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We use the recursion and path-integral methods to analytically study the electronic properties of a neutral C6o molecule. We 
obtain closed-form analytic expressions of the eigenvalues and eigenfunctions for both n ande states as well as the Green functions 
and the local densities of states, which can be probed experimentally, around any site and around several ring clusters. 

1. Introduction 

Undoped and doped C60 molecules have recently 
generated enormous interest among chemists, phy- 
sicists and materials scientists. In the present work, 
we focus on an analytical study of the electronic 
properties of a single neutral C60 molecule. Most 
studies on the electronic structure of C60 have been 
numerical. Here we derive closed-form expressions 
for the energy levels and eigenfunctions using the re- 
cursion method. The same energy levels are also ob- 
tained from a path-integral (or moment)  method. 
This approach follows Feynman's programme: to 
compute physical quantities from sums over paths. 
All the calculations are done analytically, either by 
hand or with the assistance of symbolic manipula- 
tion software. These two approaches (i.e., recursion 
and path-integral methods) are significantly differ- 
ent from the ones used so far. Furthermore, they are 
neither numerical nor require the use of  group the- 
ory. Diagonalizations are performed by iteratively 
applying the Hamiltonian on initial states. The beauty 
of the recursion method for C60 lies in the fact that 
the recurrence terminates very quickly (e.g., after 
four iterations only), providing exact and very con- 
cise expressions for the parameters of  the recursion. 

For a long time, the recursion and moment  meth- 
ods have provided a powerful numerical tool to study 
the electronic structure of solids. This paper focuses 
neither on a solid nor on a numerical method; there- 
fore it follows a very unusual and novel approach. 

Here we focus on a molecule, instead of a solid. It 
also turns out that our method is definitely non- 
standard in molecular physics. Why solve the spec- 
troscopy (eigenvalues and eigenfunctions) of an 
atom or molecule analytically, when it can be solved 
numerically? This question can be applied, for in- 
stance, to the hydrogen atom. Its spectroscopy is 
solved in textbooks using different analytical ap- 
proaches, instead of simply presenting the straight- 
forward numerical results. This is done because an- 
alytical solutions complement and enrich our 
quantitative and precise understanding of a problem. 

To study the electronic properties of a single C6o 
molecule, we consider the four carbon valence elec- 
trons 2s, 2px, 2py, and 2pz. The x states are formed 
by the sixty 2pz orbitals, each pointing along the ra- 
dial direction. A nearest-neighbor tight-binding 
Hamiltonian with unequal hopping integrals for sin- 
gle and double bonds is used to model x states: 
I?I=--~(i j> tijc+Cj • We assume the hopping ampli- 
tude to be unity for every single bond and t for each 
double bond. In addition to the radial orbital 2pz, 
each atom has three other orbitals, 2s, 2px and 2py, 
distributed on the plane tangential to the surface of 
the molecule. The mixture of these three orbitals at 
each site produces three sp 2 hybrid orbitals. We now 
have two different kinds of hopping integrals: V~ be- 
tween orbitals on the same carbon site and V2 be- 
tween orbitals on different atoms that are associated 
with the same bond. The tight-binding Hamiltonian 
for the a states thus can be written as 
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Bo = -  vl Z eLc,B- v~ Z cLej¢,. 
i,a ~ # < ij> 

Here, i denotes the carbon site and a the hybridized 
orbitals. Since the overlap integral between ~ and 
orhitals is negligible, the ~-state and G-state Hamil- 
tonians can be treated independently. Admittedly, 
this is a simplified model (the "Ising model")  for 
the electronic structure of C60: the "hydrogen atom" 
of the main fullerene family of C60.n2 molecules. 
However, its understanding is a convenient stepping 
stone to the study of more complex models. In this 
paper, we pursue several approaches to the analytical 
study of the spectroscopy of an important molecule. 
We would like to emphasize that the approaches de- 
scribed here are not intended to substitute more tra- 
ditional methods, but to present alternative view- 
points and complementary results. The literature on 
C6o is vast, and here we do not attempt a review. The 
interested reader is referred to refs. [ 1-7],  and ref- 
erences therein. 

2. Recursion method approach 

Let us begin with a brief outline of  the recursion 
method [8] for obtaining the eigenvalues and ei- 
genfunctions. It is important to stress that this 
method is almost always used numerically, while here 
will he implemented analytically. First, one must 
choose an appropriate normalized starting state Ifo). 
Further states are iteratively generated by the recur- 
rence relation 

B I f , )  = a ,  If. > +b ,+ l  If.+l ) + b n  If.-1 ) ,  

with bolf_l)-=0.  Here, the real parameters a,  and 
b,+l (chosen to be positive) are determined by 
a.= ( f . l B I f . )  and b,+l = ( f .+ ,  I BIf"). The process 
terminates at I fN-l)  with bN=O. The constructed 
orthonormal states { Ifo) .... , IfN- ~ ) } along with the 
parameters {ao ..... as_l} and {bi .... , bs_l} thus con- 
stitute the "chain model" [ 8 ] of a given Hamilto- 
nian. This procedure essentially amounts to a change 
of basis. The energy levels can be achieved by con- 
strutting the following polynomials with 

P_~(E) = 0 ,  P o ( E ) = I ,  

P.+~(E) = ( E - a . ) P . ( E ) - b . P . _ ~ ( E )  
bn+ 1 

The eigenvalues E~ are determined by the N zeros of  
the last polynomial PN(E)=0, with an arbitrary 
nonzero bs. The eigenfunctions are then 

l S--1 
-- ~ P.(EDIL), 
'~k n=O 

where 

fN-- I  xll/2 

are the normalization constants. 
We now come to the application of this approach 

to analytically study the electronic structure of a ful- 
lerene molecule, focusing first on the x states. We will 
use two alternative sets (denoted by d and ~ )  of 
starting states. Each set consists of two initial states 
from which the same solutions for the eigenvalues 
and eigenfunctions can be derived. This consistency 
ensures the equivalent interpretation of the results 
from these two sets of initial states. We denote by 
[j) the 2p~ orbital centered at the flh atom. 

2.1. Case ~:  initial states on a single ring 

The first set of initial states starts from a 5-atom 
pentagon ring, l uo), and a 6-atom hexagon ring, 
I v0). The beauty of the recursion method for C6o is 
that the recurrence terminates very quickly, exactly 
at lu7) as well as Ivv). As a result, we obtain two 
groups of exact and very concise formulas for ao-aT, 
and bl-b7. All these states and their respective pa- 
rameters are summarized in table 1. 

We can then respectively construct two polyno- 
mials P~(E) and P~(E) which are of eighth degree 
in E. Here the superscript p, for pentagon, (h for 
hexagon) refers to the polynomial constructed from 
the group o f a ' s  and b's generated by [Uo) (IVo)). 
The roots of these two polynomials can be analyti- 
cally obtained and correspond to the electronic en- 
ergy levels. We then obtain a total of 16 distinct ei- 
genvalues. When t=  1, a common root - 1 exists for 
both polynomials P~ and P~. We thus have 15 dis- 
tinct energy levels. It is also straightforward to ob- 
tain the eigenvectors. 
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Table 1 
States, l u,> ( Iv,> ), and parameters, a, and b.+~, obtained by recursively applying the Hamiltonian on an initial state localized on an 
elementary pentagon ring I Uo) (hexagon ring Iv o> ). For n=4, 5, 6 and 7, a,=aT_,, b,=bs_, and l u.> ( Iv.> ) are obtained by changing 
the constituting orbitals in - I uT_,> ( I vT-,> ) into the antipode ones. The labelling is as follows. Starting from a pentagon ring, j runs 
from 1 to 5. For the second shell (one bond away from this pentagon), j runs from 6 to 10. For the third (fourth) shell, which is one 
bond away from the second (third) shell, j runs from 11 to 20 (21 to 30). For concreteness, site 6 ( 11 ) is connected to 1, 11 and 12 (6, 
20 and 21 ). These 30 atoms occupy one hemisphere. The 30 atoms on the other hemisphere are denoted by 1' through 30'. Note thatj 
andj'  are antipodes, i.e., related by inversion along the molecule center. Starting from a hexagon ring, we have similar labellings, except 
that site 7 (21) is connected to 1, 13 and 21 (7, 20 and 30). 

n l u,,> a. b,,+l Iv,,> a,, b,,+l 

1 5 1 6 
0 ~ , Z  l J} - 2  t ~ i = ~  ( - l ) ' + ' l j }  l +t  1 

1 lo 1 12 
l - ~ i ~ 6  l J> 0 ~ "~,=~7 ( - 1 ) ' l  J) 0 t 

1 20 1 t5 
2 x/~i=~nlj) - t  1 "-~j~,(-1)J+'(lj>+lj+3>+lj+6>) 1 1 

1 3o 1 24 
3 ~ j  1~ ~ I J> --1 t "--~i~"3 (--1)i+~([J>+lj+3>+lj+6>) 0 t 

2.2. Case ~." initial states on two antipode rings 

In this approach,  we exploit  the symmet ry  prop-  
erty that  the invers ion opera tor  leaves the C6o mol- 
ecule invariant .  We therefore take the f i rs t  ( second)  
start ing state 10o) (l~0o)) as a l inear  combina t ion  
o f  the orbi tals  on two opposi te  (i.e., an t ipodes)  pen- 
tagon (hexagon)  rings. Fol lowing the same proce- 
dure, we f ind the very convenient  and  remarkable  
result that  the recurrence terminates even faster at 
I ¢3 > ( I ~3 > ). The parameters  generated f rom [ ~,  ) 
are a o = - 2 ,  a l = 0 ,  a2=- t ,  a 3 = - l - ~ t ,  b~=t, 
b2 = v /2  and b3 = 1. Also f rom I ¢~ > we obta in  
a o = l + t ,  a~=0,  a 2 = l ,  a3=~t,  b l = l ,  b2=t and 
b 3 = 1. Here ~ s tands for parity.  Due to the two pos- 
sible values o f  the pari ty,  we can construct  four poly- 
nomials  P~+ (E) ,  P ~ -  (E) ,  Ph4+ ( E )  and P4 h-  (E) .  
Each one is fourth degree in E. The superscr ipt  p + 
stands for the polynomial  constructed from I~o> with 
even parity,  and  s imilar ly  for the others. By analyt-  
ically solving these four polynomials ,  we obta in  the 
same 16 eigenvalues obta ined  above (case ~ ) .  Sim- 
ilarly, we can obta in  the eigenvectors which are also 
equal to those from the al ternat ive ~¢. 

2.3. Summary of results 

In table 2, we summar ize  the eigenvalues and the 
corresponding eigenvectors for the case t = 1. In table 

3, we present  the closed-form eigenvalues explicit ly 
expressed in terms of  the single-bond and double- 
bond  hopping integrals t~ and t2. Since the other  de- 
generate eigenvectors can be generated by s tandard  
group theory analysis, we therefore only present  the 
eigenfunctions der ived from the pure appl ica t ion  o f  
the recursion method.  Starting from an init ial  state 
localized on one, I Uo >, or  two, I ¢~o >, pentagons we 
generate most  of  the low energy levels because every 
pentagon has single bonds.  On the other  hand, since 
every hexagon has double bonds  and more  overall  
bonds,  i terat ions on Iv o> or I~0o> produce most  o f  
the high energy levels. 

2.4. Relations between alternatives ~¢ and 

It is worthwhile to point  out the following rela- 
t ions between the cases d and ~ presented before. 
First ,  roots  solved from Pg(E) (P~(E))  are iden- 
tical to those from P~+ (E)  and P4 p -  (E )  (P4 h+ (E)  
and P~- (E) ) .  Second, for n = 0 ,  1, 2 and 3, 

[On)=(lun)-g~lUT_.)) /V/-2,  and [ ~ n > = ( l v . >  
+ ~ [ v7_ n > ) /x /~ .  Third,  for those eigenvalues E~ 
which are common  roots of  Pg and P~+ (or  Ps ~ and 
Ph4~ ), P 7 _ . ( E D  = ~Pn(Ex). Here, all the P~(Ex) 's  
refer to the polynomials  constructed in the case ~¢ 
and n = 0 ,  1, 2, 3. Fourth,  P I (E a ) ,  P2(Ex) and P3(ED 
calculated from the two al ternat ives d and ~ are the 
same. Fifth, for the same eigenvector, the normal i -  
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Table 2 
The eigenvalues Ea and the corresponding eigenvectors ( 1 / ~ )  Y 3-o P~(Ea) If.) for C6o with t= 1. Here 10~ ) ( I ¢~ ) ) denotes 10.) 
(1~,)) with ~ =  + 1. Here c~= [2 (19+ x/-5 ) ]~/2 and fl= [2(19-x/5)]~/2. 

P~(~) ~(~) ~ ( ~ )  ~ IL> 

- 3  - 1  

- 1  1 

½ ( - l + x / ~ )  ½(3-+x~)  

~( - l+x /~_+~)  ~ (5 +,/-~_+c~) 

~ ( - 3 - x / ~ + / / )  ~ ( 5 - x / ~ +  fl) 

2 0 

- 1  - 3  

½(3_+~)  ½(- l+_, /~)  

½(1 +xf5) ½ ( -  3_x/-5) 

½(l+_xf~) ½ ( - 3 - - v / ~ )  

x ~  -x/-~ 6 I¢+> 

~x/2(3-+ x f ~ )  ½x/2 ~ ( 3 9 + 9 x / ~ )  IOZ) 

~v/216+2x/5--- (x/5+l)a]  ~x , /2 [ -4+8x /5 -+(x /5 -1 )a ]  ~t(95+5x/~)---~(25+x/'5)a log-) 

~x/~[6-2xf5~:(x /5-1)f l ]  ~ x ~ [ - 4 - 8 x / ~ T ( x / 5 + l ) f l ]  ~(95-Sx~)+l~(25-x/ -5) f l  10~-) 

- 1  - 1  3 [tp~) 

2 - 1  15 I~o + ) 

½ ( - I  +x/~) ½ (3:g v/5) ½ (15q: 5x/~) I~+)  

½(-  l~:x/5) ½ (1 :gx/5) ½(15T 3x/~) 19~;) 

½ (ST x/T7) - 4 + v / ~  51:g 12xf~ [ ~ )  

Table 3 
The eigenvalues and the corresponding degree of degeneracy 
(either for the plus or minus sign) for C6o. The characteristic 
polynomials from which those eigenvalues are solved are indi- 
cated in the first column. Here r={218t~-(4+4,/5)t2t~ 
+ (15+ 5;x/~)t2]} ~/2 and 7={218t2-(4-4x/5)t2fi+ - ' - "  
(15-5x/5)t2]} ~/2. Also r/ and ~ satisfy ~(16t]-24t2t,+ 
12t2t2+25t~)=r13-3q~ 2 and ~[3(64t~-160t]h +288t22t 2 
- 200t2 t 3 + 125t~ 4 ) ] = 3q2~- ~ 3. 

Energy Degeneracy 

P~+ - (2h + t2) 1 

- ~(tl+t2)+2q 5 

- ~ (t, +t2) -,1 +,,/3 ~ 5 

p,v- ~ [( - 3 + x / 5 ) h  +z] 3 

~ [(-3-x/-5)q +el 3 
+ 2 2 P~+ ½(tL _ ~ )  4 

t2 + ½ (1 +x/'5)tl 3 

P~- ½ (h + x/5t 2 - 4 h  t2 +at  2 ) 5 

½ (h + x/5t 2 + 8h t2 + at] ) 4 

zation constants X~, and ~ ,  calculated in M and 
respectively, satisfy ~ = x / ~  ~ .  From the above 
five properties, the equivalence of results from both 
alternatives becomes clear. In fact, from the results 

of alternative d ,  we can understand the parity prop- 
erty associated with C6o. 

3. Path-integral (or moment) approach 

In this method, the central task is the computation 
of path-integrals (moments),  defined by ~¢6 = 
(jlfIllj), where the order, l, is a positive integer. The 
physical meaning of ~/6 is as follows. The Hamilto- 
n ian /~  is applied l times to an initial 2pz state ]j).  
Each t ime/~  is applied, the electron gains a certain 
amount of kinetic energy. This enables the electron 
to hop through l bonds, reaching the final state/~tlj).  
The path-integral just equals the total kinetic energy 
gained by the electron returning to the starting site 
j after hopping l steps. It is obvious that -g6 will be 
zero when the/-hops path does not return to the ini- 
tial site. For the case t=  l, the absolute value of the 
moment ~/6 is the total number of closed paths of l- 
steps starting and ending at the same site. 

Below we describe two approaches for analytically 
calculating the path-integrals on a C6o molecule. Let 
the orbital I 1 ) be our starting state. Note that the 
action of the Hamiltonian on an arbitrary state re- 
sults in three nearest-neighbor states with an addi- 
tional factor accounting for the respective bond hop- 
ping energy. Our strategy is: each time the power of 
the Hamiltonian increases by one, we move to the 
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nearest-neighboring sites. Also the factor on each site 
is the sum of the factors on the three nearest-neigh- 
bor sites times the bond hopping integral between 
sites. From its definition, it is evident that the mo- 
ment of order l is just the factor on the site 1 for ~l.  
We can thus generate all the moments to any order 
one by one. Because of the mirror-symmetry of C6o, 
we need only concern ourselves with the sites in one 
of the two hemispheres. Furthermore, because of the 
geometrical equivalence, with respect to site 1, of 
eight pairs of sites, the total number of  independent 
sites can be reduced to 24. 

An alternative procedure can be implemented by 
using symbolic manipulation software on a com- 
puter. Define an auxiliary quantity, Wl(j), which is 
the sum over all possible paths of l steps on which 
an electron may hop from site 1 to j. From the con- 
nectivity of C6o, we can then construct 24 indepen- 
dent recurrence relations like Wt+ 1 (k) = 
- tWt (p)  - Wl(q)  - Wl(r) .  The recurrence relation 
states that the site k can be reached by taking the 
( l+  1 )th step from the nearest-neighbors p, q and r. 
The factors - t  and - 1 account for the connecting 
bond-hopping integral. With the conditions 
W o ( 1 ) = l  and Wo( j )=0  for the rest o f f s ,  we can 
obtain the moments to any order as ~gl= Wl( 1 ). The 
correctness of  the calculated moments is assured by 
the consistency of the results from these two ap- 
proaches. It is evident that through these two ap- 
proaches we can also obtain the quantities ( 1 I ~  t [j) 
for j #  1 which can be appropriately interpreted as 
the "sum-over-paths" between sites 1 and j. For in- 
stance, ( 1 [~ t [ j )  just equals Wt(j). 

To obtain the energy spectrum, we need to express 
the parameters an and b~+ ~ in terms of the moments. 
We employ the following formulae [9 ]: define the 
matrix M with the first row elements Mo.t=.gl. The 
other rows are evaluated by 

Mn- l , l+2  - M n - l , l M n - l , l + l  
mn, l  ---- Mn_ 1,2 --M2_l,l 

l - -1 

-- £ M n , k M n -  l , l -k  , 
k = 0  

here n~> 1 and l=0,  1, ..,. The a. 's  and b.+~'s are ob- 
tained from a.=M. ,~  and b2+t = M . , 2 - M 2 1 ,  for 
n=0 ,  1, 2, .... We analytically find that b25 exactly 
equals 0 for t=  1 and b26 exactly equals 0 for arbi- 

trary t. For the case t=  1, it turns out that the highest 
order moment  we need is l=  30. Through the cal- 
culated parameters, we can construct the polynomial 
P15 (E).  We thus obtain 15 energy levels. The results 
are identical to those obtained from the recursion 
method approaches. Similar conclusions can also be 
drawn for t #  1. 

4. Alternative application of the path-integral 
method 

It is worthwhile to incorporate the inversion sym- 
metry property in the path-integral approach in or- 
der to obtain the results in a faster and much com- 
pact manner. Therefore, instead of focusing on a 
single localized state, we turn to the computation of 
the moments with respect to the state [I+ ) =  
([ 1 ) _+ [ 1') ) /v/2,  where atoms 1 and 1' are anti- 
podes. It is a simple exercise to construct the follow- 
ing identity ( I+  I/~qI+ ) = ( 1 [Jqq I ) _+ ( 1 [/~rq 1') .  
The moments ( I±  [ ~ l [ i ± )  can then be readily ob- 
tained since the quantities ( 1 [ ~l[ 1 ) and ( 1 [ ~t[ 1') 
are already available. 

For the case t=  1, the highest order we need for 
( l + ] / ~ q I + )  ( ( I _ [ ~ q I _ ) )  is 14 (16), because 
b 2 (b 2) calculated from these moments turns out to 
be exactly 0. We thus qnalytically obtain 7 (8) ei- 
genvalues which are identical to those belonging to 
the ~ = + 1 ( ~ = - 1 ) category from the recursion 
method. For an arbitrary t, we need moments 
( I±  [/~t[ I± ) up to order 16. We analytically find that 
b 2 exactly equals 0 in both cases. Consequently, con- 
sistent results for the eigenvalues are recovered. In 
this section, we have presented an unconventional 
choice of initial states and concentrated on the mo- 
ments with respect to these states. This approach is 
even more efficient (than the one described in the 
previous section) in analytically obtaining the en- 
ergy eigenvalues. 

5. Relationship between the recursion and path- 
integral methods 

Generally speaking, the path-integral method is 
closely related to the recursion method, especially in 
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the aspect that both approaches lead to the same re- 
suits for the parameters an and b2+ 1. In this section, 
we illuminate this point by showing that the same 
expressions for the parameters in the recursion 
method case ~ can be obtained through the moment  
method. As the initial states are I~0) and I~0o) in 
this case, the moments we now need to compute are 
( q~o I/~tl q~o) and ( ~Oo I/~tl ~00). It is straightforward 
to obtain these moments through the techniques pre- 
viously discussed. 

Anticipating the termination at b 2, we only need 
these moments up to order 8. We thus obtain a , ' s  
and 2 , b,+l  s which are consistent with those derived 
directly from the recursion method. We thus dem- 
onstrate the fact that the same results for the param- 
eters an and b2+ 1 can be obtained by using either the 
recursion or moment  methods. The advantage of the 
recursion method is that we can simultaneously gen- 
erate the states and the parameters. However, it is 
sometimes difficult to derive the states and param- 
eters when the recursion method is applied to some 
starting state, while the moment  method provides 
standard procedures to calculate the parameters after 
the moments are obtained. 

6. Local density of states 

In the recursion and path-integral methods, the di- 
agonal element of  the Green function ( E - ~ ) -  ~ can 
be expressed as a continued fraction [8,9], 

Go(E) = <f0 [ ~ ]fo> 

= 1 / ( E - a o - b 2 / ( E - a l - . . . - b 2 _ l / ( E - a ~ _ ~ ) . . . ) ) .  

The local density of states (LDOS) p ( E )  for [fo) is 
related to the imaginary part of Go(E) by 

p ( E ) =  l i m ( - l I m G ° ( E + i E ) )  " ~ o  

By plugging in their respective parameters from these 
methods, we thus obtain the LDOS on several initial 
states. In principle, they are experimentally acces- 
sible by using a scanning tunneling microscope 
(STM) [10]. Choosing the initial state as a 2pz or- 
bital on a carbon atom, the path-integral method 
provides a local density of  states and the degree of 

degeneracy for each energy level (since the total 
number of n electrons is 60). 

7. Solution for the electronic ~ states 

The eigenvalues and eigenvectors of the o-states 
Hamiltonian/(to can be obtained after an analytic 
transformation of this Hamiltonian into a simpler 
one with a single hopping parameter between sites 
[ 11 ]. The details of  this mapping and other results 
related to this paper will be discussed elsewhere. As 
a result, among the 90 6 bonding (90 6 antibonding) 
states, 30 states are lumped together at the energy 
level II1 - V2 ( VI + V2). The eigenvalues of the other 
60 bonding (with plus sign) and 60 antibonding 
states (with minus sign) are 

- ½V1 + - V 2 ~ ' - ~ ( V 1 / V 2 ) E . ~ - k g V 2 / V  2 , 

where E~ are the rc state eigenvalues listed in table 2. 

8. Conclusions 

In conclusion, we use several approaches based on 
the recursion and path-integral methods in order to 
analytically study the spectroscopy of the C60 mol- 
ecule. In particular, we obtain closed-form analytic 
expressions of the eigenvalues and eigenfunctions for 
both n and a states as well as the LDOS around any 
site and around several ring clusters. The former, for 
instance, can be experimentally measured by using 
STM spectroscopic techniques (see, e.g., review 
[10]).  
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