . . .]
n

=

n
k=0

ank Dn−kCDk, (A.1)

where the coefficients ank are to be determined. It is easy to see that the latter satisfy the recursive formula an+1,k =

ank − an,k−1, which by the change

ank = (−1)k a′

nk (A.2)
becomes

a′

n+1,k = a′

nk + a′

n,k−1 (0 ≤ k ≤ n + 1; n ≥ 1) (A.3)

with a′

n,−1 = a′

n,n+1 = 0. As follows from Eq. (A.1) with n = 1 and Eq. (A.2),

a′

10 = a′

11 = 1. (A.4)

Eq. (A.3)with the initial conditions (A.4) has a unique solution given by the binomial coefficients [186], a′

nk =
 n
k


. Combining

the latter formula with Eqs. (A.2) and (A.1) yields finally Eq. (6.2).

Appendix B. Generalized uncertainty relation and estimation of moments of meter variables

In Appendix B.1, we derive the generalized uncertainty relation for a quantum system in a mixed state and prove several
inequalities required in Appendix B.2. In Appendix B.2, we estimate the magnitude of the moments F kRcF n−k (0 ≤ k ≤ n)
for a system in a mixed state [cf. Eq. (7.7)]

ρM =


i

λ̃i|ψ̃i⟩⟨ψ̃i|, (B.1)

where ⟨ψ̃i|ψ̃j⟩ = δij, λ̃i ≥ 0, and


i λ̃i = 1.
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B.1. Generalized uncertainty relation

First, we prove the following useful inequality for arbitrary operators O1 and O2,

|O1O2|
2

≤ O1O
Ď
1 OĎ

2O2. (B.2)

When the averages here are taken over a pure state, Eq. (B.2) was shown to be a direct consequence of the Cauchy–Schwarz
inequality for Hermitian O1 and O2 in Ref. [183] and for general non-Hermitian O1 and O2 in Ref. [28]. Here we extend
Eq. (B.2) to the case of a general mixed state (B.1), by writing

|O1O2|
2

= |Tr (O1O2 ρM)|
2

=


i

λ̃i⟨ψ̃i|O1O2|ψ̃i⟩


2

≤


i

λ̃i|⟨ψ̃i|O1O2|ψ̃i⟩|

2

≤


i

λ̃i(⟨ψ̃i|O1O
Ď
1|ψ̃i⟩⟨ψ̃i|O

Ď
2O2|ψ̃i⟩)

1/2

2

≤


i

λ̃i⟨ψ̃i|O1O
Ď
1|ψ̃i⟩


j

λ̃j⟨ψ̃j|O
Ď
2O2|ψ̃j⟩

= O1O
Ď
1 OĎ

2O2, (B.3)

which proves Eq. (B.2) for the general case. In Eq. (B.3) the second inequality follows from Eq. (B.2) for a pure state, and the
third inequality results from the Cauchy–Schwarz inequality.

The inequality (B.2) implies that

|RcF l
c |

2
≤ R2

c F 2l
c (l ≥ 1). (B.4)

Eq. (B.4) with l = 1 yields the generalized uncertainty relation for the variables F and R

1R1F ≥ |Rc Fc |. (B.5)

Since

|Rc Fc | = |Rc F | = |R Fc | = |RF − R̄F̄ |, (B.6)

the generalized uncertainty relation (B.5) can be rewritten in different forms, e.g., in the form (6.28). The generalized
uncertainty relation (B.5) [or (6.28) or (6.29)] was derived by Schrödinger [183] for quantum systems in a pure state (see
also Refs. [182,187]). Here it is proved for the general case of an arbitrary (pure or mixed) state.

Combining Eqs. (6.9) and (B.4) results in the relation

|F l
c Rc | = |Rc F l

c | . 1R (1F)l (l ≥ 1). (B.7)

Using the relation

|F nRc | = |(Fc + F̄)nRc | ≤

n
l=0

n
l


|F̄ n−l F l

cRc | (B.8)

and Eq. (B.7), we obtain

|F n Rc | = |Rc F n| . 1R1F (1F + |F̄ |)n−1 (n ≥ 1). (B.9)

B.2. Estimating the moments

Let us now estimate the magnitude of the moments F kRcF n−k (0 ≤ k ≤ n; n ≥ 1).
We begin with two important cases, where the calculations are simple. First, let F and R be canonically conjugate

variables. Then, using the commutation relation R̂c F̂ = F̂ R̂c ± i, we can move R̂c to the last place in the product F̂ kR̂c F̂ n−k, so
that

|F k Rc F n−k| . |F n−1| + |F nRc | . 1R1F (|F̄ | +1F)n−1. (B.10)

Here in the last inequality we used Eqs. (B.9), (6.10), and the Heisenberg uncertainty relation1R1F ≥ 1/2. Thus, Eq. (B.10)
yields the estimate

|F k Rc F n−k| . 1R1F (|F̄ | +1F)n−1. (B.11)

Second, we note that the estimate (B.11) holds also for commuting F and R. Indeed, then

|F k Rc F n−k| = | Rc F n| . 1R1F (|F̄ | +1F)n−1, (B.12)

where the inequality results from Eq. (B.9).
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The general case, where F and R are not necessarily canonically conjugate or commuting, is more complicated, since then
the estimate (B.11) does not generally hold. Now we use the equality F = F̄ + Fc to write that

F k Rc F n−k =

k
l=0

n−k
m=0


k
l


n − k
m


F̄ n−l−mF l

c Rc Fm
c . (B.13)

This reduces the problem to the estimation of the moments F k
c Rc F n−k

c where 0 ≤ k ≤ n.
When 1R → 0, whereas 1F is bounded (which is possible, in particular, for finite-dimensional Hilbert spaces), the

moments F l
cRc and RcF l

c vanish [cf. Eq. (B.7)]. In contrast, the moments F l
cRcFm

c with l,m ≥ 1 generally do not vanish in the
limit1R → 0. To proceed further, we make the simplifying assumption

max
1≤l≤m−1

|F l
c Rc Fm−l

c | ∼ R̃ (1F)m, (B.14)

where R̃ does not depend very significantly on m and generally does not vanish in the limit 1R → 0. With the help of
Eqs. (B.7) and (B.14), the quantity (B.13) can be estimated by the relation

|F k Rc F n−k| . 1R1F F̄ k′(|F̄ | +1F)n−k′−1
+ R̃ (1F)2(|F̄ | +1F)n−2 (1 ≤ k ≤ n − 1), (B.15)

where k′
= min{k, n − k}.

Eq. (B.15) is equivalent to two simpler inequalities, which are obtained in two possible cases. First, in a typical situation,
when1R is not too small, Eqs. (B.15) and (B.9) yield for 0 ≤ k ≤ n

|F k Rc F n−k| . 1R1F (|F̄ | +1F)n−1 (1R & R̃), (B.16)

which coincides with the above estimate (B.11). Second, when1R vanishes or is very small, the first term on the right-hand
side of Eq. (B.15) can be neglected, yielding

|F k Rc F n−k| . R̃ (1F)2 (|F̄ | +1F)n−2 (1R ≪ R̃) (B.17)

for 1 ≤ k ≤ n − 1, whereas |F n Rc | = |Rc F n| are zero or negligibly small [cf. Eq. (B.9)].
In either case (B.16) or (B.17), the terms of orders higher than two in Eq. (6.6a) can be neglected under the condition

(6.11), when, at least, one of the two following cases takes place:

(a) The quadratic term in Eq. (6.6a) is not anomalously small, i.e., F Rc F is of the order of the right-hand side of Eq. (B.16) or
(B.17) with n = 2.

(b) The first-order term in Eq. (6.6a) is not anomalously small, i.e., it is of order |γ Aφψ |1R1F . Then, evenwhen the quadratic
term is vanishing or small, it can be shown that under the condition (6.11) the contribution of the third- and higher-order
terms into the pointer deflection (4.10) is negligibly small.

When the first- and second-order terms in Eq. (6.6a) vanish or are anomalously small or cancel each other, the validity
condition (6.11) may be inapplicable. However, generally such cases are of little interest, since then the pointer deflection
is very small.

Appendix C. Calculation of moments for canonically conjugate variables

Here we derive formulas for moments of canonically conjugate variables used in the main text. Let G(p) be an arbitrary
function, such that the integrals below in Eq. (C.2) converge and that

lim
p→±∞

G(p) ψM(p) = 0. (C.1)

Using the expression q = i∂/∂p and Eq. (8.12), we obtain that

G(p) q G(p) = (2π)−1


∞

−∞

dpψ∗

M(p)G(p)i[G(p) ψM(p)]′

= (2π)−1


∞

−∞

dp fp(p)G(p) {i[G(p) fp(p)]′ + ζ ′(p)G(p) fp(p)}

= i(4π)−1
[G(p) fp(p)]2 |

∞

−∞
+(2π)−1


∞

−∞

dp f 2p (p)G
2(p) ζ ′(p), (C.2)

where the prime denotes differentiation over p. The first term in the last expression in Eq. (C.2) vanishes in view of Eq. (C.1),
and we obtain that

G(p) q G(p) = ζ ′(p)G2(p). (C.3)
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In particular, Eq. (C.3) implies the formulas (8.23) and (8.16), whereas Eqs. (C.3) and (8.16) imply the first two lines in
Eq. (11.24).

In a similar fashion, it is not difficult to obtain that

K(χ1, χ2) ≡ exp(iχ1p) q exp(iχ2p) (C.4a)

= [(χ1 − χ2)/2 + ζ ′(p)] exp[i(χ1 + χ2)p]. (C.4b)

The characteristic function K(χ1, χ2) provides mixed moments of p and q, linear in q, by the formula

pn q pm = (−i)n+m ∂
n+mK(χ1, χ2)

∂χn
1 ∂χ

m
2


χ1=χ2=0

. (C.5)

Eq. (C.4a) implies that

cos(γ p) q sin(γ p) =
K(γ , γ )− K(γ ,−γ )+ K(−γ , γ )− K(−γ ,−γ )

4i
. (C.6)

Inserting Eq. (C.4b) into Eq. (C.6) yields the third line of Eq. (11.24).
It is easy to check that the expressions for averages of functions of p and q derived above hold also under the simultaneous

replacements

q ↔ p, ζ (p) → ξ(q). (C.7)

In particular, Eqs. (C.3)–(C.5) yield respectively

G(q) p G(q) = ξ ′(q)G2(q), (C.8)

K̃(χ1, χ2) ≡ exp(iχ1q) p exp(iχ2q) = [(χ1 − χ2)/2 + ξ ′(q)] exp[i(χ1 + χ2)q], (C.9)

qn p qm = (−i)n+m ∂
n+mK̃(χ1, χ2)

∂χn
1 ∂χ

m
2


χ1=χ2=0

. (C.10)

Eq. (C.8) implies Eq. (8.17). Taking into account that {q, p} = 2Re qp, Eq. (C.5) calculated for n = 0,m = 1 and Eq. (C.10)
with n = 1,m = 0 yield Eq. (8.13).

Appendix D. Operator identities

Here we prove several operator identities used in the present paper. Let OS and O′

S (OM and O′

M) be arbitrary operators in
the Hilbert space HS (HM) of system S (M), whereas O and O′ are operators in the Hilbert space HS ⊗ HM. If O and O′ can be
written as the sums

O =


i

OSi ⊗ OMi, O′
=


j

O′

Sj ⊗ O′

Mj, (D.1)

where OSi, O′

Sj, and either OS or O′

S commute pairwise for all i and j, then the following identities hold

Tr [(OS ⊗ OM)O(O′

S ⊗ O′

M)O
′
] = Tr [(IS ⊗ OM)O(OSO′

S ⊗ O′

M)O
′
]

= Tr [(IS ⊗ OM)O(O′

SOS ⊗ O′

M)O
′
],

=
1
2
Tr [(IS ⊗ OM)O((OSO′

S + O′

SOS)⊗ O′

M)O
′
]. (D.2)

Let us consider the above two cases separately. First, when OS commutes with OSi, it is easy to see that OS ⊗ IM commutes
with O; in this case the first equality in Eq. (D.2) is obvious. Second, let us prove the first equality in Eq. (D.2) for the case
when O′

S, OSi, and O′

Sj commute pairwise. The left-hand side of Eq. (D.2) can be recast as

Tr [(OS ⊗ OM)O(O′

S ⊗ O′

M)O
′
] =


i,j

Tr [(OSOSiO′

SO
′

Sj)⊗ (OMOMiO′

MO′

Mi′)]

=


i,i′

Tr (OSOSiO′

SO
′

Sj)Tr (OMOMiO′

MO′

Mi′) =


i,i′

Tr (OSiOSO′

SO
′

Sj)Tr (OMOMiO′

MO′

Mi′). (D.3)

Here in the last equality we used the fact that OSi commutes with O′

S and O′

Sj. The substitutions OS → IS, O′

S → OSO′

S change
the left-hand side of Eq. (D.3) into the right-hand side of the first equality in Eq. (D.2) but do not change the right-hand side
of Eq. (D.3), which proves the first equality in Eq. (D.2).
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The second equality in Eq. (D.2) follows from the fact that the above validity conditions for Eq. (D.2) imply that either
OS ⊗ IM or O′

S ⊗ IM commutes with O and O′. For example, when O′

S ⊗ IM commutes with O and O′, we obtain that

Tr [(IS ⊗ OM)O(OSO′

S ⊗ O′

M)O
′
] = Tr [(IS ⊗ OM)O(OS ⊗ O′

M)O
′(O′

S ⊗ IM)]

= Tr [(O′

S ⊗ IM)(IS ⊗ OM)O(OS ⊗ O′

M)O
′
] = Tr [(IS ⊗ OM)O(O′

SOS ⊗ O′

M)O
′
]. (D.4)

A similar argument holds also when OS ⊗ IM commutes with O and O′. Finally, the third equality in Eq. (D.2) follows from
the previous equality.

As an example, consider the case when O = U , O′
= UĎ, and Â commutes with either OS or O′

S. Here U is given by
Eq. (2.10). In this case, the sums of the form (D.1) are obtained by expanding U and UĎ in powers of γ , yielding

O′

Mj = OMj = Âj (j ≥ 0). (D.5)

Thus, the validity conditions for Eq. (D.2) hold now. Consequently, when Â commutes with either OS or O′

S, we obtain the
identities

Tr [(OS ⊗ OM)U(O′

S ⊗ O′

M)U
Ď
] = Tr [(IS ⊗ OM)U(OSO′

S ⊗ O′

M)U
Ď
], (D.6)

Tr [(OS ⊗ OM)U(O′

S ⊗ O′

M)U
Ď
] = Tr [(IS ⊗ OM)U(O′

SOS ⊗ O′

M)U
Ď
], (D.7)

Tr [(OS ⊗ OM)U(O′

S ⊗ O′

M)U
Ď
] =

1
2
Tr [(IS ⊗ OM)U((OSO′

S + O′

SOS)⊗ O′

M)U
Ď
]. (D.8)
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